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brain metastasis receiving
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Objectives: Stereotactic radiosurgery (SRS), a therapy that uses radiation to treat

brain tumors, has become a significant treatment procedure for patients with

brain metastasis (BM). However, a proportion of patients have been found to be

at risk of local failure (LF) after treatment. Hence, accurately identifying patients

with LF risk after SRS treatment is critical to the development of successful

treatment plans and the prognoses of patients. To accurately predict BM patients

with the occurrence of LF after SRS therapy, we develop and validate a machine

learning (ML) model based on pre-treatment multimodal magnetic resonance

imaging (MRI) radiomics and clinical risk factors.

Patients andmethods: In this study, 337 BM patients were included (247, 60, and

30 in the training set, internal validation set, and external validation set,

respectively). Four clinical features and 223 radiomics features were selected

using least absolute shrinkage and selection operator (LASSO) and Max-

Relevance and Min-Redundancy (mRMR) filters. We establish the ML model

using the selected features and the support vector machine (SVM) classifier to

predict the treatment response of BM patients to SRS therapy.

Results: In the training set, the SVM classifier that uses a combination of clinical

and radiomics features demonstrates outstanding discriminative performance

(AUC=0.95, 95% CI: 0.93-0.97). Moreover, this model also achieves satisfactory

results in the validation sets (AUC=0.95 in the internal validation set and

AUC=0.93 in the external validation set), demonstrating excellent

generalizability.
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Conclusions: This ML model enables a non-invasive prediction of the treatment

response of BM patients receiving SRS therapy, which can in turn assist

neurologist and radiation oncologists in the development of more precise and

individualized treatment plans for BM patients.
KEYWORDS

stereotactic radiosurgery, brain metastasis, treatment response, multimodal MRI,
radiomics, machine learning
Introduction

Brain metastasis (BM) is one of the most common intracranial

malignant tumors in adults, and more than 20% of cancer patients

develop BM during the course of the disease (1). At present, the

treatment methods of BM consist of surgery, radiotherapy,

chemotherapy, targeted therapy, immunotherapy and

comprehensive treatment, among which, radiotherapy is one of

the most important treatment procedures, including the whole

brain radiotherapy (WBRT) and the stereotactic radiosurgery

(SRS) (2, 3). In recent years, SRS has been increasingly used in

the treatment of patients with BM due to its efficacy, short

treatment time and low neurotoxicity (4, 5). According to the

guidelines of the American Society for Radiation Oncology (6),

level-1 evidence shows exclusive SRS therapy is appropriate for

patients with less than four metastases. Although the local control

rate of SRS for BM can reach more than 70% (7), a proportion of

patients still suffer from local failure (LF) after treatment (8, 9). The

treatment response of BM is typically determined using the change

in tumor size in structural brain MRI, which is evaluated manually

by radiation oncologists. However, changes in the physical size of

the tumor may take months to become identifiable in subsequent

MRI images (10), which may lead to time delays in the appropriate

adjustment of treatment plans. Therefore, if accurate prediction can

be made in advance, the treatment response of BM after SRS

therapy can effectively facilitate the development of personalized

treatment plans, reduce complications and adverse reactions due to

ineffective treatment, and improve the prognoses of patients.

Radiomics is a new discipline that combines traditional

radiology, big data analysis and precision medicine. By extracting

a large number of features from standardized radiological data and

establishing predictive models after feature screening, it has been

applied to clinical decision-making systems to assist diagnosis and

evaluate prognosis, which has gained increasing importance in

oncology research (11–14). Numerous studies have shown that

the radiomics features of pre-treatment radiology images can be

used to predict the treatment response of some diseases. Kickingerer

et al. (15) extracted 4842 quantitative radiomics features from pre-

treatment MRI images (T1 weighted imaging (T1WI), contrast

enhanced-T1WI (CE-T1WI), and T2-fluid attenuated inversion

recovery (T2-FLAIR) sequences) of 172 recurrent glioblastoma (r-

GBM) patients, and established a model that could efficaciously

predict the sensitivity of r-GBM patients to bevacizumab treatment.
02
Liu et al. (16) developed a radiomics model containing radiomics

features and independent clinicopathological risk factors to predict

the pathological complete response of patients with locally

advanced rectal cancer to neoadjuvant chemoradiotherapy, with

an AUC of 0.9756 in the validation set. The research of Dercle et al.

(17) indicated that radiomics features extracted from pre-therapy

chest CT images could accurately predict the sensitivity of non-

small cel l lung cancer patients to chemotherapy and

targeted therapy.

Currently, most studies of radiomics in BM have focused on the

differentiation between true progression (TP) and radiation necrosis

(RN) after radiotherapy (18–21). However, few investigations have

been done on the prediction of treatment response of BM patients who

have received SRS therapy, and in some contexts, this prediction

possesses more clinical significance than the prediction of survival.

Mouraviev et al. (18) retrospectively analyzed the 408 BM in 87

patients treated with SRS, and a total of 440 radiomic features were

extracted from the tumor core and the peritumoral regions, using the

baseline pretreatment post-contrast T1 and T2-FLAIR MRI sequences.

They found that radiomic features aid local control prediction of BM

treated with radiosurgery and radiomic features are complementary to

clinical features for this task. Huang et al. (22) retrospectively analyzed

the data of 161 patients with non-small cell lung cancer (576 BM) who

underwent Gamma Knife Radiosurgery (GKRS) for BM, and it was

indicated that the zone percentage of brain metastases, a radiomic

feature derived from pre-GKRS contrast-enhanced T1-weighted MRIs,

was found to be an independent prognostic factor of local tumor

control following GKRS in patients with non-small cell lung cancer and

brain metastases. While the SRS therapy has been shown to be effective

in the improvement in the local control of BM, it does not always imply

the improvement in the survival (23). The main significance of SRS

therapy may still mainly lie in the alleviation of the relevant

neurological symptoms and improvement of the quality of life (24–

26). Avoiding overtreatment of patients with poor prognosis is as

important as the active treatment of patients who are likely to survive

for several years (27). Therefore, if the patients at risk of LF after

receiving SRS therapy can be identified in the first place, this

information can be essential for neuro-oncology physicians to create

appropriate treatment plans, such as surgery or WBRT, to reduce the

burden and adverse reactions due to less effective treatments, thereby

ameliorating the treatment effect (3).

To develop accurate predictions of the treatment response of

BM patients to SRS therapy, we propose a novel non-invasive SRS
frontiersin.org
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efficacy prediction model by employing an ML approach,

combining the pre-treatment multimodal MRI radiomics features

and relevant clinical risk factors. We show that the model is capable

of producing accurate predictions of BM patients who are at risk of

LF after SRS therapy.
Patients and methods

Patients

This retrospective study was approved by the Institutional

Review Boards. All patients or their guardians have given their

informed consent to the utilization of their anonymized MRI

images and clinical data for research purposes. In total, 307 BM

patients treated with SRS between January 2015 and November

2020 in Huashan Hospital, Fudan University were enrolled in the

study. Among them, 247 and 60 patients were randomly assigned to

the training and internal validation sets through a stratified
Frontiers in Oncology 03
sampling method. In addition, 30 BM patients treated with SRS

between January 2015 and November 2020 in the Second Affiliated

Hospital of Xuzhou Medical University were utilized for external

validation. The demographic and clinical characteristics of the

patients were shown in Table 1. Eligible criteria were as follows:

(1) pathologically confirmed primary cancer; (2) no more than four

brain metastases confirmed by CE-T1WI of brain MRI; (3)

Karnofsky Performance Status (KPS)≥70; (4) patients who

underwent SRS therapy only; (5) patients who didn’t receive

surgery or WBRT before SRS therapy; (6) complete acquisition

images of pre-therapy and follow-up MRI, including T1WI, CE-

T1WI, T2 weighted imaging (T2WI) and diffusion weighted

imaging (DWI); (7) complete relevant clinical data.
Treatment response assessment

All patients underwent SRS therapy using Leksell Gamma

KnifeⓇ Perfexion™ (Elekta, Norcross, GA, USA). The median
TABLE 1 Characteristics of patients and lesions in all datasets.

Variables Training set Internal validation set External validation set

No. of patients 247 60 30

Age (years): median (range) 60 (22-78) 61 (37-76) 64 (46-74)

Female: Male 115:132 22:38 12:18

No. of metastases per patient: median (range) 1 (1-4) 1 (1-3) 1.5 (1-4)

Total number of metastases 403 101 55

KPS score: median (range) 80 (70-90) 70 (70-100) 70 (70-80)

GPA score: median (range) 2.5 (0.5-4) 2.5 (1-4) 2 (0.5-2.5)

Location of tumors: No. (%)

Frontal lobe 180 (44.7%) 35 (34.7%) 12 (21.8%)

Occipital lobe 48 (11.9%) 12 (21.7%) 5 (9.1%)

Temporal lobe 42 (10.4%) 10 (16.7%) 9 (16.4%)

Parietal lobe 69 (17.1%) 18 (13.3%) 13 (23.6%)

Cerebellum 37 (9.2%) 15 (25.0%) 9 (16.4%)

Brainstem 5 (1.2%) 2 (3.3%) 2 (3.6%)

Others 22 (5.5%) 9 (15.0%) 5 (9.1%)

Primary tumor type: No. (%)

Lung Cancer 186 (75.3%) 41 (68.3%) 23 (76.7%)

Breast Cancer 24 (9.7%) 8 (13.3%) 1 (3.3%)

Colorectal Cancer 13 (4.3%) 3 (5.0%) 3 (10.0%)

Kidney Cancer 5 (5.3%) 6 (10.0%) 0

Gynecologic Cancer 5 (5.3%) 0 0

Others 14 (5.7%) 2(3.3%) 3 (10.0%)

Tumor volume (cm3): median (range) 2.58 (0.39-51) 2.47 (0.51-37) 2.73 (0.45-42)

Edema index: median (range) 4.32 (1-57.6) 3.26 (1-53.7) 3.01 (1.53-26.7)
KPS, Karnofsky Performance Status; GPA, Graded Prognositic Assessment.
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radiosurgery volume was 3.16 cm3 and the median margin dose was

17 Gy (range 15–20 Gy). The margin dose was generally prescribed

at an isodose line level of 40%–70% with a median of 50%. The

median time between pre-treatment MRI and SRS therapy was 0

day (range, 0-4 days).

Patients were evaluated with MRI at the pre-treatment and the

follow-up approximately 60 days after SRS therapy. Tumor

response was estimated based on the Response Assessment in

Neuro-Oncology Brain Metastases (RANO-BM) criteria (28),

which classifies patients into complete response (CR), partial

response (PR), stable disease (SD), and progressive disease (PD).

We defined the CR and PR as locally effective (LE) group, the SD as

locally stable (LS) group, and the PD as locally ineffective

(LIE) group.
Image acquisition

Axial CE-T1WI, T2WI and DWI images of all patients were

acquired on 1.5T MRI system (SIGNA Excite HD; GE Healthcare,
Frontiers in Oncology 04
Milwaukee, WI, USA) with an 8-channel phased-array head coil.

The scanning parameters were as follows: CE-T1WI [repetition

time (TR) = 800ms, echo time (TE) = 7.7ms, bandwidth = 122Hz,

slice thickness (ST) = 3mm, slice gap = 0mm]; T2WI (TR = 5500ms,

TE = 97ms, bandwidth = 122Hz, ST = 3mm, slice gap = 0mm); DWI

(TR = 4400ms, TE = 101ms, bandwidth = 1022Hz, ST = 6mm, slice

gap = 2mm); field of view (FOV) = 240mm × 240mm; acquisition

matrix = 256 × 256.
MRI data analysis

The MRI data analysis flowchart is presented in Figure 1. We

first performed alignment, resampling and normalization

preprocessing of multimodal MRI images to obtain BM

multimodal MRI images. Then, the importance of clinical features

and radiomics features in the SRS efficacy prediction task was

analyzed using feature selection methods (correlation coefficient,

LASSO and mRMR filter), and 4 clinical features and 223 radiomics

features with feature importance greater than zero and non-linear
FIGURE 1

MRI data analysis flowchart.
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correlation were selected for modeling. Then, six classifiers were

evaluated on the training set by a 5-fold cross-validation method,

and the best performing SVM classifier was selected to construct the

SRS efficacy prediction model. Finally, we evaluated the

performance of the SRS efficacy prediction model proposed in

this paper on the internal and external validation sets.
Tumor region of interest delineation

To match the region of interest (ROI) to all MRI sequence

images, we resampled all images to the same spacing (1×1×3 mm3)

according to the Image Biomarker Standardization Initiative (IBSI)

guidelines (29), using the linear difference resampling method in the

SimpleITk package (Version 2.1.1.1, https://simpleitk.readthedocs.io/

en/master/index.html). We used the Advanced Normalization Tools

(ANTs) (https://github.com/ANTsX) to align all MRI image

sequences to the CE-T1WI sequence. Then, the image intensities

were normalized to 0-255 using the feature scaling method provided

in SimpleITK.
Tumor region of interest segmentation

Tumors were segmented by two radiologists (P.D. and H.L.,

with 16 years of experience in central nervous system radiology)

blinded to diagnosis, using a semi-automatic tool ITK-SNAP

(Version 4.0.0, http://www.itksnap.org/pmwiki/pmwiki.php), on

CE-T1WI and T2WI axial images with 2 ROIs (masks): the whole

tumor (enhancement and non-enhancement) and peritumoral

edema. All masks were superimposed on three sequences (CE-

T1WI, T2WI, and DWI).
Radiomics feature selection

In this study, radiomics features were extracted in three

dimensions using Pyradiomics (Version 3.0 , https : / /

pyradiomics.readthedocs.io/en/latest/features.html) on 6

combinations of 2 masks and 3 imaging sequences. Image

transformations (including: wavelet, Laplacian of Gaussian (LoG),

and square, square root, logarithm, and exponential filtes) were

performed on the original images to obtain additional radiomics

features. A total of 2153 features, including first order (First-Order,

414 features), shape-based (Shape, 14 features), Gray Level

Cooccurrence Matrix (GLCM, 552 features), Gray Level Run

Length Matrix (GLRLM, 368 features), Gray Level Size Zone

Matrix (GLSZM, 368 features), Neighboring Gray Tone

Difference Matrix (NGTDM, 115 features), and Gray Level

Dependence Matrix (GLDM, 322 features), were extracted for

each combination.

Given the size of the dataset, we extracted a sizable feature

collection with a total of 12918 features (extracted from 3 sequences

× 2 masks × 2153 features), which may lead to dimension explosion.

Therefore, feature selection was necessary. Prior to feature selection,

all features extracted from the two radiologists’ masks would be
Frontiers in Oncology 05
calculated by ICC (Intraclass correlation coefficient, a descriptive

statistic used to measure the reproducibility of features), and only

features with ICC greater than 0.9 would be included in feature

selection and standardized steps. Then we used the LASSO filter to

select the most important features from the features. Finally,

considering features with highly linear correlations, we removed

redundant features by using the mRMR filtering approach and

retrieved the features for further work.
Classifiers and evaluation indicators

Based on the performance of six classifiers, including Gaussian

Naive Bayesian (GNB), k-Nearest Neighbors (KNN), random forest

(RF), adaptive boosting (AB), support vector machine (SVM) with

the linear kernel, and multilayer perceptron (MLP), all applied to

the selected features, we chose the best model for SRS

efficacy prediction.

In this study, we used the confusion matrix obtained by receiver

operating characteristic (ROC) analysis to calculate the area under

ROC curve (AUC), accuracy (ACC), positive predictive value

(PPV), sensitive (SEN), specificity (SPE), and F1-score to assess

individual model performance. The net reclassification

improvement (NRI) metric was used to evaluate the significance

of model improvement.
Statistical analysis

We performed a statistical analysis of the results using IBM

SPSS Statistics 26.0. Differences were considered statistically

significant when the two-sided P<0.05. Moreover, the DeLong test

was used in AUC difference test. In addition, feature selection,

model construction and validation were performed using scikit-

learn package (Version 1.0.2, https://scikit-learn.org/stable/) based

on python (Version 3.10.7, https://www.python.org).
Results

The performance of the models in the
training set

Model of the clinical features
We compute Spearman correlation coefficient matrix and apply

the logistic regression model to analyze the nine clinical characteristics

of BM patients. The correlation and importance of the features are

shown in Figures 2A, B.We find that the number of metastases and the

Graded Prognostic Assessment (GPA) score are the most relevant

clinical characteristics in the SRS efficacy prediction task, and the

number of metastases also has the highest feature importance of 0.265.

In addition, KPS score and edema index are also key clinical features

for SRS efficacy prediction, while primary tumor type and sex are

almost irrelevant for the task.

Hence, we use the above mentioned clinical features (the

number of metastases, GPA score, edema index, KPS score) to
frontiersin.org
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establish a clinical feature-based SRS efficacy prediction model

using different classifiers, and the results are shown in Figure 2C.

Among the six classifiers considered, the SRS efficacy prediction

model based on the SVM classifier yields the best performance

(AUC=0.64, 95% CI: 0.62-0.66) on the training set.

Model of the radiomics features
First, we select 223 radiomics features using the LASSO and

mRMR filters. The distribution of feature Spearman correlation

coefficients and feature categories are shown in Figures 3A, B. We

find that GLSZM features account for the largest proportion of the

feature class-based radar maps (37%), while wavelet features

account for the largest proportion of image transformation-based

radar maps (42%). In addition, we select features with feature

importance in the top 10% for analysis, as shown in Figure 3C.

Compared to multiple sequence images and ROIs, CE-T1WI-based

features and tumor ROIs-based features are more significant for the

SRS efficacy prediction task.

To select the best classifier, we establish different SRS efficacy

prediction models based on six classifiers using the 223 selected

radiomics features and evaluate each of these classifiers using a 5-

fold cross-validation. The results obtained using the six different

classifiers on the training set are shown in Figure 4A. Among the six

classifiers, the SVM classifier has the best performance in the SRS

efficacy prediction model with ACC=0.85 (95% CI: 0.79-0.91),
Frontiers in Oncology 06
PPV=0.86 (95% CI: 0.82-0.90), SEN=0.83 (95% CI: 0.79-0.87),

SPE=0.92 (95% CI: 0.90-0.94), and F1-score=0.84 (95% CI: 0.81-

0.87). Then, the six classifiers are compared using the macro-

average ROC curves with 5-fold cross-validation, which are

shown in Figure 4B, and the SVM classifier still achieves the best

AUC=0.95 (95% CI: 0.93-0.97).
Differences in performance between
radiomics and clinical models

Based on the above results, we establish the final SRS efficacy

prediction model using four clinical features, 223 radiomics

features, and the SVM classifier. In Table 2, we show that the

final SRS efficacy prediction model demonstrates better

classification performance compared with other models. The

radiomics model significantly outperforms the clinical model with

an improvement in the AUC value of 0.33 (training set: 0.95 vs.

0.62, P<0.05) and NRI value of 0.39. While the classification model

based on clinical-radiomics features does not appear to provide

significant improvement in the metrics considered compared with

the radiomics model (training set: 0.95 vs. 0.95, P=0.15), and our

final SRS efficacy prediction model established using SVM and

clinical-radiomics features shows overall better classification

performance with ACC=0.86 and AUC=0.95.
A

B C

FIGURE 2

The results of the model based on clinical features (A) The importance of the clinical features; (B) The spearman correlation coefficient matrix
between the selected clinical features; (C) The performance of different classifiers based on clinical features.
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The performance of the models in the
validation sets

In addition, we collect internal and external validation sets to

evaluate the SRS efficacy prediction model established in this study.

We emphasize that the validation sets are not used in any part of the

model construction process – it is only used in the validation and

evaluation of the final model. The results obtained from our model

on the internal and external validation sets are shown in Table 3 and

Figure 5. The model achieves an AUC of more than 0.90 on both

internal and external validation sets (internal validation AUC=0.95,

and external validation AUC=0.93, respectively).
Discussion

In this study, we develop a non-invasive ML prediction model

integrating pre-treatment multimodal MRI radiomics features and

relevant clinical risk factors to prospectively classify patients into

LE, LS and LIE groups. Through validation, it indicates that this

model is capable of outputting accurate predictions on both the

training and validation sets. This may provide an auxiliary tool for

precision diagnosis and treatment of BM patients.

In the study, we find that the number of metastases, GPA score,

edema index, KPS score are significant in predicting the SRS efficacy

of BM patients, which is similar to the findings of Baschnagel (30),

Pontoriero (31), Park (32) and Noyama (33). The edema index, as

an important clinical feature, is first used to assess the efficacy of
Frontiers in Oncology 07
SRS of BM, which was originally used for preoperative evaluation of

peritumoral edema in meningiomas, to guide neurosurgeons in

surgical planning (34). By analyzing the 223 radiomics features

selected by the LASSO and mRMR filters, we find that 86 features

are from CE-T1WI sequences (38.57%), and 125 features are from

tumor ROIs (56.05%). In addition, texture features occupy the

largest proportion (76.67%), and wavelet features also occupy a

considerable proportion (42.15%). This implies that CE-T1WI

sequence, tumor ROIs, advanced radiomics textures, and wavelet

image features play an essential role in the task of predicting

SRS efficacy.

We evaluate the performance of 18 combinations (6 classifiers ×

3 feature combinations) for SRS efficacy prediction based on four

clinical features and 223 radiomics features in the training set. The

SVM classifier with a linear kernel achieves the best performance in

all of the experiments. This is due to the ability of the SVM classifier

to perform non-linear classification when applied to the selected

features. According to this study, the radiomics models based on

different classifiers outperforms the clinical models, which

demonstrates the validity and effectiveness of the radiomics

features. In addition, compared with the models based on clinical

features or radiomics features alone, the model combining both the

clinical and radiomics features demonstrates improved

performance. Specifically, the AUC and ACC of the training set

are improved by 0.01 and 0.02, respectively.

Our model has satisfactory performance on the validation sets,

with the AUCs of both internal and external validation sets above

0.9. This also indicates that the generalizability of the proposed SRS
A B

C

FIGURE 3

Importance of selected features, (A) Spearman correlation coefficient matrix for selected features; (B) Distribution of selected features in
transformed images and feature classes; (C) Features of the top 10% of importance in the selected 223 radiomics features.
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efficacy prediction model. Moreover, it is found that our model has

the highest AUC in the LIE group, as shown in Figure 5, which

implies that our model can be particularly effective in identifying

BM patients at risk of progression after receiving SRS therapy. The

misclassified cases may be due to the relatively poor image quality,

and the primary tumor types include lung cancer, colon cancer and

breast cancer.

Existing research on BM indicates that there are many

complicated factors influencing the efficacy of treatment (22, 35),

such as the basic condition of patients, the histopathology type of

primary tumors, the patients’ tolerance of chemotherapy and

radiotherapy, the location, the number and the volume of BM,

and the presence of extracranial metastases, etc. It is generally

difficult to consider all the influence factors in one study. Thus, this

study focuses on the patients with KPS≥70, no more than four

intracranial metastases, no surgery or radiotherapy treatment

before SRS therapy and no other concurrent therapies as the

study objects. Besides, we note that the mechanism between
Frontiers in Oncology 08
radiotherapy and biological individuals are extremely complex

(36). There are many uncontrollable factors and individual

biological randomness influencing the prognosis of patients,

which are not in the scope of this study.

The initial therapy of patients with BM mainly relies on local

treatment (3), and the choice of initial treatment largely depends on

the clinical experience and decision of neuro-oncology physicians –

whether radiotherapy alone or radiotherapy after surgery. At

present, surgery is only recommended for patients with a limited

number of intracranial metastases (37). Moreover, surgery is an

invasive treatment method with certain risks and complications.

Hence, whether surgical intervention is required and when to use it

is still a challenging issue that needs to be addressed

comprehensively in neuro-oncology. The prediction model

proposed in this study provides insights into this clinical decision

from a quantitative perspective. Based on the predicting results of

this model, once the patient is determined to be at risk of LF after

SRS, the neuro-oncology physician can recommend surgery to
A

B

FIGURE 4

Performance of different classifiers on the training set; (A) The performance of different classifiers with 5-fold cross-validation; (B) macro-average
ROC curves of different classifiers with 5-fold cross-validation.
TABLE 2 The Performance of the models with clinical and radiomics features.

Classfier
Features

ACC PPV SEN SPE F1-score AUC NRI
clinical radiomics

SVM

✓ 0.57 0.56 0.57 0.79 0.53 0.62
0.39

—

✓ 0.85 0.86 0.83 0.92 0.84 0.95
0.04

✓ ✓ 0.86 0.85 0.86 0.93 0.85 0.95 —
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remove the tumor, which is likely to alleviate the patient’s related

neurological symptoms and improve the quality of life.

Furthermore, tumor molecular markers and gene mutations

obtained from surgical specimens can guide the drug selection of

targeted therapy (2, 38). If it is determined that a patient is LE or LS,

the patient can be treated based on the original treatment plan. For

patients determined to be at risk of LF, surgery or SRS combined

with WBRT may be recommended. The established ML model

based on pre-treatment multimodal MRI radiomics and related

clinical risk factors can prospectively and reliably predict the

treatment response of patients with BM after receiving SRS

therapy. To a certain extent, it can effectively assist neurologists

and radiation oncologists in developing individualized therapeutic

regimens and in turn minimizes the complications and adverse

reactions of patients in the medical procedures.
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RN is one of the main complications of radiotherapy for brain

tumors (10), which usually occurs 6-9 months after radiotherapy (19,

39). RN and TP are remarkably similar in structural MRI features and

clinical manifestations, yet they correspond to completely different

treatments and prognosis (40). RN does not require treatment and

will remain unchanged or gradually shrink over time. However, TP

means treatment failure, requiring timely adjustments to treatment

strategies. In order to ensure the objectivity and accuracy of the

prediction and exclude the influence of RN on the prediction model,

all patients who were determined to be LF in this study underwent

perfusion weighted imaging (PWI) and magnetic resonance

spectroscopy (MRS) subsequently. After comprehensive diagnosis

by a multidisciplinary team consisting of experts from radiotherapy,

neurosurgery, neuro-oncology, radiology, and pathology, the patients

with questionable judgment results were excluded. Three patients
TABLE 3 Performance of SRS efficacy prediction models in internal and external validation sets.

Datasets Models ACC PPV SEN SPE F1-score AUC

Internal-validation radiomics-only 0.82 0.78 0.78 0.89 0.78 0.91

clinical-radiomics 0.85 0.84 0.80 0.91 0.82 0.95

External-validation
radiomics-only 0.80 0.73 0.74 0.85 0.74 0.90

clinical-radiomics 0.80 0.77 0.77 0.89 0.77 0.93
frontier
A

B

FIGURE 5

Confusion matrices and ROC curves of our SRS efficacy prediction models in the internal validation set (A) and the external validation set (B).
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were excluded due to questionable judgement results, and a total of 32

patients with progressive disease were ultimately enrolled in

this study.

The following limitations exist in our study. First, the treatment

response is evaluated using the pre-treatment MRI and the follow-

up MRI approximately 60 days after treatment. Although it meets

the evaluation requirements based on the RANO-BM criteria, it

may only represent a short-term treatment response. The long-term

efficacy analyses are still needed. Second, due to the inclusion of

only patients with no more than four BM, the sample size of this

study is limited. It is in the plan of our future work to conduct

multicenter research, and explore the feasibility of including

patients with more than four BM. Besides, more data from

different scanner models and different image acquisition

parameters need to be included in future studies to improve the

generalization of the prediction model. Furthermore, in future

studies, we will endeavor to incorporate genetic information of

BM to increase the accuracy of prediction models.
Conclusion

We present a novel non-invasive SRS treatment response

prediction model of BM patients based on an ML approach. The

model combines the pre-treatmentmultimodalMRI radiomics features

and relevant clinical risk factors, and is capable of accurately identifying

BM patients at risk of LF after SRS therapy. The proposed radiomics

model shows excellent performances in both the internal and external

validation sets, which can effectively aid in the development of an

optimal treatment plan for patients in clinical applications.
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