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Deleterious aberrations in DNA repair genes are actionable in approximately 25% of

metastatic castration-resistant prostate cancers (mCRPC) patients. Homology

recombination repair (HRR) is the DNA damage repair (DDR) mechanism most

frequently altered in prostate cancer; of note BRCA2 is the most frequently altered

DDR gene in this tumor. Poly ADP-ribose polymerase inhibitors showed antitumor

activity with a improvement in overall survival in mCRPC carrying somatic and/or

germline alterations of HHR. Germline mutations are tested on peripheral blood

samples using DNA extracted from peripheral blood leukocytes, while the somatic

alterations are assessed by extracting DNA from a tumor tissue sample. However,

each of these genetic tests have some limitations: the somatic tests are related to

the sample availability and tumor heterogeneity, while the germline testing are

mainly related to the inability to detect somatic HRR mutations. Therefore, the

liquid biopsy, a non-invasive and easily repeatable test compared to tissue test,

could identified somatic mutation detected on the circulating tumor DNA (ctDNA)

extracted from a plasma. This approach should better represent the heterogeneity

of the tumor compared to the primary biopsy and maybe helpful in monitoring the

onset of potential mutations involved in treatment resistance. Furthermore, ctDNA

may inform about timing and potential cooperation of multiple driver genes

aberration guiding the treatment options in patients with mCRPC. However, the

clinical use of ctDNA test in prostate cancer compared to blood and tissue testing

are currently very limited. In this review, we summarize the current therapeutic

indications in prostate cancer patients with DDR deficiency, the recommendation

for germline and somatic-genomic testing in advanced PC and the advantages of

the use liquid biopsy in clinical routine for mCRPC.
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1 Introduction

Deleterious aberrations in DNA repair genes are found in a

considerable rate of patients with advanced prostate cancer (PC)

(1–3). With the advent of target therapy such as ribose polymerase

poly-ADP inhibitors (PARPis) and immune checkpoint inhibitors

(ICIs), genomic testing has become part of the clinical practice in

metastatic castration resistant prostate cancer (mCRPC) patients with

DNA damage repair (DDR) (4). Homology recombination repair

(HRR) is the DDR mechanism most frequently altered in PC and

mutation of the BRCA2 gene is the most frequently detected among

the DDR genes (5). Oppositely to BRCA1 involvement, the germline

BRCA2 mutations have been associated with a 2 to 6 fold increase in

the risk for PC (6). BRCA2 mutant patients seems to have a more

aggressive phenotype, and a significant reduction in survival times

compared to the non-mutated patients (7–9). Others germline

mutations such as ataxia mutated telangiectasia (ATM), checkpoint

kinase 2 (CHEK2), and the partner and locator of BRCA2 (PALB2)

seems to correlate, albeit to a lesser extent, with an increase of the risk

of PC (3, 10, 11). Currently, the peripheral blood samples are

preferentially used to detect germline mutations; while somatic

alterations are assessed by extracting DNA from the tumor tissue

sample, whose detection could be affected by the sample availability

and by tumor heterogeneity.

Liquid biopsy is a new approach increasingly used in clinical setting

allowing the rapidly and/or simultaneously detection/capture of cell-

free DNA or circulating tumor cells (CTCs) or DNA (ctDNA), and

extracellular vesicles. The liquid biopsy is a less invasive molecular

profiling resource able to obtain intratumoral heterogeneity and to

track dynamic changes and resistance mechanism occurring during

therapies (12). The ctDNA has become a viable option to perform

genomic testing in PC patients, receiving Food and Drug

Administration (FDA) approval in the last years (13). However,

although the advantages are now known, several limitations to the

use of the ctDNA test are still present.
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Here, we review the role that liquid biopsy currently plays in PC,

the reliability of the ctDNA test in detecting DDR mutations and the

evidence in favor of its routinely introduction in clinical practice.
2 DNA damage repair deficiency and
mutations in prostate cancer

The DNA repair process is a fundamental mechanism for identifying

and correcting the DNA damage induced by environmental factors or

normal cellular metabolic processes. DNA damage induces a complex

cascade of signals involving various checkpoints capable of interrupting

the cell cycle to guarantee the repair of the lesion or, if not possible, to

induce senescence and apoptosis (14).

This process is critical for cell survival, as it promotes genomic

stability and reduces the risk of inheriting damage during cell

division. DNA repair pathways include single-stranded break

(SSB) defect repair mechanisms (base excision repair, nucleotide

excision repair and mismatch repair (MMR) and repair mechanisms

for damage to the double stranded (DSB) (homologous

recombination (HR) and non-homologous end joining) as

dispatched in Figure 1. Other mechanisms such as direct chemical

inversion and crosslink repair between strands, although less

common, may be coincided in the removal of damage (15).

However, the presence of cells with alterations in these pathways

are related to fallible repair mechanisms with consequent

accumulation of cellular mutations and tumor transformation.

MMR is a proteins system including MLH1, MSH2, MSH6, and

PMS2, recognizing and repairing erroneous insertion, deletion, and

mis-incorporation of bases caused by DNA polymerase during the

DNA replication (16). Its alteration, represented phenotypically as

microsatellite instability (MSI), has been firstly identified in tumors

from patients with Lynch Syndrome and subsequently in different

types of cancers becoming an overall biomarker of response to

treatments (17).
FIGURE 1

Main mechanisms of DNA repair.
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In the Memorial Sloan Kettering Cancer Center (MSKCC) cohort,

the MSI and defective MMR (dMMR) have been identified in

approximately 5% of PC patients (18). Another prospective case

series reported MSI-H/dMMR in 3.1% of PC patients, while an

unselected cohort study of 3,607 patients with personal history of

PC reported the presence of mutations germline in MLH1, MSH2,

MSH6 or PMS2 in 1.7% of cases (19, 20). On 60 rapid tumor autopsies

from metastatic PC patients, 12% resulted dMMR/MSI-H (21), while

in another study on 150 mCRPC patient’s tumor biopsy detected an

MSI-H frequency of 3% (22). This high variable frequency of dMMR/

MSI-H ranged from 1 to 12% in patients with mCRPC may be in part

explained by the diversity of assays used to detect tumors with dMMR

(23, 24).

HR is a complex DNA double helix repair system, allowing one

stretch of the DNA double helix to serve as a template to restore lost

or damaged information in the other stretch. The germinal

alterations in various genes belonging to HR, mainly BRCA1 and

BRCA2, have been associated with the development of familial

tumors, primarily involving breast and ovarian cancer, and

subsequently prostate and pancreas cancer (25). Failure in the HR

repair system can compromise the elimination of genome

mutations, favoring the accumulation of DNA damage events and

oncogenesis (26).

Actionable molecular alterations and aberrations in HR

and MMR pathways occur in a considerable fraction of localized

prostate cancers and, even more frequently in metastatic

disease (22).

Regarding the inactivation of HR-associated genes (i.e., BRCA1/2,

ATM, CHEK2, PALB2, RAD54L, RAD51B, CHD, CDK12 or PTEN),

a number authors have reported the frequencies of somatic and

germline mutations at several disease stages of PC (27). Somatic

mutations were recorded in 19% of localized PCs and 23% of mCRPC

cancers, with the highest incidence in the BRCA2 and ATM genes (22,

23). BRCA2 somatic mutations are associated with germline

mutations in 42% of patients with mCRPC (22) and in 60% of

localized PC (23). Recent data indicate that 11.8% of patients with

metastatic prostate cancer (mPC) have germline mutations in 1 of 16

DNA repair genes: (BRCA1, BRCA2, ATM, CHEK2, PALB2,

RAD51D, ATR, and NBN, PMS2, MSH2, MSH6, GEN1, RAD51C,

MRE11A, BRIP1, or FAM175A) (28). In the Cancer Genome Atlas

(TCGA) cohort, patients with high-risk localized PC had a rate of

germline DNA repair mutations of 6% versus 2% in those at low/

intermediate risk (23, 28). Another study reported a rate of

pathogenic germline mutations in MUTYH, ATM, BRCA1, BRCA2

and BRIP1 of 7.2% in patients with high-risk, very high risk or

metastatic PC (29). Other authors have reported varying incidence

rates of DDR mutations ranging from 11 to 28%. Robinson et al.

found a rate of 22.7% of germline DDR mutations or somatic

mutations in BRCA1, BRCA2, ATM, FANCA, CDK12, RAD51B

and RAD51C in patients with mCRPC (22), while a rate of less

than 11.8% of germline mutations in at least one DDR gene has been

reported by Pritchard et al. in the same context of patients (28). In all

stages of PC, Abida et al. found germline or somatic alterations in

BRCA1/2, TMJ and CHEK2 in 27% of patients (30). More recently in

the PROfound study, 28% of mCRPC patients had alterations in 15

genes with direct or indirect roles in HR (31).
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3 Recommendations for germline and
somatic genomic testing in advanced
prostate cancer

A family history of prostate cancer, as well as the hereditary breast

and ovarian cancer syndrome (HBOC) due to germline mutations in HR

genes and Lynch Syndrome increases the risk of PC (32–34). However,

approximately 30% of patients with mPC carrying the germline DDR

had no family history of cancer. An increased risk of PC has been found

in Ashkenazi Jews in whom more than 2% carry germline mutations in

BRCA1 or BRCA2 and in PC with intraductal histology that appear to

have greater genomic instability compared to those with adenocarcinoma

histology (35–38). Moreover, a correlation between clinical pathological

features (Gleason score ≥8, lymph node and distant metastases to the

diagnosis) and germline BRCA2 mutations has been observed, although

the mutation cannot be excluded in the other patients (39). Below

reported the main recommendations on carrying out the genetic and/

or somatic test (40–42).
3.1 Germline testing

National Comprehensive Cancer Network (NCCN) panel

recommends germline genetic testing, with or without pretest

genetic counseling, for patients with PC and any of the following: a

positive family history (multiple family members diagnosed with

castration sensitive PC at the age <60 years, a family member died

from PC, family history of high-risk germline mutations or of

multiple cancers on the same side of the family); high-risk, very-

high-risk, regional, or mPC regardless of family history; Ashkenazi

Jewish ancestry and intraductal histology. Germline testing should

include proteins of MMR and the HR genes (i.e., BRCA2, BRCA1,

ATM, PALB2, and CHEK2). A cancer predisposition next-generation

sequencing (NGS) panel testing, at a minimum including who

consider other genes in addition (i.e., HOXB13) to the above, and

guided by clinical context can be considered (40, 43, 44).
3.2 Somatic tumor testing

Alternatively somatic tumor test follows these recommendations:

tumor testing for somatic HR gene mutations (i.e., BRCA1/2, ATM,

PALB2, RAD51D, FANCA, and CHEK2) and MSI/dMMR can be

considered in patients with regional or mPC; multigene molecular

testing can be considered for patients with low- and favorable-

intermediate risk PC and life expectancy ≥10 years; the Decipher

molecular assay can be considered as part of counseling for risk

stratification in patients with prostatic specific antigen (PSA)

resistance/recurrence after radical prostatectomy. If HR mutations,

especially BRCA1/2, ATM, CHEK2, or PALB2 are found, patient

should be referred for genetic counseling to assess for the possibility of

hereditary tumors such as HBOC. MSI testing should be performed

using an NGS assay validated for prostate cancer and if positive, the

patient should be referred for genetic counseling to assess for the

possibility of Lynch Syndrome (40, 45–47).
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Overall, the current recommendations are summarized below:

- Germline testing for DDR genes associated with cancer

predisposition syndromes (especially BRCA2) is recommended for

patients with a family history of cancer and should be considered in

all patients withmPC;

- Somatic testing for HR and MSI genes should be considered in

all patients with mCRPC;

- Patients with pathogenic mutations detected on somatic testing

should be referred for germline testing and genetic counselling;

- In patients with localized prostate cancer, tissue molecular tests

can be considered in the presence of suspected clinicopathological

factors to aid decision making.

Notably European Association of Urology (EAU) reported

genetic testing on circulating tumor DNA (ctDNA) as an

alternative to tissue testing although still less common (42).
4 Damage of DNA damage repair as
therapeutic target in prostate cancer

4.1 PARP inhibitors

PARP system is a nucleolar proteins complex involved in DNA

repair, genomic stability and programmed cell death (48). Its main

role consists in detecting and initiating an immediate cellular

response to SSB damage (48). PARP inhibitors have developed as a

possible therapeutic strategy in patients with DDR.

The anticancer effect of these drugs is attributed to the catalytic

inhibition of PARP that interfere with efficient DNA damage repair

inducing tumor cells death (49). While in normal cell PARP

inhibition is tolerated, in tumors cells with concomitant HR

alteration, the effect of PARPi are notable (50):the defective

enzymatic function of PARP results in the accumulation of SSB

that promote the accumulation of damage in the potentially lethal

DSB, preferentially repaired by HR (51). The concomitant loss of

PARP function in cancer cells with altered HR proteins involved in

HR deficient repair with the accumulation of DSBs and subsequent

cell death (51).

Based on this synergistic effect numerous PARP inhibitors (i.e.,

olaparib, rucaparib, niraparib, talazoparib and veliparib) have been

tested firstly in patients with germline mutations in BRCA1 or BRCA2

(52, 53). Afterwards, sensitivity to PARPi has been proved in tumor

with loss of other tumor suppressor DNA repair proteins (e.g., ATR,

ATM, RAD51, CHEK1/2, and PALB2), suggesting the validity of this

therapeutic strategy also in patients intrinsically deficient in HR

without BRCA1/2 mutations (54–57). The outcome benefits

observed with PARPi in DDR mutated breast and ovarian cancers,

led to the evaluation of PARPi efficacy in PC.

TOPARP-A was the first phase II study to test in 2014 olaparib in

patients with mCRPC regardless of DDR mutations. Fourteen of the

16 patients with aberrations of the DNA repair genes (BRCA2, ATM,

BRCA1 or CHEK2 and HDAC2) achieved a response to treatment

measured by a composite methodology including the decline of CTCs

(58). Based on these findings, olaparib received the FDA’s

breakthrough PC therapy designation (59).

A subsequent phase II study, TOPARP-B, further examined the

anticancer effects of olaparib in mCRPC patients with DDR
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mutations who had progressed to an earlier line of therapy (60).

Patients positive for pathogen mutation or homozygous deletion in a

DDR gene tested with NGS on primary tumor biopsies received

olaparib 300 or 400 mg twice daily. Subgroup analysis showed that

patients with the BRCA1/2 mutation predicted greater responses and

a longer median radiographic progression-free survival (PFS), with an

overall response rate (ORR) of 83.3%. In patients with ATM and

PALB2 mutations, rate of radiographic objective responses was 8.3%

and 33,3%, respectively; while PSA declines of at least 50% were

detected in 5.2 and 66.6% of patients with alteration of ATM and

PALB2, respectively, suggestinga susceptibility of PALB2to PARP

inhibition. Limitations in obtaining accurate and timely somatic

genetic testing in this trial allowed to enlist only 13.7% (98/711) of

the screened patients. Data derived from these trials showed the

antitumor effects of olaparib both when used to treat mCRPC patients

with certain DDR genetic aberrations and in some patients with non‐

BRCA mutations (60).

The phase III study, PROfound, tested the efficacy of olaparib

versus androgen receptor signaling inhibitors (ARSi) (abiraterone or

enzalutamide) in patients with mCRPC and mutations in 15 HR-

associated genes (BRCA1, BRCA2, ATM, BRIP1, BARD1, CDK12,

CHEK1, CHEK2, FANCL, PALB2, PPP2R2A, RAD51B, RAD51C,

RAD51D and RAD54L) (31). The primary endpoint examined was

imaging-based PFS. The patients were divided into two cohorts: the

cohort A included patients with alterations in BRCA1/2 or ATM: the

cohort B included patients with alterations in any of the other 12

genes. All patients received 300 mg olaparib twice daily versus second

ARSi in a 2:1 ratio. In the overall population (cohorts A and B),

significantly longer PFS was recorded in patients treated with olaparib

compared to control arm (5.8 vs 3.5 months; hazard ratio [HR], 0.49;

95% confidence interval [CI], 0.38-0.63; p<0.001). An even longer PFS

was recorded in cohort A in the olaparib group compared to control

(7.4 vs 3.6 months; HR, 0.34; 95% CI, 0, 25-0.47; p <0.001) as well as a

better OS (18.5 vs 15.1 months; HR, 0.64; 95% CI, 0.43 to 0.97;

p=0.02). Notably, failure to sequence DNA occurred in approximately

31% of the tumor samples. Based on these results, FDA recently

approved olaparib for patients with mCRPC progressed to

enzalutamide and/or abiraterone who have deleterious germline

alterations in BRCA1/2 or somatic deleterious alteration in BRCA1/

2, ATM, BARD, BRIP, CDK12, CHEK1, CHEK2, FANCL, PALB2,

RAD51B, RAD51C, RAD51D, and RAD54L (61).

Another PARP inhibitor, rucaparib, has been evaluated for the

treatment of patients with mCRPC who have germline or somatic

mutations in the DDR genes (62). Phase II study, TRITON2 enlisted

patients with any mutation in the HR genes, showing initial efficacy

and safety results that allowed for the designation of rucaparib as a

breakthrough therapy by the FDA. Preliminary data from this study

showed promising results: 43.9% of patients with BRCA achieved a

confirmed radiographic response, and lasting responses (62). Partial

radiographic responses have been observed in 10.5% of patients with

non-BRCA DDR genes and patients with ATM mutations. Two

patients with CHEK2 aberrations had a confirmed partial response

and a confirmed PSA response. No objective response was observed in

patients with CDK12 mutations. In the 13 patients whit other

mutations including FANCA, PALB2, BRIP1, or RAD51B, ORR was

38.5% with one complete response and four partial responses. The

FDA recently approved rucaparib for the treatment of mCRPC
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patients with germline or somatic BRCA1/2 mutations (63). Is

ongoing a phase III study, TRITON3, comparing rucaparib with

standard of care treatments, enrolling only patients with mCRPC and

mutations in BRCA1/2 and ATM (NCT02975934).

The GALAHAD study evaluated the activity of niraparib in

patients with mCRPC and DDR gene alterations received three or

more systemic therapies for mCRPC (64). In this phase II trial niraparib

was tolerable and showed anti-tumour activity in heavily pretreated

patients, particularly in those with BRCA alterations with an ORR of

34.2%. Niraparib combined with abiraterone acetate/prednisone versus

abiraterone acetate/prednisone for patients with mCSPC and

deleterious germline or somatic HRR gene mutated is under

evaluation in the phase III trial, AMPLITUDE (NCT04497844).

Finally, talazoparib has been tested in TALAPRO-1 phase II study

enrolling patients with measurable soft tissue disease, progressive

mCRPC, and DDR mutated (ATM, ATR, BRCA1/2, CHEK2, FANCA,

MLH1, MRE11A, NBN, PALB2, RAD51C), treated with one or more

taxane-based chemotherapy regimens and ARSi for mCRPC to receive

oral talazoparib 1 mg/day until radiographic progression, unacceptable

toxicity, consent withdrawal, or death (65). Talazoparibmonotherapy has

encouraging antitumor activity in docetaxel-pretreated mCRPC patients

with BRCA1/2 alterations and was generally well tolerated. The efficacy

and safety of talazoparib and enzalutamide combination in mCRPC

patients with or without DDRmutations is currently under evaluation in

the phase III trial TALAPRO-2 (NCT03395197). The phase III study,

TALAPRO-3, is comparing talazoparib plus enzalutamide versus

placebo plus enzalutamide in patients with mCSPC and DDR

alterations (NCT04821622).

As the use of PARPi is limited by primary resistance mechanisms

and the onset of secondary resistance in sensitive patients’numerous

efforts have been aimed at developing combined treatment

approaches (66)

PROpel is a phase III trial randomizing patients with mCRPC

regardless of HRR status to receive olaparib or placebo and

abiraterone plus prednisone or prednisolone (67). The primary

endpoint was investigator-assessed radiographical (rPFS), OS was

one of the multiple secondary endpoints. Treatment with olaparib

plus abiraterone significantly prolonged rPFS in patients with

mCRPC regardless HRR status compared to control (24.8 vs 16.6

months; HR, 0.66, 95% CI, 0.54-0.81; p <0.0001). The safety and

tolerability profile of combination was consistent with the known

safety profiles of the individual drugs.

MAGNITUDE is a randomized, double-blind phase III study

enrolling mCRPC patients (≤4 months of prior abiraterone acetate/

prednisone for mCRPC was allowed) with or without HRR biomarker

positive (ATM, BRCA1/2, BRIP1, CDK12, CHEK2, FANCA, HDAC2,

PALB2) to receive niraparib 200 mg once daily plus abiraterone

acetate/prednisone or placebo plus abiraterone acetate/prednisone

(68). The primary endpoint was rPFS. assessed by blinded

independent central review in the BRCA1/2 group then in all

patients with positive HRR biomarkers. The preplanned futility

analysis in HRR mutations negative patients showed no benefit of

adding niraparib to abiraterone acetate/prednisone in the prespecified

composite endpoint (PSA progression or rPFS: HR 1.09, 95% CI 0.75-

1.59). Niraparib plus abiraterone acetate/prednisone significantly

improved the primary clinical outcome in HRR biomarker positive

patients, with a manageable safety profile and health-related quality of
Frontiers in Oncology 05
life. Therefore, while PROpel trial showed a global benefit of PARPi

and ARSi without the need for HRR stratification in untreated

mCRPC patient, the MAGNITUDE study results support the

combination strategy only for patients with alterations in HRR genes.
4.2 Immune checkpoint inhibitors

Prostate cancer belong to those tumors whose microenvironment

is defined as immune-excluded, as it is characterized by a low

mutational load, a reduced expression of neoantigens, hyperactivity

of myeloid-derived suppressor cells and T-regulator cells, loss of

major histocompatibility complex class I expression and abnormal

IFN-1 signaling (69). However, like other solid tumors, it has been

shown that dMMR or MSI-H prostate cancer may respond better to

the immune checkpoint blockade (70).

Based on the results of a phase II trial, KEYNOTE 158,

pembrolizumab received the first tissue agnostic approval for an

antineoplast ic therapy granted by the Food and Drug

Administration (71). Patients enrolled in this study presented

several types of cancer, including PC in two cases, with MMRd and

had received at least one prior therapy. Objective radiographic

responses have been reached in 46 (53%) of patients, with 18 (21%)

achieving a complete response. Two subsequent placebo-controlled,

phase III trials testing CTLA-4 inhibitor, ipilimumab, did not find

improvement in OS in mCRPC patients, while pembrolizumab as

single-agent showed a low response rate of 3%-5% post chemotherapy

(72–74). A phase II trial combined ipilimumab with nivolumab

showed an overall response of 26% in mCRPC chemotherapy naïve,

although with an significant rate of grade ≥3 adverse events (75).

Follow-up studies have largely confirmed pembrolizumab’s efficacy in

men with MMRd prostate cancer. In a study conducted at MSKCC,

3.1% of enrolled mCRPC patients were characterized by MSI-H PC

and 11 of these received ICI-based therapy (19). About half of the

patients achieved a PSA decline of at least 50% from baseline (PSA50

response), and four patients achieved a radiological response. A small

sample size-based study by Schweizer et al. showed that 4 out of 10

ductal PC patients were dMMR, and 3 of them were also

characterized by MSI-H. Notably, one of these dMMR/MSI-H

patients with ductal PC achieved a significant reduction in PSA

levels during treatment with pembrolizumab (76). Several other

series of studies enrolling patients with PC with MMRd reported a

PSA50 response, ranging from 50 to 65% when treated with ICI

monotherapy, with long term responses observed (77).
5 DNA damage repair deficiency
testing type

5.1 Tissue and whole blood testing

Tests for identifying mutations in DNA repair genes can be

detected on two main tissues: blood or tumor tissue. The main

difference between these two strategies is based on the type of

mutation that can be detected. Through blood analysis we can

detect genomic rearrangements significant for patients and their

family, without indications on somatic mutations. Both alterations
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can be identified through tissue testing (78). The blood test has

numerous advantages including the easy availability of the sample, the

minimum invasiveness of the procedure and the repeatability of the

test. Tissue testing can be performed on both surgical or biopsy

specimens of the prostate and on metastatic sites, although with some

limitations. Firstly, the multifocal nature of PC, which may result in

the core biopsy analyzed not representing the metastatic disease clone

(79). The execution of the biopsy on the metastatic site is an invasive

procedure and not free from complications for the patient, in addition

the frequent bone involvement as a metastatic site in patients with PC

considerably reduces the probability of success of the test (78).

Secondly, is related to quantity and quality of sample. In fact, the

small size of prostate primary tumor biopsies and progressive

degradation of DNA in paraffine after years, are two conditions to

be carefully considered for the choice of the test. Contrary to the high

quality of blood sample, quality in the tissue is low and variable in

relation to factors including carrying out different molecular tests,

presence of necrosis, high infiltration of inflammatory cells,

degradation related to aging, poor formalin fixation and cauterized

tissue (80, 81). This making up to 20-30% of core biopsies unsuitable

for NGS testing using commercial platforms (31).

Regarding MSI the gold standard for determining MSI/dMMR

status is immunohistochemistry (IHC) and polymerase chain reaction

(PCR) testing performed on tumor tissue samples. IHC is highly

sensitive and specific in Lynch Sindrome-associated tumors by

exploring the expression of the four major MMR proteins or just

the MSH6/PMS2 doublet (82, 83). The MSI-PCR method based on

PCR amplification of microsatellite regions followed by capillary

electrophoresis is a reliable alternative to IHC. PCR helps also to

recover cases that can escape IHC due to preanalytical problems,

indeterminate results, as well as false negatives (non-truncating

missense mutations in MMR genes associated with intact

antigenicity) (84). Recently, they have emerged new molecular

approaches (histopathology-based approach, PCR-based test, NGS-

based approaches computational tools for MSI diagnosis) on tumor

tissue samples that could improve sensitivity and specificity compared

to conventional tests, representing a valid future option.

To date, circulating free DNA (cfDNA) can also be used to

accurately determine MMRd and MSI status with the advantage of

being easily obtainable compared to a metastatic biopsy; however,

there are technical limitations of ctDNA-based sequencing

approaches such as the low tumor burden which can results in

indeterminate results.
5.2 Liquid biopsy and ctDNA

In the last year liquid biopsy has emerged as a promising

surrogate for tumor biopsy, capable of overcoming spatial and

temporal heterogeneity by allowing longitudinal monitoring of the

disease through iterative sampling (85–87). It is an emerging field in

the management of patients with cancer and its relevance as a

potential diagnostic, prognostic, monitoring, and therapeutic tool

makes it an attractive strategy in the management of these patients

(87–89). However, liquid biopsy still has some limitations, although

seem to be within the reach of technological development soon. This

strategy has shown to be able to reliably represent the tumor
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microenvironment and its modification. Different biomarkers such

as CTCs, extracellular vesicles, ctDNA, circulating tumor RNA can be

analyzed through liquid biopsy on the blood or on the other human

fluids (i.e., urine, sperm, etc.) for diagnostic, prognostic, and

predictive purposes (88).

The detection of cell-free DNA (cfDNA) as a part of liquid biopsy

in PC has been widely explored, despite its diagnostic value for PC

remains controversial. cfDNA is the total amount of circulating DNA

found in blood plasma representing the total DNA released by normal

and cancer cells. Its concentration may be increased in stroke, trauma,

myocardial infarction, and autoimmune diseases (90–92), and even

more in patients with advanced cancer (93, 94). Circulating tumor

DNA is plasmatic DNA derived specifically from the primary or

secondary site of the tumor, or from circulating tumor cells. It can

represent 0.01% up to 90% of total free DNA, with an inherent patient

variability due to various factors such as location, size, vascularity,

tumor stage and response to therapy. The ctDNA level is higher in

metastatic cancer than in localized disease and appears to correlate

with disease progression (95–98). The release of free DNA from

circulating cells can occur passively, during apoptosis or necrosis, or

through active secretion. The DNA fragments released during

apoptosis differ from those poured into the circulation in case of

necrosis in the shorter length (99). A smaller amount of ctDNA is

released through active secretion from extracellular vesicles, such as

exosomes and prostasomes (100).

Liquid biopsy and specifically ctDNA testing can ensure

monitoring of tumor evolution during therapy bypassing the

intratumoral heterogeneity that limits tissue testing, especially if

performed on the primary site. This allows to ctDNA to also detect

resistance mutations. Both somatic and germline mutations can be

detected through the ctDNA test, considering the pros and cons of the

test (Table 1). Among the advantages of this method, there are:

readiness in obtaining samples, repeatability during therapy or disease

progression and rapidity, 1-2 weeks for the ctDNA test compared to

2-4 weeks for the examinations of the blood (101–103). The main

disadvantages are related to amount of DNA and ctDNA levels (104).

The amount of DNA in ctDNA is usually a very small fraction of cell-

free DNA, especially in the early stages of the disease (105). The level

of ctDNA is critical for performing the test, indeed it may vary during

treatment and appears to closely correlate with tumor response (106).

Some authors have shown how ctDNA determination changes at

various stages of treatment. CtDNA was detected in 74% of patients

before anti androgen therapy (ADT) initiation versus 59% of patients

who received ADT prior to collection, with significantly higher

ctDNA fraction in treatment-naïve patients (1.0% vs 11%; p =

0.02). The reduction in the ctDNA fraction was more pronounced

after one week of ADT (107, 108).

Another critical point lies in the interpretation of the test result.

Indeed, a negative result does not exclude the presence of a mutation

in the patient’s tumor, while a positive result for gene alterations does

not distinguish between germinal and somatic origin. In the former

case the patient should receive a confirmatory tissue test, in the latter

case they should be referred to an appropriate confirmatory test if a

germline mutation is suspected.

Some authors have evaluated the false positive rate linked to

specific ctDNA tests in healthy controls, recording a rate of 0.82% in

unique short variants. These false positive results may derive from
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somatic non-tumor changes in genes derived from clonal

hematopoiesis indeterminate potential (CHIP), including ASXL1,

ATM, CBL, CHEK2, DNMT3A, JAK2, KMT2D, MLL2, MPL,

MYD88, SF3B1, TET2, TP53 and U2AF1 (109–113). Despite tumor

biopsy represents the reference tissue for the determination of MSI,

clinically it has several limitations mainly related to the complexity of

the procedure and to the spatial heterogeneity of the disease (114).

Furthermore, in some rare cases, sporadic tumors may have a late

onset of MMR defects that tissue biopsy cannot detect, leading to a

misclassification of the MSI. It is now known the clinical potentiality

of liquid biopsy in establishing tumour molecular diagnostics albeits

data regarding its utility in determining MSI status which are still

unclear, especially in the prostate cancer.
6 Circulating tumor DNA in
prostate cancer

In PC, tissue testing is currently the test of choice for the analysis

of tumor genomic profiles, although several critical issues have

emerged in the main studies. In fact, in 30% of PC cases in which

the tissue test was performed before enrollment, it failed due to

problems in the pathological review, and during and after DNA

extraction (31, 115–117). Therefore, the possibility of evaluating

molecular alterations using ctDNA has made its way among

pathologists and clinicians (118). NGS of ctDNA from plasma

provides a minimally invasive method to identify genomic profile

and resistance mechanisms in patients with mCRPC (119). However,

the fraction of ctDNA in mCRPC patients and the clinical validity of

the genomic alterations detected in plasma remain still unclear.

Several authors have studied the level of agreement between the

plasma and tissue testing (Table 2). Firstly, Wyatt et al. in their study

reported a high concordance rate between the ctDNA test and the

metastatic tissue test. A ctDNA rate greater than 2% of the cfDNAwas

present in 75.6% of the samples (123). In these patients, all somatic

mutations identified in metastatic tissue biopsies were simultaneously
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present in the ctDNA. The concordance results stratified by variant,

showed a high positive agreement for substitutions (92%) and indels

(95%) and a much lower agreement for rearrangements and copy

number loss. Negative concordance was of 100%. In several patients,

ctDNA sequencing revealed robust changes do not present in solid

biopsy including clinically relevant alterations in the AR, WNT and

PI3K pathways (123). Similarly, Vandekerkhove et al., reported a rate

of 80% of concordance for mutation detection in diagnostic prostate

tissue and ctDNA (107).

De Bono et al. reported a very high agreement between tissue and

ctDNA testing for the detection of deleterious alterations in BRCA1 or

BRCA2 with a positive percentage agreement of 88% and a negative

percentage agreement of 95%. Some degree of discrepancy has been

attributed to biological differences and sampling times between tumor

tissues and plasma samples (31). Likely, Mateo et al. reported a similar

prevalence between NGS over 470 primary tumors and metastatic site

biopsy findings in patients who later developed mCRPC (60).

In their large study of ctDNA in 3334 mCRPC patients

Tukakinsky et al. showed a high agreement between the alterations

identified by liquid biopsy and those detected by tissue biopsy (119).

The 94% of patient plasma samples had detectable ctDNA. In 79.5%

of all patients, liquid biopsy identified at least one genomic alteration

(Tp53, RA, BRCA2/1, PI3K/AKT/mTOR, WNT/b-catenin pathway

genes, RAS/RAF/MEK, MSI-H). Regarding BRCA mutations, 67 (8%)

BRCA1/2 alterations were detected in both tissue and liquid biopsy, 5

(0.6%) exclusively in tissue biopsy (in 4 samples the ctDNA fraction

was less than 1%) and 20 (2.4%) exclusively in liquid biopsy. The 20

cases detected only with liquid biopsy, may represent secondary

alterations to the collection of the tissue sample. The concordance

between BRCA mutation identified by blood test and ctDNA analysis

was 100%.

Warner et al. demonstrated that the frequency of harmful BRCA2,

ATM and CDK12 changes detectable in plasma ctDNA was like those

observed in the population with metastatic tissue biopsy in a large

cohort of mCRPC, supporting minimally invasive liquid biopsy as

approaches to identify responders to PARP inhibitors (120).
TABLE 1 Pros and cons of tissue, blood, and ctDNA-based HHR gene tests.

Tissue Blood ctDNA

Mutation
detected

Somatic and germline Germline Somatic and germline

Sample
quantity

Medium High Low

Sample
quality

Low High Variable

Time to
response

2-8 weeks 2-4 weeks 1-2 weeks

Advantages Archivial tissue for tumor histology Easy to obtain samples Feasiblility in all cases
Minimally invasive Easly repeatable

Easly to onbtain samples Better representative o ftumor
heterogeneity and metastatic sites Minimally invasive
Easly repeatable

Limitations Tumor heterogeneity Invasive procedute
to obtain samples High percentage of
tests failed

Does not detect HRRm of somatic origin Does not
capture the potential changing genetic profile of
disease progression

Low concentration of ctDNA Type of sentitive tests False
positive Adeguate amount of ctDNA particularly in early
stages.

Genetic
counselling

After germline test confirmation Required After germline test confirmation
ctDNA, circulating tumor DNA; HRR, homologous recombination repair.
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Finally, Schweizer at al. in their study, showed as primary prostate

tissue accurately reflected the mutational status of activatable DDR

genes in metastatic tissue. After excluding probable CHIP events, the

ctDNA profile accurately detected DDR mutations including

alterations suggesting potential related mechanisms of resistance

(122). Only one patient developed a BRCA2 alteration later, while

two cases BRCA1/2 mutation positive in the primary sample, got lost

in downstream samples. This may be reconducted to the

intraprostatic genomic heterogeneity. However, it is also plausible a

selective therapeutic pressure in the first case and an eradication of

clones sensitive to DNA-damaging therapies in the second.

The confirmation of the high prevalence of HRR-associated gene

mutations in advanced PC has led to some controversy regarding the

use of archival primary prostate tumor biopsies for genomic profiling

once patients have developed mCRPC (30, 121, 124).

Recently, Hussain et al. tried to outline the correct use of tissue for

mutational analyzes by formulating the following recommendations

(125): -in presence of more samples with similar tumor content, the

choice must fall on the younger sample; -if the samples available

exceed 5 years from collection, it is necessary to use those with the

highest tumor content and high yield of DNA such as lymph nodes;

-for the samples just collected, the recommendation is to optimize the

fixation and storage of formalin and avoid descaling.

Regarding MSI, a good overall agreement was observed between

conventional tissue-based tests and newly developed ctDNA-based

approaches (126–128). This suggested that ctDNA-based MSI

diagnosis could be performed as part of clinical practice to identify

patients who might benefit from immune checkpoint inhibitors when

tissue samples are unavailable or scarce (126, 127, 129). In Nakamura

et al., changes in basal MSI levels during ICI treatment has been

correlated well with those of other ctDNA markers and reliably

reflected tumor response to treatment (128). Longitudinal analysis
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of ctDNA also allowed to detect the acquisition of somatic MSI that

can appear during cancer evolution in patients initially diagnosed

with MSS tumors (130). At the present state of knowledge, there are

few cases in which the MSI phenotype is acquired during the disease

(19, 130). This phenomenon could be partly explained by the fact that

most cancers are screened for MSI only at the time of diagnosis,

underestimating cases. Further studies are needed to evaluate the true

impact of such an acquired MSI phenotype in clinical practice.

In addition to a predictive value, a prognostic value may be

recognized to ctDNA. Already in localized disease, BRCA1/2 germline

changes have been associated with poor outcome, including disease

progression among patients under active surveillance (131) or a higher

risk of recurrence and death among patients undergoing salvage therapy

(132). In a retrospective study of mCRPC profiled patients with a 70-gene

NGS cfDNA panel an alteration was recorded in over 94% of cases, and a

greater number of ctDNA alterations were associated with a shorter time

to treatment failure with chemotherapy (HR, 1.05, p=0.026) or androgen

inhibitors. In the study conducted by the detection of a ctDNA fraction

greater than 30% was strongly associated with a poor response to

enzalutamide or abiraterone therapy even after adjustment for other

clinical prognostic factors (133). In this study, a ≥50% reduction in

cfDNA concentration after eight weeks of therapy was independently

associated with longer OS suggesting free DNA concentration as

predictive factor to PARPi response.
7 Conclusion and future perspectives

Given the significant percentage of mCRPC patients with DNA

repair genes mutations and the therapeutic possibilities currently

available, the most important guidelines recommend the performance

of genomic testing in all these patients. The test can be performed on
TABLE 2 Summary of the studies evaluating concordance between tissue and cDNA testing.

Study (ref) Patients Number of
samples

Types of
tests

Method Results

Wyatt et al.,
2017 (118)

mCRPC 45
Metastatic
tissue and
ctDNA

Targeted sequencing
across 72 clinically
relevant genes

All the somatic mutation identified in matched metastatic tissue biopsies
were concurrently present in ctDNA; concordance of 88.9% for individual
gene CAN.

Vandekerkhove
et al., 2019
(119)

mCSPC 53
Diagnostic
prostate tissue
and ctDNA

Targeted sequencing
strategy capturing the
exon of 73 driver
genes

80% of concordance for mutation detection in the matched samples.
Combined ctDNA and tissue analysis identified potential driver alterations in
94% of patients; ctDNA or prostate biopsy alone failed in the 36% of cases.

Tukakinski et
al., 2021 (120)

mCRPC

3334 (1674
screening
samples from
TRITON2/3
trial)

Tissue biopsy
and ctDNA

Plasma assay with 62
(FoundationACT) or
70 genes
(FoundationOne
Liquid)

93% of concordance between BRCA 1/2 mutations detected in tissue biopsy
and those identified by ctDNA 100% of concordance for germline variants.
In 20 patients, BRCA 1/2 gene alterations were identified using ctDNA but
not tissue testing.

Schweizer et al.,
2021 (121)

mCRPC 51

Primary
prostate
tissue,
metastatic
tissue and
ctDNA

Plasma assay with 324
(FoundationOne CDx)
or 70 genes
(FoundationOne
Liquid)

Of the 53 paired samples, at least partial concordance in DDR genes was
identified in 43 cases (84%) Concordance was numerically higher between
ctDNA primary pairs compared with metastatic primary pairs; however, this
difference was not statistic ally significant (92% vs 79%.
2 monoallelic DDR gene alterations only found in primary tissue.

Warner et al.,
2021 (122)

mCRPC 1615
Archival
primary tissue
and ctDNA

Plasma assay with 22
genes (Illumina MiSeq
or HiSeq 1500/2500
machine)

DDR gene status was concordant (94%) between archival primary tissue
taken at cancer diagnosis and serial ctDNA-positive samples collected in the
mCRPC setting.
mCSPC, metastatic castration sensitive PC; mCRPC, metastatic castration resistant prostate cancer; ctDNA, circulating tumor DNA; DDR, damage DNA repair.
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various samples mainly whole blood and tissue, with relative

advantages and limitations. In recent years, ctDNA has become a

viable option for performing genomic testing receiving FDA approval

in 2020 (13). The ctDNA can overcome the limitations of tissue

testing, which can fail in up to a third of cases. Additionally, ctDNA

testing can be performed longitudinally by detecting new alterations

and resistance mutations that may emerge during disease progression.

Several authors demonstrated high agreement between tissue

testing and ctDNA testing suggesting that the analysis on ctDNA is

sufficient to identify all DNA alterations and be used as a guide for

patient management with mCRPC. Ideally, the combined use of the

two techniques could ensure the study of the molecular subtype,

paving the way for the implementation of precision therapy, but still

far from possible clinical practice.

To consider the ctDNA test results as reliable as possible, it should

be performed in certified institutions using the standard NGS

procedure. New sequencing technologies such as PacBioScience and

Oxford Nanopore allow for the acquisition of additional information,

such as large intermediate chromosomal aberrations that appear to

correlate with a worse prognosis of PC (134, 135). These new

technologies, still burdened by a high sequencing error rate and

high costs, will enable the generation of more complete and easy-to-

read data.

The large proportion of patients with a rich genomic signal from

ctDNA and the sensitive and specific detection of BRCA1/2 alterations

position liquid biopsy as a compelling clinical complement for

comprehensive tissue genomic profiling for mCRPC patients.

However, despite the findings, there are still several barriers limiting

the clinical implementation of genomic sequencing, including cost,

access, and feasibility based on often limited tissue availability or

quality. Furthermore, only a fraction of patients with PC and

genomic aberrations respond durably to targeted therapy.

The integration of analyzes that combine genomics with

transcriptome, epigenome and tumor microenvironment study
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could help identify patients who have more likely to benefit from

targeted therapies. In the future, these integrated systems, combined

with clinical information, will ensure a further push towards

precision oncology.
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