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Background: Biochemical recurrence (BCR) is common in prostate cancer (PCa),

but its prediction is based predominantly on clinicopathological characteristics with

low accuracy. We intend to identify a potential prognostic biomarker related to the

BCR and construct a nomogram for improving the risk stratification of PCa patients.

Methods: The transcriptome and clinical data of PCa patients were obtained

from TCGA and GEO databases. Differential expression analysis and weighted

gene co-expression network analysis (WGCNA) were used to screen out

differentially expressed genes (DEGs) related to the BCR of PCa. Cox

regression analysis was further applied to screen out DEGs related to BCR-free

survival (BFS). Time-dependent receiver operating curve (ROC) analysis and

Kaplan–Meier (K-M) survival analysis were conducted to assess the prognostic

value. Then, a prognostic nomogram was established and evaluated. The

clinicopathological correlation analysis, GSEA analysis, and immune analysis

were used to explore the biological and clinical significance of the biomarker.

Finally, the qRT-PCR, western blotting, and immunohistochemistry (IHC) were

conducted to validate the expression of the biomarker.

Results: BIRC5 was identified to be the potential prognostic biomarker. The

clinical correlation analysis and K-M survival analysis found that the BIRC5 mRNA

expression was positively associated with disease progression and negatively

associated with the BFS rate. Time-dependent ROC curves verified its accurate

prediction performance. The GSEA and immune analysis suggested that the

BIRC5 was related to immunity. A nomogramwith an accurate prediction for BFS

of PCa patients was constructed. qRT-PCR, western blotting, and IHC results

validated the expression level of BIRC5 in PCa cells and tissues.

Conclusion: Our study identified BIRC5 as a potential prognostic biomarker

related to BCR of PCa and constructed an efficacy nomogram for predicting BFS

to assist clinical decision-making.
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Introduction

Approximately 1.4 million new cases of prostate cancer (PCa)

were diagnosed in 2020, making it the second most prevalent male

cancer in the world; it’s also the fifth most common cause of

cancer death in men worldwide, with approximately 375,000 new

deaths in 2020. In more than half of the countries in the world,

especially Northern America, Northern and Western Europe, and

Australia, the most common malignancy in men is PCa (1). In

2022, the estimated number of new cases and death cases of PCa in

the United States will be more than 260000 and 34000,

respectively (2). Due to the popularity of PSA screening and the

advancement of prostate needle biopsy technology, more and

more patients with early-stage PCa are diagnosed. Although

most of these patients can achieve good treatment efficacy after

radical prostatectomy (3); however, about 20%-40% of clinically

localized PCa still develop a biochemical recurrence (BCR) (4).

The prognosis for these patients was often poor because they are

more likely to develop distant metastases (5). In order to improve

the prognosis of patients and reduce the disease burden of

patients, it is essential to identify those patients who are at high

risk of developing BCR.

However, current BCR risk prediction approaches primarily

focus on clinicopathological characteristics, such as PSA, Gleason

score, and pathological T stage (6, 7). The BCR risk stratification

recommended by EAU guidelines included the Gleason score and

prostate-specific antigen doubling time (PSA-DT); a clinical trial

found that this risk stratification had moderate accuracy in

predicting patient outcomes (8). Therefore, the existing BCR risk

stratification strategy based on clinical parameters needs further

improvement. Inappropriate risk stratification may lead to

overtreatment, which increases the disease burden of patients and

wastes medical resources. In the past decade, the rapid development

of sequencing technologies and bioinformatics have made

molecular testing based on next-generation sequencing (NGS) a

vital component of diagnosis, prognosis, and treatment monitoring

of disease (9, 10). In addition, the rapid development of AI

technology plays an essential role in the development of

medicine. Machine learning has increasingly apparent advantages

in disease diagnosis and prognosis prediction, especially in medical

image analysis (11–14). Machine learning combined with

sequencing technology is rapidly driving the development

of genomics.

Bioinformatics is being utilized more and more frequently in

gene expression profiling to learn about the underlying biological

mechanisms of illnesses and to identify biomarkers for disease,

especially cancer (15, 16). Weighted gene co-expression network

analysis (WGCNA) is often applied to discover tumor biomarkers

because of its efficiency in building the associated networks and

identifying hub genes (17, 18). In WGCNA, genes are clustered into

a co-expression module according to expression patterns, and then

the relationship between the module and clinical traits is quantified.

Additionally, differential expression analysis is the most frequently

used method to identify a biomarker, which is essential for

understanding the potential mechanism of tumorigenesis. The
Frontiers in Oncology 02
above two approaches can be jointly utilized to further improve

the identification capacity of highly related genes.

Currently, there is a lack of biomarkers that can effectively

predict the BCR risk of PCa. Our research intends to identify a

potential biomarker to classify PCa patients with different BCR risks

for improving prognosis.
Materials and methods

Data collection and preprocessing

The gene expression profile and related clinical data of PCa were

obtained from the TCGA database (https://portal.gdc.cancer.gov/)

(accessed on 17 July 2022), the UCSC Xena database (https://

xenabrowser.net/datapages) (accessed on 17 July 2022) and GEO

database (https://www.ncbi.nlm.nih.gov/gds) (GSE46602) (accessed

on 18 July 2022. The TCGA-PRAD dataset contained 52 normal

and 501 PCa samples; the GSE46602 dataset included 14 normal

and 36 PCa samples. All samples were from radical prostatectomy

(RP). In the TCGA-PRAD dataset , we regarded the

“days_to_first_biochemical_recurrence” as the time to BCR, and

the “biochemical_recurrence” as BCR status. In the GSE46602, the

clinical data had contained BCR status and BCR free time. The BCR-

Free Survival (BFS) was defined as the time from RP to BCR. The

inclusion criteria: Samples with complete and clear BCR information,

include BCR status, time to BCR and follow-up time. The exclusion

criteria: (a). Samples with fewer than 30 days of follow-up time. (b).

Samples whose BCR status was unclear or missing. (c). Samples

whose BCR free time was unclear or missing. The GPL570

(Affymetrix Human Genome U133 Plus 2.0 Array) was used to

annotate the GSE46602 dataset. According to the corresponding

annotation file, the probes were transformed into gene symbols,

duplicate probes were removed, and the “Limma” package was

applied to normalize the expression matrix.
Differential expression analysis

In the TCGA-PRAD dataset, we performed the differential

expression analysis between PCa tissues and adjacent tissues by

the “DESeq2” package; in the GSE46602 dataset, we used the

“Limma” package to perform the same analysis; the criteria of |

log2 fold change (FC)|>1 and False Discovery Rate (FDR) <0.05 was

utilized to screen out the differentially expressed genes (DEGs).
Weighted gene correlation network
analysis to identify BCR-related genes

The top 5000 genes from the TCGA-PRAD dataset and

GSE46602 dataset were separately screened according to the

median absolute deviation (MAD) value. On the basis of the

expression data of the top 5000 genes, a scale-free gene co-

expression network was constructed through WGCNA.
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First, based on the expression profile of the top 5000 genes, PCa

patients with BCR were clustered hierarchically to remove outliers.

Then, we applied the pickSoftThreshold function to select the best

threshold for soft power to guarantee the establishment of scale-free

networks based on Pearson’s correlation coefficient between genes.

A hierarchical clustering analysis was used to classify genes into

distinct modules, adjacency matrices with soft power thresholds

were converted into a topological overlap matrix (TOM) and a 1-

TOM dissimilarity matrix (deepSplit = 2, minModuleSize = 30).

The genes that have yet to be allocated were placed in a grey

module. Afterward, to assess the correlation between the module

and clinical trait (BCR and BCR-Free), Module Membership (MM),

the Pearson correlation coefficients between genes in module and

module eigengene (ME), was calculated. Gene Significance (GS), the

Pearson correlation coefficient of the gene and clinical trait, was also

computed. The module with the highest correlation of clinical trait

(BCR) was considered a candidate module, and the genes in the

module were selected for further analysis.
Cox regression analysis to identify the
key gene

Firstly, we took the intersection of the DEGs and key module

genes and drew a Venn diagram through the R package “Ven

diagram.” Then, the Cox regression analysis was conducted on

intersection genes in the TCGA-PRAD and GSE46602 datasets to

screen out genes related to BFS of PCa patients. Finally, we crossed

the screened genes’ intersection to get the final key gene.
Evaluation and validation of the prognostic
value of the key gene

Based on the median expression of the key gene in the TCGA-

PRAD and GSE46602 datasets, we divided the patients into high

and low-expression groups and compared the prognostic

differences in BFS between the two groups by the Kaplan-Meier

(K-M) method. In addition, we also analyzed the prediction

accuracy of this key gene by time-dependent ROC curves and

AUC values. For further validation of the prognostic value and

predictive abilities of the key gene, we integrated the expression data

of the key gene with the clinical data of the GSE70770

(GPL10558) dataset.
Gene set enrichment analysis and immune
analysis of the key gene

The comprehensive analysis was performed based on the

TGGA database because it had the most comprehensive clinical

data, and the amount of data was adequate. Firstly, we analyzed the

differences in the mRNA expression of BIRC5 between different

clinical subgroups by the R package “ggpubr.” Subsequently, the

Gene Expression Profiling Interactive Analysis (GEPIA) was used to

draw the K-M curves and respectively explored the relationship
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between the mRNA expression of BIRC5 and OS and the

relationship between BIRC5 expression and DFS. GSEA is an

effective method for understanding gene expression profiles and

gaining insight into the biological mechanism. The R package

“clusterProfiler” was used for GSEA to explore the KEGG

pathways related to BIRC5 in the high- and low-expression group

and screen the top five pathways, and the criteria p < 0.05, FDR <

0.25 and |NES|>1 was considered as statistical significance. Then,

the differences in infiltrated immune cells between high and low

expression groups were compared, and the correlation was analyzed

between immune cells and BIRC5 expression. Pearson correlation

analysis was performed to examine the correlation between the

expression of BIRC5 and the expressions of immune checkpoint

genes; p <0.001 was judged statistically significant. To further

evaluate the reactivity of immunotherapy in high and low

expression groups, we obtained the tumor immune dysfunction

and exclusion (TIDE) score files of PCa from the TIDE website

(http://tide.dfci.harvard.edu/) and showed the difference in TIDE

score between the two groups by Violin plot.
Construction and evaluation of Nomogram

To obtain a practical clinical tool that can be used to predict BFS

in PCa patients, we integrated the mRNA expression data of BIRC5

and other clinicopathological factors to construct a nomogram.

Since the TCGA-PRAD dataset has complete clinical information

and a larger sample size than the GEO datasets, the nomogram

construction was based on the TCGA-PRAD dataset. The

univariate Cox regression analysis was applied to screen out

prognostic factors correlated with the BFS of PCa (p<0.05);

subsequently, the final prognostic factors were further screened by

the least absolute shrinkage and selection operator (LASSO)

regression analysis. Based on the above factors, a nomogram was

developed to predict BFS in PCa patients. C-index analysis, ROC

analysis, DCA analysis and K-M survival analysis were conducted

to evaluate the predictive performance and stability of the

nomogram. The above analysis processes were completed by R

package “survival”, “survminer”, “rms”, “ggDCA”, “timeROC”.
Cell culture

The immortalized prostate luminal epithelial cell line RWPE1,

and PCa cell lines PC3 and DU145, were acquired from ATCC. PC3

and DU145 cells were grown in Ham’s F-12K medium (Procell) and

RPMI1640 medium (Invitrogen), respectively. RWPE1 cells were

cultured in Defined Keratinocyte‐SFM medium (ThermoFisher).

All medium was supplemented by 10% FBS and 1% P/S (penicillin/

streptomycin); all cells were grown in 37°C with 5% CO2.
qRT-PCR

TRIzol reagent (Invitrogen, USA) was used to extract total RNA

from RWPE1, PC3, and DU145 cells. We used ACTIN as an
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internal control. In order to calculate the relative expression, we

used the 2−△△Ct method. As shown in Supplementary Table S1,

the primer sequences are listed.
Western blotting

In order to analyze the protein expression level of BIRC5 in PCa

cells, we performed western blotting analysis. Total protein was

extracted from cells using RIPA buffer, and protein concentration

was determined using the BCA method. The protein samples were

boiled in an SDS-PAGE loading buffer before being separated by

12% SDS-PAGE, and a PVDF membrane was then used to transfer

the protein. After using 5% skim milk to block PVDF membranes

for 1.5h, Membranes were incubated with corresponding primary

antibodies (BIRC5: 1:1000, Gapdh: 1:1000) and secondary

antibodies, respectively. Finally, the protein bands were visualized

by chemiluminescence kits and analyzed by Image J.
Tissue samples and IHC analysis

Ten para-cancerous normal tissue samples and thirty PCa tissue

samples were collected from tissue biobank in the Second Affiliated

Hospital of Nanchang University. In addition, twelve paired PCa

tissues and the adjacent normal tissues were also obtained from PCa

patients who received prostate needle biopsies. The Ethics

Committee approved the study prior to the start of the research.

For immunohistochemistry staining, 4-um thick sections were cut

from paraffin-embedded specimens. For antigen retrieval, sections

were deparaffinized with xylenes, rehydrated, and incubated in

EDTA at 120°C for 10 minutes. 3% H2O2 in distilled water was

applied to the sections for 10 minutes in order to quench the

endogenous peroxidase activity, followed by an incubation with 5%

goat serum in TBS for 1.5 hours to prevent nonspecific binding. A

primary antibody was then incubated overnight at 4°C with tissue

sections (Survivin 1:300, 10508-1-AP, Proteintech, China). After

rinsing the slides three times with TBS, the slides were incubated

with a peroxidase-labelled secondary antibody (Proteintech, China).

3-diaminobenzidine tetrahydrochloride (DAB) was utilized to

visualize the immune complexes, followed by hematoxylin

counterstaining. The IHC slides were scanned by The Aperio

AT2 scanner (Leica), and the Image J software was used to

measure the average integrated optical density (AOD) of the IHC

image. AOD = integrated optical density (IOD)/Area. We assessed

IHC staining intensity by calculating AOD values.
Statistics

The above-mentioned R packages (R version 4.1.3.) and

GraphPad Prism 7 were used to perform statistical analyses.

Student t-tests and Wilcoxon tests were utilized to analyze

continuous variables. In the Cox regression analysis and the

nomogram analysis, categorical variables were calculated and

classified into 0, 1, 2, 3, and 4. The p < 0.05 was defined as the
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statistical significance. As shown in Figure 1, we outlined the

process of our study.
Results

Identification of the differentially expressed
genes

In the TCGA-PRAD dataset, differential expression analysis

identified 4365 DEGs between normal prostate tissues and PCa

tissues, including 2165 up-regulated genes and 2200 down-

regulated genes; while in the GSE46602 dataset, 1031 DEGs were

identified, including 382 up-regulated genes, 649 down-regulated

genes (Supplementary Table S2). The DEGs in the two datasets were

shown in the volcano plot (Figures 2A, B).
WGCNA to identify BCR-related genes

The expression matrix of top 5000 genes was turned into a gene

co-expression network to explore the relationship between top 5000

genes (Supplementary Table S3) and the BCR status of PCa patients

in TCGA-PRAD (Figure 3A) and GSE46602 datasets (Figure 3D).

Cluster analysis was performed before WGCNA to ensure no outlier

samples. It was found that there were three samples in each dataset

with a distant clustering relationship in the two datasets. They were

identified as outliers in the two datasets, respectively, and they were

removed from our analysis (Supplementary Figure S1A, B). For

network construction, we selected three as the optimal soft

threshold for the TCGA-PRAD dataset and five as the optimal soft

threshold for GSE46602 (Supplementary Figures 1C, D). Eleven co-

expressedmodules were identified in TCGA-PRAD dataset through a

dynamic pruning method (Figure 3B). Seventeen co-expressed

modules were identified in the GSE46602 dataset using the same

method (Figure 3E). Subsequently, we analyzed the relationship

between non-grey modules and clinical feature BCR. It was found

that the red module in the TCGA-PRAD dataset and the turquoise

module in GSE46602 had the highest correlation coefficients

(Figures 3C, F). In the TCGA-PRAD dataset, the highest

correlation between Module membership and gene significance

existed in the red module with 143 genes (Figure 4A and

Supplementary Figure S2A-S2B); in GSE46602 dataset, the highest

correlation existed in the turquoise module with 1349 genes

(Figure 4B and Supplementary Figure S2C-S2F). The genes from

the two modules were selected for further analysis (Supplementary

Table S4).
Identification of the key gene-BIRC5

In order to obtain the DEGs related to the BFS of PCa, we

intersected DEGs from the TCGA and GSE46602 datasets with

genes from the TCGA dataset’s red module and GSE4660 dataset’s

turquoise module. It was found that there were six genes in the

intersection (Figure 4C). These genes were then subjected to a
frontiersin.org
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univariate Cox regression analysis in order to screen out DEGs

related to BFS. The results showed that all six genes were correlated

to BFS in the TCGA-PRAD dataset and only one gene in the

GSE46602 dataset (Figures 5A, B). BIRC5 was identified as the final

key gene by intersecting the genes related to BFS from the two

datasets (Figure 5C).
Evaluation and validation of the prognostic
value of BIRC5

The BCR data of patients selected in the three datasets was

shown in Supplementary Table S5. Based on the median
Frontiers in Oncology 05
expression of BIRC5, patients in all sets were classified into

high-expression and low-expression groups. K-M curves were

applied to evaluate differences in BFS between high- and low-

expression groups. The results showed that patients with high

BIRC5 expression had significantly lower BFS than patients with

low BIRC5 expression in both the TCGA-PRAD dataset and the

GSE46602 dataset (Figures 6A, B). The finding of K-M analysis in

the GSE70770 dataset further verified that patients with high

BIRC5 expression had poor BFS compared to low BIRC5

expression (Figure 6C). The time-dependent ROC curves

showed that AUC values in the three datasets were all higher

than 0.65, except for the AUC value of 1-year in the GSE46602

dataset (Figures 6D–F). The results of the ROC analysis proved
A B

FIGURE 2

Differentially expressed genes (DEGs) between prostate cancer (PCa) and normal prostate tissue. The volcano plots for DEGs in the TCGA-PRAD
dataset (A) and the GSE46602 dataset (B). The significant up-regulated genes are indicated by red dots; The significant down-regulated genes are
indicated by green dots; and the nonsignificant genes are indicated by blue dots.
FIGURE 1

The flowchart of our study.
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the accurate prediction ability of BIRC5. By using the GEPIA

database, we also evaluated the correlation between BIRC5

expression and disease-free survival (DFS) or overall survival

(OS). A high level of BIRC5 expression was associated with a

worse OS or DFS (Supplementary FigureS3).
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Clinical correlation analysis

We examined the correlation between BIRC5 expression and

clinical features for better understanding the clinical relevance of

BIRC5 in PCa. The detailed information about the selected patients
A B C

FIGURE 4

Differentially expressed genes (DEGs) correlated with biochemical recurrence (BCR). (A, B) Gene correlation scatter plots of the red module in the
TCGA-PRAD dataset (A) and the turquoise module of the GSE46602 dataset (B). Module membership is represented by the X-axis, and the significance
of the gene is represented by the Y-axis. (C) Venn diagrams of DEGs and co-expressed genes of TCGA-PRAD dataset and GSE46602 dataset.
A B

D E F

C

FIGURE 3

Identification of co-expressed modules related to biochemical recurrence (BCR). A cluster tree of PCa samples with a color band displaying
clinicopathologic values beneath the tree in the TCGA-PRAD dataset (A) and GSE46602 dataset (D). The cluster dendrogram indicated the different
gene modules in the TCGA-PRAD dataset (B) and GSE46602 dataset (E). The correlation coefficients between the modules and clinical features in
the TCGA-PRAD dataset (C) and GSE46602 dataset (F).
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was shown in Table 1. We found that patients with advanced

clinical T-stage, pathological N-stage, pathological T-stage and

Gleason score displayed higher BIRC5 expression (Figures 7A–

D). In addition, the patients who developed BCR had higher BIRC5

expression than those who didn’t developed BCR (Figure 7E).

However, we found no clear relation between the expression of

BIRC5 and PSA and age (Figures 7F, G).
Frontiers in Oncology 07
GSEA and immune analysis

As shown in Figure 8A, the main pathways correlated with high

expression of BIRC5 were focal adhesion, human papillomavirus

infection, protein processing in endoplasmic reticulum, pathways in

cancer, and MAPK signaling pathway and the main pathways

related to low expression of BIRC5 were alcoholism, neutrophil
A B

D E F

C

FIGURE 6

Prognostic evaluation of BIRC5 expression in various datasets. The K-M survival analysis indicated that patients with low expression of BIRC5 had a
better BFS than those with high expression of BIRC5 in TCGA-PRAD dataset (A), GSE46602 dataset (B) and GSE70770 dataset (C). Time-dependent
ROC curves demonstrated that the mRNA expression of BIRC5 acted as a powerful predictor of BFS for prostate cancer (PCa) patients in the TCGA-
PRAD dataset (D), GSE46602 dataset (E) and GSE70770 dataset (F).
A B C

FIGURE 5

Identification of the final key gene. (A, B) The univariate Cox regression analysis in the TCGA-PRAD dataset (A) and the GSE46602 dataset (B).
(C) Venn diagram of prognostic-related genes from the GSE46602 dataset and the TCGA-PRAD dataset.
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extracellular trap formation, olfactory transduction, systemic lupus

erythematosus (Figure 8B). These pathways are primarily involved

in Signal transduction, Genetic Information Processing, Immune,

and Sensory systems.
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Boxplots were used to compare the differences in the 22 different

kinds of immune cells infiltrated. It was found that there was a distinct

difference between the high and low BIRC5 expression in the immune

cell subtypes, including plasma cells, naïve B cells, CD8 T cells, resting
A B D

E F G

C

FIGURE 7

The correlation analysis between the mRNA expression of BIRC5 and different clinical characteristics. (A) Clinical T-stage. (B) Gleason score.
(C) pathological T-stage. (D) pathological N-stage. (E) biochemical recurrence (BCR) status. (F) Age. (G) PSA.
TABLE 1 Clinicopathological characteristics of patients selected in TCGA-PRAD dataset.

Clinicopathological characteristics Patients Clinicopathological characteristics Patients

Age (year) 60.85 ± 6.77 PSA

Clinical T-stage ≤10 374 (94.44%)

T1 146 (36.87%) >10 10 (2.53%)

T2 142 (35.86%) NA 12 (3.03%)

T3 37 (9.34%) Radiotherapy 50 (12.63%)

T4 1 (0.25%) YES 284 (71.72%)

NA 70 (17.68%) NO 62 (15.65%)

Gleason score NA

6 39 (9.85%) Drugs information

7 195 (49.24%) Hormone Therapy 66 (16.67%)

8 51 (12.88%) Chemotherapy 1 (0.25%)

9 108 (27.27%) NA 329 (83.08%)

10 3 (0.76%) Pathological T-stage

Pathological N-stage T2 149 (37.63%)

N0 284 (71.72%) T3 234 (59.09%)

N1 60 (15.15%) T4 8 (2.02%)

NA 52 (13.13%) NA 5 (1.26%)
NA indicates a null value.
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dendritic cells, activated dendritic cells andmonocytes (Figure 8C). The

result of correlation analysis demonstrated that the BIRC5 expression

was positively related with resting dendritic cells, macrophages M0,

memory B cells, T cells regulatory Tregs and macrophages M2; and

BIRC5 expression was negatively related with activated dendritic cells,

monocytes, CD8 T cells and plasma cells (Figure 8D). In the immune
Frontiers in Oncology 09
checkpoint correlation analysis, we found that BIRC5 expression most

strongly correlated with CD276 expression, followed by TNFRSF18,

CD80, and HAVCR2 (Figure 8E). TIDE analysis predicted

that patients with high expression of BIRC5 would respond

much more favorably to immunotherapy than those with low

expression (Figure 8F).
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FIGURE 8

Gene set enrichment analysis (GSEA) and immune analysis. (A, B) GSEA pathway enrichment analysis of BIRC5 in prostate cancer (PCa) patients.
(C) Immune cell infiltration in high- and low-expression of BIRC5 groups. (D) Correlation analysis between the mRNA expression of BIRC5 and
immune cells infiltrated. (E) The correlation analysis between the BIRC5 expression and immune checkpoints. (F) The differential analysis of Tumor
Immune Dysfunction and Exclusion (TIDE) scores between the low- and high-BIRC5 expression of PCa. (∗p < 0.05, ∗∗p < 0.01, and ∗∗∗p < 0.001).
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Nomogram construction and evaluation

By incorporating multiple risk factors, a nomogram is an

invaluable tool for quantifying personal risk in clinical practice.

Based on univariate Cox regression analysis, prognostic factors

associated with BCR were screened out in PCa patients, including

clinical T-stages, pathological N-stages, Gleason scores,

pathological T-stages, PSA levels, radiotherapy, and BIRC5

mRNA expression (Figure 9A). The LASSO Cox regression

analysis was applied to select variables to establish a nomogram.

The result of LASSO regression analysis showed that when Log(l)
was about -4.20, the partial likelihood deviation was the most

minor, and six variables were included (Figures 9B, C).

Subsequently, we constructed a nomogram that integrated the six

variables, including clinical T-stage, pathological T-stage, PSA,

pathological N-stage, Gleason score, and the mRNA expression of

BIRC5, to predict the BFS in PCa patients (Figure 9D).

Based on the median of nomogram computed-risk score, patients

were categorized into high- and low-risk groups. In K-M survival

analysis, patients with high-risk had significantly poorer prognosis

than those with low-risk (Figure 9E). The nomograms’ predictive

power was evaluated by drawing time-dependent ROC curves and

computing AUC values. The result illustrated that the AUC values for

1-, 3-and 5-year BFS rate were 0.841, 0.861 and 0.895, respectively

(Figure 9F). The calibration plots for the 1-, 3-, and 5-year BFS

predictions demonstrated that the model’s predictions were in high

agreement with the ideal outcomes (Figures 9G–I). The C-index

analysis showed that the C-index value was 0.831 (95% CI: 0.788-

0.874). Moreover, the 1-, 3- and 5-year DCA plots demonstrated that

patients who use the model to forecast their prognosis might gain a

good net benefit, indicating that the nomogram model had robust,

practical application (Supplementary Figure S4).
Experiment validation

We investigated the BIRC5 mRNA expression through the

UALCAN database and found that PCa tissue expresses

significantly higher levels of BIRC5 mRNA than normal tissue

(Figure 10A). Then, the BIRC5 mRNA expression in cells was

explored by qRT-PCR. In PCa cells DU145 and PC3, BIRC5 mRNA

expression was higher than in normal prostate epithelium cells

RWPE1 (Figure 10B). In addition, we conducted a western blot

assay to detect the protein expression of BIRC5. We found that

RWPE1 cells expressed higher levels of BIRC5 protein than DU145

or PC3 cells (Figure 10C). IHC analysis showed that the staining

intensity of BIRC5 in normal tissues was higher than that in paired

PCa tissues (Figures 10D–F). In addition, we found that the staining

intensity of BIRC5 was higher in tissues with Gleason score ≤7 than

in those with Gleason score>7 (Figures 10G–I).
Discussion

PCa is one of the most frequent malignancies in the world, and

the high rate of BCR is its distinguishing feature. Approximately
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34%, 44%, and 52% of patients with localized PCa will develop BCR

at 10, 15, and 20 years after radical prostatectomy (19). BCR is an

indication of clinical progression, once patients develop BCR, the

risk of tumor metastasis will be significantly increased, and the

prognosis of metastatic PCa patients is poor (20). Therefore, early

identification of patients who are at high risk for BCR is vital to

improving their prognosis. However, BCR predictions are primarily

based on clinical features, which are not entirely accurate. With the

rapid development of genomics and bioinformatics, the single use

of clinicopathological parameters to predict the clinical outcome of

patients is weak. It is becoming increasingly important to use

genomics and clinicopathology together to identify biomarkers

and predict clinical outcomes. To be able to predict the outcome

of PCa patients, it is necessary to identify an effective

prognostic biomarker.

From the TCGA and GEO databases, we collected gene

expression profile and corresponding clinical data of patients with

PCa, and six DEGs associated with PCa BCR were identified. After

that, the correlation between these six genes and BFS was examined

using Cox regression analysis and finally found the key gene BIRC5

with prognostic significance in both GSE46602 and TCGA-PRAD

datasets. Notably, in Cox regression analysis, all of these six genes

were associated with prognosis in TCGA-PRAD dataset, but only

one gene was associated with prognosis in GSE46602 dataset. The

reason for this difference may be due to the large difference in

sample size between the two datasets and the large difference in the

proportion of samples with BCR in the total samples. From another

perspective, the differences in sample size and sample composition

further indicate that the two datasets are completely independent,

and BIRC5 was found to be associated with BFS in the two

completely independent datasets, which further implies that

BIRC5 is strongly associated with the prognosis of PCa patients.

The GSE70770 dataset was utilized as an external validation set,

and the prognostic significance of BIRC5 was assessed and validated

by the K-M method and time-dependent ROC curves on the three

independent datasets. K-M curves suggested that the higher the

level of BIRC5 mRNA expression, the more likely patients were to

have a poor prognosis; meanwhile, BIRC5 was found to have good

accuracy in predicting BFS through time-dependent ROC curves

and corresponding AUC values. In the GSE46602 dataset, time-

dependent ROC curves revealed that the 1-year AUC value for

patients was 0.500, whereas the counterpart AUC values in the

other two datasets exceeded 0.7. This difference may be due to the

small amount of sample data in the GSE46602 dataset, with only 36

tumor samples, and the large amount of sample data in the other

two datasets, among which GSE70770 dataset contains 199 tumor

samples and TCGA-PRAD dataset contains 396 samples. Based on

the results of K-M survival analysis and ROC curve analysis in the

three datasets, BIRC5 was a biomarker that could effectively predict

the BFS of PCa. Since the TCGA-PRAD dataset has more complete

data and a larger number of samples than the GEO datasets, we

subsequently performed a comprehensive analysis of BIRC5

through the TCGA-PRAD dataset to assess the biological and

clinical significance of BIRC5.

Through the UALCAN database, BIRC5 mRNA was found to

be highly expressed in PCa tissues, qRT-PCR results of cell lines also
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validated that BIRC5 mRNA expression was elevated in PCa cells.

However, BIRC5 had low protein expression levels in PCa cells and

tissues. Interestingly, the IHC result suggests that the BIRC5 protein

expression in PCa tissues reduced with the increase of the Gleason
Frontiers in Oncology 11
score. Subsequently, through clinical correlation analysis of BIRC5,

we found that in pathological N-stage, clinical T-stage, pathological

T-stage, and Gleason score, the BIRC5 mRNA expression increased

with the higher stage or Gleason score. Koike et al. reported that the
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FIGURE 9

Establishment of a nomogram to predict biochemical recurrence-free survival (BFS) in PCa patients. (A) The univariate Cox regression analysis of
clinicopathological characteristics and the mRNA expression of BIRC5. (B, C) The LASSO regression analysis identified the final prognostic factors.
(D) A prognostic nomogram predicting 1-, 3-, and 5-years BFS of PCa patients. cT (clinical T-stage):1-T1, 2-T2, 3-T3, 4-T4. (E) The K-M survival
analysis showed that patients with high risk had significantly shorter BFS than those with low risk. (F) The time-dependent ROC curves demonstrated
the accurate prediction performance of the nomogram. (G–I) The calibration plots for 1-, 3-, and 5-year BFS of PCa patients.
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BIRC5 mRNA expression was positively correlated with the

Gleason score in PCa tissue samples (21), which validated our

findings. The role of BIRC5 in tumor growth and development has

also been identified in other cancers, including lung, brain and

colon (22–25).

Then we conducted a GSEA analysis and found that BIRC5 was

strongly correlated with Immune system-related pathways. Further

immune analysis discovered that the BIRC5 mRNA expression was

associated with the presence of immune cells in the tumor and the

expression of immune checkpoint genes, indicating that BIRC5 may

influence the immunological condition of PCa patients. In immune

infiltration analysis, the results indicated that patients with high

BIRC5 expression had lower CD8 T cell infiltration in tumor

samples. Multiple studies have shown that as the main effector

immune cells, CD8 T cells were essential for carcinogenesis and
Frontiers in Oncology 12
progression and played a crucial role in antitumor actions (26–28).

Yanai et al. reported that PCa patients with a higher percentage of

CD8 T cells in the immune microenvironment had a longer BCR

(29). In this study, the infiltration degree of CD8 T cells was lower in

the BIRC5 high-expression group, and the BFS was poorer in the

BIRC5 high-expression group. The results were in line with

previous research findings, which further suggest that BIRC5

plays a significant role in the development of PCa and may affect

the immune microenvironment.

To obtain a practical clinical tool for predicting BFS of patients

with PCa to help clinicians make a clinical decision. We successfully

constructed an effective nomogram model by integrating BIRC5

mRNA expression and other clinical indicators related to PCa

progression. Based on the K-M curve analysis, patients with high

nomogram scores were more likely to have a worse BFS rate,
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FIGURE 10

Validation of the mRNA and protein expression of BIRC5 in prostate cancer (PCa). (A) The mRNA expression of BIRC5 in PCa tissues was significantly
higher than in normal tissues in the UALCAN database. (B) The mRNA expression of BIRC5 in PCa cells (DU145 and PC3) was significantly increased than
in the prostate normal epithelium cells (RWPE1). (C) The protein expression of BIRC5 in PCa cells (DU145 and PC3) was significantly lower than that in
RWPE1 cells. (D, E) The two Immunohistochemistry (IHC) images from the same patient. The normal prostate tissue (400X, bar = 20 um) (D), the PCa
tissue (400X, bar =20 um) (E). (F) IHC analysis demonstrated that the BIRC5 staining in the normal prostate tissues was stronger than the paired PCa
tissues. (G) The PCa tissue with a Gleason score 6 (400X, bar = 20 um). (H) The PCa tissue with Gleason score 9 (400X, bar = 20 um). (I) The staining of
BIRC5 in PCa tissues with a Gleason score ≤7 was stronger than PCa tissues with a Gleason score >7 (∗P < 0.05, ∗∗P < 0.01, and ∗∗∗P < 0.001).
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meanwhile calibration plots showed a good prediction performance

of the nomogram model. In addition, the time-dependent ROC

curve of patients illustrated that the AUC values for 1-, 3-, and 5-

year were all higher than 0.8, demonstrating this nomogram

model’s high predictive efficiency.

BIRC5, the gene that encodes Survivin, is a member of the

inhibitor of apoptosis (IAP) gene family, which plays a vital role in

preventing cell death through apoptosis (30). Clinical correlation

analysis showed that BIRC5 mRNA expression was related to the

stage and grade of PCa. At the same time, the immune analysis

showed that BIRC5 was related to the tumor microenvironment,

especially CD8 T cell infiltration. Ma et al. found that BIRC5 is

highly expressed in lung cancer, and it can promote the

proliferation of tumor cells by regulating the expression of PD-

L1 and tumor immune microenvironment. Zhao et al. also found

that BIRC5 could promote the development of tumor cells by

regulating the inflammatory tumor microenvironment in penile

cancer (31). Although it has been confirmed that BIRC5 can affect

the occurrence and development of tumors by affecting the tumor

microenvironment in a variety of tumors, it is still a lack of

literature to report whether BIRC5 also affects the development

of PCa by affecting the tumor microenvironment. Our

research suggested that BIRC5 might also contribute to PCa

progression by altering the immune microenvironment of tumor

cells. In addition, this study identified BIRC5 as a biomarker for

predicting BCR in PCa patients through a series of bioinformatics

methods. We verified its accurate prediction ability in three

independent datasets from different databases. BIRC5 may be

used as a potential biomarker for risk stratification of PCa patients

to identify the population with high BCR risk early to improve

patients’ prognosis. The nomogram based on BIRC5 mRNA

expression is also expected to be a practical clinical tool for

assessing BCR risk in PCa patients due to its good prediction

efficiency and help urologists in clinical decision-making.

Although this study identified a prognostic biomarker associated

with BCR of PCa through multiple analytic methods, there are still

limitations. Firstly, although the prognostic value of BIRC5 was

evaluated and validated in three independent datasets, the results

are based on retrospective data. More prospective data are necessary

to demonstrate the prognostic value of the biomarker and the

nomogram. Secondly, the GSE46602 dataset is from Denmark, the

GSE70770 dataset is from the United Kingdom, and the TCGA-

PRAD dataset is from America. These three independent datasets

used in our study are all from Western countries. Due to the

differences in lifestyle habits and PCa epidemiology between Asian

and Western countries, it is necessary to collect further data to verify

whether our findings also apply to Asian countries. Thirdly, although

BIRC5 does affect the development of tumor by affecting the tumor

microenvironment in lung and penile cancer, our findings also

predicted that BIRC5 may affect immune infiltration in PCa.

However, since this result is based on bioinformatics, whether

BIRC5 is also involved in PCa progression by affecting the tumor

microenvironment still needs to be verified experimentally. In
Frontiers in Oncology 13
addition, whether the immune microenvironment affects the

expression of BIRC5 also requires further experimental exploration.
Conclusion

Through the differential expression analysis, WGCNA analysis,

and Cox regression analysis, our research identified a significant

prognosis-related biomarker, BIRC5, which accurately predicted

BFS in PCa patients and a high correlation with immune

infiltrations. A nomogram integrated BIRC5 mRNA expression

and other clinicopathological features was also successfully

constructed and could be used as a practical tool for clinical

decision-making.
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