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Background/Objective: Early recurrence (ER) affects the long-term survival

prognosis of patients with hepatocellular carcinoma (HCC). Many previous

studies have utilized CT/MRI-based radiomics to predict ER after radical

treatment, achieving high predictive value. However, the diagnostic

performance of radiomics for the preoperative identification of ER remains

uncertain. Therefore, we aimed to perform a meta-analysis to investigate the

predictive performance of radiomics for ER in HCC.

Methods: A systematic literature search was conducted in PubMed, Web of

Science (including MEDLINE), EMBASE and the Cochrane Central Register of

Controlled Trials to identify studies that utilized radiomics methods to assess ER

in HCC. Data were extracted and quality assessed for retrieved studies. Statistical

analyses included pooled data, tests for heterogeneity, and publication bias.

Meta-regression and subgroup analyses were performed to investigate potential

sources of heterogeneity.

Results: The analysis included fifteen studies involving 3,281 patients focusing on

preoperative CT/MRI-based radiomics for the prediction of ER in HCC. The

combined sensitivity, specificity, and area under the curve (AUC) of the receiver

operating characteristic were 75% (95% CI: 65-82), 78% (95% CI: 68-85), and 83%

(95% CI: 79-86), respectively. The combined positive likelihood ratio, negative

likelihood ratio, diagnostic score, and diagnostic odds ratio were 3.35 (95% CI:

2.41-4.65), 0.33 (95% CI: 0.25-0.43), 2.33 (95% CI: 1.91-2.75), and 10.29 (95% CI:

6.79-15.61), respectively. Substantial heterogeneity was observed among the

studies (I²=99%; 95% CI: 99-100). Meta-regression showed imaging equipment

contributed to the heterogeneity of specificity in subgroup analysis (P= 0.03).

Conclusion: Preoperative CT/MRI-based radiomics appears to be a promising and

non-invasive predictive approach with moderate ER recognition performance.
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frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fonc.2023.1114983/full
https://www.frontiersin.org/articles/10.3389/fonc.2023.1114983/full
https://www.frontiersin.org/articles/10.3389/fonc.2023.1114983/full
https://www.frontiersin.org/articles/10.3389/fonc.2023.1114983/full
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2023.1114983&domain=pdf&date_stamp=2023-06-07
mailto:wangzhiqun@126.com
https://doi.org/10.3389/fonc.2023.1114983
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2023.1114983
https://www.frontiersin.org/journals/oncology


Tian et al. 10.3389/fonc.2023.1114983
Introduction

Hepatocellular carcinoma (HCC) is one of the most common

malignant tumors in the world, and the incidence and mortality rate

of the disease in the world is increasing year by year (1–3). At

present, the situation that HCC patients in China account for nearly

half of the world’s total population is not optimistic, which has

brought great challenges to the healthcare system and a substantial

socioeconomic burden in China (4, 5).

Currently, the radical methods of HCC are still radical

resection, liver transplantation, ablation, and other treatments

such as vascular intervention have also achieved satisfactory

results (6). However, no matter which method is used, some

patients still experience poor efficacy and a certain rate of early

recurrence (ER) (21.9%-70.2%) after HCC treatment (7, 8).

ER following radical treatment for HCC is defined as

intrahepatic or extrahepatic recurrence within one to two years

(9, 10). ER is a significant factor affecting HCC prognosis and

disease outcome (11). Thus, the identification of sensitive markers

associated with ER of HCCs is crucial in facilitating accurate

prognostic classification and timely interventions which, in turn,

improve overall survival rates. Fortunately, in recent years,

radiomics has demonstrated a unique advantage (12). By

extracting significant amounts of image information from

computed tomography (CT) and magnetic resonance imaging

(MRI) with high throughput, it facilitates tumor segmentation,

feature extraction, and model establishment. Radiomics enables

clinicians to analyze vast image data information in-depth, thereby

assisting them in making more accurate diagnoses and predictions.

Many previous studies have utilized CT/MRI-based radiomics

to predict ER after radical treatment, achieving high predictive value

(7, 9, 10, 13, 14). However, the reported results seem quite variable

due to the fact that these above studies differed in the diagnostic

performance of the preoperative evaluation of ER because the

differences in imaging modalities, research methods, sample size,

etc. For these reasons, the diagnostic performance of radiomics for

the preoperative identification of ER remains uncertain. Therefore,

we performed this meta-analysis to investigate the predictive

performance of preoperative CT/MRI-based radiomics for ER

in HCC.
Methods

This study was conducted strictly according to the Preferred

Reporting Items for Systematic reviews and Meta-Analysis of

Diagnostic Test Accuracy (PRISMA-DTA) (15).
Retrieval strategy and study selection

In this study, the following Medical Subject Headings (MeSH) and

their variations were used in PubMed, Web of Science (all databases

including MEDLINE), EMBASE and the Cochrane Central Register of

Controlled Trials from inception to December 24, 2022:
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(“hepatocellular carcinoma” OR “carcinoma, hepatocellular” OR

“HCC”) AND (“CT”, “computed tomography”) AND (“diagnosis”

OR “accuracy” OR “specificity” OR “sensitivity”) AND (“MRI” OR

“magnetic resonance imaging”) AND (“Radiomic*”). PubMed’s search

strategy was as follows: ((“hepatocellular carcinoma”[Title/Abstract]

OR “carcinoma hepatocellular”[Title/Abstract] OR “HCC”[Title/

Abstract]) AND (“diagnosis”[Title/Abstract] OR “accuracy”[Title/

Abstract] OR “specificity”[Title/Abstract] OR “sensitivity”[Title/

Abstract]) AND (“CT”[Title/Abstract] OR “computed

tomography”[Title/Abstract]) AND “radiomic*”[Title/Abstract]) OR

((“hepatocellular carcinoma”[Title/Abstract] OR “carcinoma

hepatocellular”[Title/Abstract] OR “HCC”[Title/Abstract]) AND

(“diagnosis”[Title/Abstract] OR “accuracy”[Title/Abstract] OR

“specificity”[Title/Abstract] OR “sensitivity”[Title/Abstract]) AND

(“MRI”[Title/Abstract] OR “magnetic resonance imaging”[Title/

Abstract]) AND “radiomic*”[Title/Abstract]). There are no language

restrictions in the literature search process.

The inclusion criteria were as follows: we included all eligible

radiomics articles that used CT or MRI to assess ER (which was

defined as the presence of new intrahepatic lesions or metastasis

with typical imaging features of HCC (who experienced radical

resection, radical ablation, and liver transplantation), or atypical

findings with histopathological confirmation within 2 years) in

patients with HCC. The exclusion criteria were as follows: (1) the

studies did not have enough information to construct a two-by-two

contingency table; (2) antitumor therapy was performed

preoperatively; (3) academic review, conference abstracts, animal

experiments, expert opinions, books, nondiagnostic tests,

guidelines, and case report.
Data extraction and quality assessment

Two independent researchers (HT and YX) (radiologists with 6

and 5 years of experience) extracted data from the included studies:

first author, publication year, study period, study design

(prospective or retrospective), cohort detail, demographic

characteristics of the study population (such as age, gender),

sample size, comorbid conditions, Tumor information (diameter,

number, margin, etc.), true positive (TP), false positive (FP), false

negative (FN), and true negative (TN), interval from post-operation

to early recurrence, CT/MRI imaging equipment, contrast agent,

treatment, MRI sequence, radiomics features extracting software.

Inconsistencies between the two investigators are resolved through

discussion or consultation with the senior investigator.

We evaluated the methodological quality of the included studies

by using the standard Quality Assessment of Diagnostic Accuracy

Studies-2 (QUADAS-2) tool (Bristol University, Bristol, UK) (16).

We assessed the risk of bias and concerns regarding applicability by

the software Review Manager 5.4 (Cochrane Library Software,

Oxford, UK; available at https://training.cochrane.org/online-

learning/core-software/revman). The four aspects of the

evaluation are as follows: patient selection, index test, reference

standard, and flow and timing. Risk of bias was classified as ‘yes’,

‘no’ or ‘unclear’ and applicability ‘high’, ‘low’ or ‘unclear’.
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Furthermore, radiomics quality score (RQS) were used to assess the

quality of radiomics studies (17).
Statistical analysis

In this study, Stata17.0 (Stata Corp LP, College Station, Texas,

SA) was used for all statistical calculation. We used a bivariate

regression model to calculate the combined sensitivity, specificity,

positive likelihood ratio (PLR), negative likelihood ratio (NLR),

diagnostic score, and diagnostic odds ratio (DOR) with their

corresponding 95% confidence intervals (CI), all of which are

shown in forest plots. We plotted the pooled results onto the

summary receiver operating characteristic (SROC) curve and

determined the area under the receiver operating characteristic

curve (AUC) to reflect the diagnostic power of the included

studies. In addition, the Stata Midas module was used to detect the

magnitude of heterogeneity due to threshold effects. The threshold

effect test was obtained by calculating the spearman correlation

coefficient of the logarithm of sensitivity to the logarithm of (1-

specificity), and if P is less than 0.05, a threshold effect is present.

Heterogeneity caused by non-threshold effects was measured using

Cochrane’s Q-test and inconsistency index I2, and the difference was

considered significant when P <0.05, with I2 ≥ 50% regarded as being

indicative of moderate-to-high heterogeneity among studies (18). In

addition, we plotted Fagan nomogram through the Midas module,

and post-test probabilities were calculated by pre-test probabilities

(the ratio of ER-positive cases to all cases in the included studies),

PLR, and NLR. Furthermore, publication bias was assessed by using

the Deeks asymmetric regression test. Finally, meta-regression and

subgroup analysis were used to explore potential sources of

heterogeneity. All hypothesis tests were statistically significant with

P <0.05 (two-sided).
Results

Literature selection

A total of 520 relevant literature were generated through the

systematic search. The process of literature search and study

selection is presented in Figure 1. After screening according to

the pre-defined inclusion/exclusion criteria, a total of 15

publications were identified for this meta-analysis, consisting of

six radiomics studies based on CT and nine radiomics studies based

on MRI (7, 9, 10, 13, 14, 19–28). Most of the studies included in the

analysis were retrospective, and all of them were published between

2017 and 2022. The analysis included a total of 3,281 patients with

hepatocellular carcinoma. The characteristics of these studies are

presented in Tables 1, 2.
Quality assessment of literature

Figure 2 illustrated the results of the methodological quality

assessment of the included studies based on the Quality Assessment
Frontiers in Oncology 03
of Diagnostic Accuracy Studies-2 (QUADAS-2) scale. Most studies

were deemed to have a low to moderate risk of bias, with only mild

concerns regarding their applicability. The included articles, as

assessed by the Radiomics Quality Score (RQS) presented in

Table 3, were determined to be of generally low quality.
Heterogeneity analysis

The results of our study indicated high heterogeneity (Q=

211.53; I2 = 99%; 95%CI: 99-100), which required us to use the

random-effects model to combine effect sizes. Additionally, the

heterogeneity of sensitivity, specificity, PLR, NLR, diagnostic score,

and DOR all exceeded 50%, making it necessary to account for this

in our analysis. The threshold effect test showed the Spearman

correlation coefficient to be 0.364 with P<0.182, implying no

threshold effect and lending support to the combination of

sensitivity and specificity.
Pooled effect analysis

The pooled sensitivity, specificity, and AUC were 75% (95% CI:

65-82), 78% (95% CI: 68-85), and 83% (95% CI: 79-86), respectively

(Figures 3, 4). The combined PLR, NLR, diagnostic score, and DOR

were 3.35 (95% CI: 2.41-4.65), 0.33 (95% CI: 0.25-0.43), 2.33 (95%

CI: 1.91-2.75), and 10.29 (95% CI: 6.79-15.61), respectively

(Figures 5, 6). The scatter plot of the likelihood ratios showed

that the pooled estimates with 95%CI were located in the lower right

quadrant, suggesting that the combined accuracy of CT-based

radiomics for diagnosing ER was moderate (Figure 7).
Fagan nomogram analysis

A 39% predicted probability was assessed to simulate a clinical

situation, resulting in a posttest probability of 68% for a positive test

result, and the negative posttest probability was 17% (Figure 8).
Publication bias

The Deek funnel plot showed a slope coefficient of 0.80,

indicating that there was no publication bias in the included

studies (Figure 9).
Meta-regression and subgroup analysis

The forest plots indicated high heterogeneity with I2 values >

50% for sensitivity (I²=91%; 95% CI: 87-94, P< 0.001) and

specificity (I²=92%; 95% CI: 89-95, P< 0.001). To identify the

source of heterogeneity, we performed univariable meta-

regression analysis. Table 4 showed the results of univariable

meta-regression and subgroup analyses to explore the influence of

sample size, imaging equipment, modeling method, radiomics
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features extracting software. The results showed imaging equipment

contributed to the heterogeneity in the specificity analysis (P= 0.03).

In terms of imaging equipment, CT (n=6) had a higher

specificity (83%; 95% CI: 72-94) than MRI (n=9) (73%; 95% CI:

62-85) (P= 0.03). However, the sensitivity [(67%; 95CI%: 53-82) vs.

(79%; 95CI%: 70-88)] was basically equivalent for both (P= 0.75).

In terms of sample size, modeling method, radiomics features

extracting software, the sensitivity (P= 0.25, 0.11, 0.86, respectively)

were basically equivalent for both.

Discussion

To our knowledge, this is the first study to investigate the

predictive performance of preoperative CT/MRI-based radiomics
Frontiers in Oncology 04
for ER in HCC. Our meta-analysis showed moderate pooled

sensitivity, specificity, and AUC were 75% (95% CI: 65-82), 78%

(95% CI: 68-85), and 83% (95% CI: 79-86), respectively, which

demonstrated radiomics has the potential to preoperatively

differentiate ER for HCC. The confirmation of this evidence will

help ER patients to develop the best postoperative diagnosis and

treatment strategy, which plays a critical role in individualized risk

stratification and further treatment guidance. For example, if

preoperative radiomics highly suggests the possibility of future

ER, more frequent follow-up should be taken for this population,

the activity of the original tumor lesion should be closely

monitored, and corresponding measures can be taken early to

intervene, which is of great clinical significance for prolonging the

survival of patients and improving long-term prognosis (11).
FIGURE 1

PRISMA flowchart for study selection.
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TABLE 1 Basic characteristics of the included studies.
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TABLE 2 Methodology of the included studies.
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Li et al.
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The likelihood ratio and the probability after the test also

provide us with important information about the likelihood that a

patient with a positive or negative test actually has ER or not. Our

analysis found a PLR of 3.35 indicates that the test is 3.35 times

more likely to correctly judge a positive result than to misjudge a

positive result, resulting in a 68% post-test probability of a positive

test result. Similarly, an NLR value of 0.33 indicates that the test is

0.33 times more likely to misjudge a negative result than to

correctly judge a negative result, resulting in a 17% probability

of a negative test result. These results further suggest that

radiomics has important clinical value in preoperative

evaluation of the occurrence of ER in HCC follow-up.

Although the test for heterogeneity showed significant variability

among the included studies, the threshold effect test, measured by the

Spearman correlation coefficient (0.364, P=0.182), indicated that the

heterogeneity was not arise from threshold effects. Therefore, we

performed meta-regression and subgroup analyses to try to explore

possible sources of heterogeneity. Due to the limited number of
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FIGURE 2

Stacked bar charts of the QUADAS-2 scale of methodological
quality assessment. (A) Risk of bias and applicability concerns
summary: review authors’ judgements about each domain for each
included study; (B) Risk of bias and applicability concerns graph:
review authors’ judgements about each domain presented as
percentages across included studies.
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included studies (n=15), we performed only univariate rather than

multivariate meta-regression analyses. We used five key factors for

subgroup analyses. Then, we performed subgroup analysis to

compare the diagnostic performance of radiomics based on

different imaging equipment. The results showed the sensitivity of

CT and MRI was comparable. However, CT (n=6) has higher
Frontiers in Oncology 10
specificity than MRI (n=9) in predicting ER. Our comprehensive

literature search failed to identify any studies that directly compared

the performance of CT and MRI in predicting ER. This may be

attributed to the fact that the majority of the literature reviewed

consisted of diverse MRI sequence compositions with significant

variations in sensitivity and specificity depending on the sequence
TABLE 3 Radiomics quality scores.

Author A B C D E F G H I J K L M N O P Total score

Li et al. (2022) (13) 0 1 0 1 3 1 0 1 1 1 0 2 2 2 0 0 15

Zhang et al. (2019) (19) 1 1 0 1 3 1 0 1 1 1 7 2 2 2 0 2 25

Gao et al. (2022) (14) 1 1 0 1 3 1 0 1 1 0 0 2 2 2 0 0 15

Zhao et al. (2020) (27) 0 1 0 1 3 1 0 1 1 1 0 2 2 2 0 0 15

Zhang et al. (2021) (20) 1 1 0 1 3 1 0 1 1 0 0 2 2 2 0 0 15

Wang et al. (2022) (21) 0 1 0 1 3 1 0 1 1 1 0 2 2 2 0 0 15

Chong et al. (2021) (22) 1 1 0 1 3 1 0 1 1 1 0 2 2 2 0 0 16

Wang et al. (2022) (23) 0 1 0 1 3 1 0 1 1 0 0 2 2 2 0 0 14

Ren et al. (2022) (28) 1 1 0 0 3 1 0 0 1 1 0 2 2 2 0 0 14

Zhao et al. (2022) (7) 1 1 0 1 3 1 0 1 1 1 0 2 2 2 0 0 16

Ning et al. (2020) (24) 1 1 0 1 3 1 0 1 0 0 0 2 2 2 0 0 14

Shan et al. (2019) (25) 1 1 0 1 3 1 0 0 1 1 0 2 2 2 0 0 15

Zhou et al. (2017) (26) 1 1 0 1 3 1 0 1 0 0 0 2 2 2 0 0 14

Wu et al. (2022) (9) 1 1 0 1 3 1 0 1 1 1 0 2 2 2 0 0 16

Wang et al. (2022) (10) 1 1 0 1 3 1 0 1 1 1 0 2 2 2 0 0 16
A,Image protocol quality; B, Multiple segmentations; C, Phantom study on all scanners; D, Imaging at multiple time points; E, Feature reduction or adjustment for multiple testing; F,
Multivariable analysis with non-radiomics features; G, Detect and discuss biological correlates; H, Cutoff analyses; I, Discrimination statistics; J, Calibration statistics; K, Prospective study
registered in a trial database; L, Validation; M, Comparison to gold standard; N, Potential clinical utility; O, Cost-effectiveness analysis; P, Open science and data.
FIGURE 3

Forest plots show the performance estimates (sensitivity and specificity) of each study based on radiomics for the preoperative prediction of ER in HCC.
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selected (e.g., Zhang et al. used significantly fewer sequences than

Chong et al.) (19, 22). However, CT uses radiomics of fixed

parameters (enhanced arterial phase combined with venous phase)

to predict ER, and imaging parameters are more uniform than MRI.

Moreover, MRI image acquisition is more technically complex and

sensitive to artifacts and image quality inhomogeneity in the

diagnosis of HCC compared to CT. As such, patients with poor

breath-holding ability or ascites may experience difficulties during

MRI scanning, leading to lower quality images (29). Consequently,
Frontiers in Oncology 11
this may result in radiomics models failing to provide accurate and

relevant imaging biomarker information for predicting ER of HCC.

The pooled results which favored CT over MRI are not conclusive.

Prospective, large-scale, and multi-center studies are needed to

establish the superiority of one imaging method over the other.

Although there is significant heterogeneity in sensitivity, we found no

source of heterogeneity by regression analysis. We attempted to

exclude the study by Wang et al. (10) due to its low sensitivity, but

heterogeneity remained at 91.16% (95% CI: 87.56-94.76) (results

not listed).

Recently, radiomics has developed rapidly and has been widely

used in the study of tumors in different systems, including HCC. In

recent years, with the application of the theoretical system and

technical framework of radiomics in the study of ER of HCC, the

prediction performance has also tended to be stable. However, there

are still challenges that need to be addressed before its application in

clinical practice. The lack of standardization in imaging equipment

and acquisition parameters makes it difficult to uniformly analyze

radiomics features, which may affect the practicality and feasibility of

the model. In the future, a possible solution is to integrate the features

extracted from both CT and MRI imaging methods may create a new

breakthrough in radiomics in the prediction of ER of HCC.

Establishing a comprehensive HCC image database and enabling

data sharing is crucial to train and validate predictive models that

simulate the real state and reduce non-biological differences.

The integration of radiomics and multi-omics data may lead to

the emergence of multi-omics artificial intelligence, which can play

a greater role in personalized medicine via non-invasive and

personalized methods for assessing the occurrence, development,

and prognosis of HCC. Furthermore, intelligent segmentation of

imaging lesions will be a focus of future radiomics research, and
FIGURE 4

Forest plots show the performance estimates (SROC) of each study
based on radiomics for the preoperative prediction of ER in HCC.
FIGURE 5

Forest plots show the performance estimates (PLR and NLR) of each study based on radiomics for the preoperative prediction of ER in HCC.
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potential correlations between radiomics features and biological

characteristics can be further clarified through radiogenomics-

related index features. However, the complex relationship

between radiomics features and biological behavior may be

difficult to fully eliminate.

Our meta-analysis had some limitations. Firstly, most studies

(n=14) we included were retrospective, and patient selection may
Frontiers in Oncology 12
introduce some inherent bias. Secondly, all included studies were

from China. Therefore, there are differences in disease

background due to different regions, countries, ethnicities, etc.,

and HCC is highly heterogeneous, which may affect the general

applicability of the results in clinical practice. Thirdly, not all

included studies used uniform pathological biopsy to confirm the

diagnosis of ER, and the diagnosis was interspersed with imaging

(although only for those with typical radiographic findings), and

the interpretation of imaging images may depend on the reader’s

experience, which may partly explain differences in sensitivity and

specificity between studies. Fourthly, we only searched the foreign

language databases, which may introduce publication bias.

However, we believe that this bias should be relatively small, as

no publication bias was observed in this study. Moreover, the

heterogeneity in imaging modality, feature extraction among

related studies needs to be carefully considered as radiomics is a

platform method rather than a single marker. Finally, although

CT/MRI radiomics models are helpful in identifying ER, the

modeling methods used may affect the predictions of radiomics

analysis. Each study developed a different radiomics model, so the

current meta-analysis does not clarify a clear modeling approach

to diagnose ER.
Conclusion

In summary, this meta-analysis suggested that preoperative

CT/MRI radiomics is a promising noninvasive predictive method

with moderate ER recognition performance and is a crucial guide
FIGURE 6

Forest plots show the performance estimates (diagnostic score, and DOR) of each study based on radiomics for the preoperative prediction of ER in HCC.
FIGURE 7

Distribution scatter diagram of the likelihood ratio (LR+/LR-) of each
study and combined estimated value.
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for clinical follow-up planning of postoperative HCC patients. We

believe that prospective, large-scale, and multicenter studies

utilizing multimodal radiomics methods will improve the

predictive power of ER in the future.
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FIGURE 9

Deek funnel plot showing publication bias.
TABLE 4 Univariable meta-regression and subgroup analyses.

Parameter Category No. of Studies Sensitivity (95%CI) P1 Specificity (95%CI) P2

Sample size ≥200 6 76 [63-88] 0.25 81[70-93] 0.50

<200 9 74 [63-85] 74 [63-86]

Modeling method¶ LASSO regression 8 71[59-83] 0.11 74 [61-86] 0.03

Logistic regression 6 76 [63-88] 83[73-94]

Imaging equipment MRI 9 79 [70-88] 0.75 73 [62-85] 0.03

CT 6 67 [53-82] 83 [72-94]

Radiomics features extracting software ITK-SNAP 11 78 [70-86] 0.86 75 [64-85] 0.05

Other 4 63 [44-82] 84 [72-97]
frontiers
¶ one study used random survival forest as a modeling method.
FIGURE 8

Fagan nomogram of radiomics for the preoperative identification of
ER in HCC.
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