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Cancer progression and metastasis due to tumor immune evasion and drug

resistance is strongly associated with immune suppressive cellular responses,

particularly in the case of metastatic tumors. The myeloid cell component plays a

key role within the tumor microenvironment (TME) and disrupts both adaptive and

innate immune cell responses leading to loss of tumor control. Therefore, strategies

to eliminate or modulate the myeloid cell compartment of the TME are increasingly

attractive to non-specifically increase anti-tumoral immunity and enhance existing

immunotherapies. This review covers current strategies targeting myeloid

suppressor cells in the TME to enhance anti-tumoral immunity, including

strategies that target chemokine receptors to deplete selected immune

suppressive myeloid cells and relieve the inhibition imposed on the effector arms

of adaptive immunity. Remodeling the TME can in turn improve the activity of other

immunotherapies such as checkpoint blockade and adoptive T cell therapies in

immunologically “cold” tumors. When possible, in this review, we have provided

evidence and outcomes from recent or current clinical trials evaluating the

effectiveness of the specific strategies used to target myeloid cells in the TME. The

review seeks to provide a broad overview of howmyeloid cell targeting can become

a key foundational approach to an overall strategy for improving tumor responses

to immunotherapy.

KEYWORDS

cancer, immune suppresion, tumor associate macrophages (TAM), myeloid derived
suppressor cells (MDSC), tumor associated neutrophils (TAN), cancer immune
therapy, tumor microenvironment, dendritc cells
1 Introduction

Local immune suppression and dysregulation are common features of cancer and are

closely associated with tumor metastasis and resistance to therapy. The interaction between

cancer and the host immune system is a key factor in determining tumor control or

progression (1–3). Tumor infiltrating leukocytes, particularly monocytes, myeloid derived
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suppressor cells (MDSCs) and neutrophils create a tumor

microenvironment (TME) that is inhospitable to effector cells

such as CD4 and CD8 T cells and NK cells (4–8). Myeloid

lineage cells such as dendritic cells (DCs), tumor associated

macrophages (TAMs) and MDSCs can serve a dichotomous role

within the TME, though in general they are largely immune

suppressive (9–12). These myeloid cells can promote tumor

growth by exerting immune suppressive pressure, including

secreted cytokines and growth factors promoting angiogenesis,

direct cellular signaling or recruitment of Tregs and other

immune suppressive cells such as TAMs, MDSCs, tumor

associated neutrophils (TANs) and DCs (13). Myeloid cells in the

TME can also assume a tumoricidal phenotype, as is the case with

activated M1 macrophages producing free radicals and cytokines

that stimulate the activation of effector T cells (14), or antigen

presenting DCs that promote the expansion and activation of

effector CD4 and CD8 T cells.

The net outcome of the dynamic interplay in the TME is

determined in part by secreted factors and cell signaling from

tumor and stromal cells and by the resident immune cells within

the TME, which perpetuate either a suppressive or stimulatory

immune landscape (1, 4, 10, 12). Targeting of myeloid immune

suppressor cells to reduce or eliminate their immune suppressive

impacts on adaptive immunity can turn the tide between cancer and

the host’s immunity, thereby increasing tumor control and

improving the efficacy of other treatments. In this review we

summarize past and current strategies including relevant clinical

trials that target myeloid cells in the TME as cancer immunotherapy

strategies. Although this is not intended to be a fully comprehensive

review of all strategies and trials, the goal is to emphasize that the

myeloid cell component of the TME presents many opportunities

for development of new immune based therapeutics.
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2 Immune suppressive myeloid cells,
origins, and key functions

2.1 Origin and differentiation of immune
suppressor cells

Immune suppressor cells in the tumor microenvironment can

be characterized by their cell type of origin. Myeloid derived

suppressor cells (MDSC) are comprised of both neutrophil

derived MDSC (PMN-MDSC) and monocyte derived MDSC (M-

MDSC) with potent immune suppressive activity (15). Tumor

associated macrophages (TAM) are derived from inflammatory

monocytes recruited from the bloodstream in response to

chemokines produced by tumor cells and the tumor stroma,

including also myeloid cells themselves, and can be clearly

distinguished phenotypically and functionally from MDSC (16)

(17). The distinction between tumor associated neutrophils (TAN)

and PMN-MDSC is somewhat more complicated, in that they share

many phenotypic characteristics (18). Tolerogenic DCs are

dendritic cells exposed to polarizing cytokines and surface

molecules secreted by tumor cells and stromal cells within the

tumor microenvironment (9) This population of immune

suppressive DC suppress effector T cell responses, thereby

contributing to an overall immune suppressed and hostile

environment for infiltrating T cells.

The immune suppressive TAMs, DCs, TANs and MDSCs are

recruited to the tumor by a variety of cellular and soluble factors

within the tumor milieu, where they suppress effector functions of T

cells and NK cells (Figure 1). The various mechanisms employed by

immune suppressive myeloid cells become potential targets for new

immunotherapies designed to reprogram the TME. Among the

mechanisms employed by TAMs and MDSCs to suppress effector T
FIGURE 1

Cellular interactions in the immune suppressive tumor microenvironment.
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cells and NK cells include upregulated expression of immune

suppressive checkpoint molecules such as PD-L1 (19, 20), VISTA

(21, 22), and B7-H3 ) (21, 23–25). Other mechanisms include

secretion of immune suppressive cytokines such as IL10 and TGFb,
and VEGF (6, 26).
2.2 Function of TAMs in the
tumor microenvironment

Immunologically “cold” tumors evade immune surveillance

through a variety of mechanisms. Down regulation of tumor

associated antigens (TAA) (27, 28), maintaining inflammation

leading to immune exhaustion (6, 26) and increasing angiogenesis

to tumor sites (29, 30) are all methods used by tumors to persist and

metastasize while evading detection by the immune system.

There is strong clinical evidence linking TAMs to cancer

immune suppression. For example, the density of TAMs

infiltrating tumors is strongly correlated with poor overall

survival in many breast, ovarian, bladder, gastric, thyroid and

colorectal cancers (31). TAMs have a relatively short half-life and

are therefore must be replaced continuously by inflammatory

monocytes recruited from the bloodstream primarily in response

to the chemokine CCL2, produced by tumor cells, tumor fibroblasts,

and by myeloid cells (32). This dependence of TAMs on continuous

monocyte replacement opens a window of opportunity for

therapeutic intervention and depletion of TAMS.

Once within the tumor, the differentiation of monocytes to

TAMs is guided by either pro-inflammatory or anti-inflammatory

factors produced within the TME. The overwhelming majority of

TAMs in most tumors exist in a state that most closely resembles

that of what has been defined experimentally as M2 polarization,

which results in a macrophage that is generally immune suppressive

and tumor growth and metastasis promoting (3). The M2

polarization state of TAMS is driven by a a diverse array of

cytokines (eg, IL-10, TGF-b), chemokines (CXCL4, CCL5),

growth factors (VEGF, M-CSF) and by local tumor hypoxia (33).

Tumor cells can also directly contribute metabolically to M2

polarization by secretion of lactic acid and hypoxia-inducible

factor (HIF1a) (34). Tumor cells also co-opt TAM signaling to

promote tumor growth locally, and to become more invasive for

generating metastases. For example, tumor secretion of TNF-a
induces the chemokines CCL2 and CCL8 by TAMs which recruits

additional CCR2+ monocytes to the TME (35). In another example,

CCL8 produced by TAMs also upregulate tumor cell secretion of

colony stimulating factor 1 (CSF-1) which is crucial to macrophage

and DC survival and differentiation through signaling via CSF-1R

(36, 37). One of the most important consequences of the

accumulation of TAMs is the impact on T cell effector functions.

For example, TGF-b signaling drives CD4 T cell differentiation

towards immune suppressive Th2 and Treg phenotypes (38). TGF-

b signaling also suppresses the effector functions of CD8 T cells and

NK cells and decreases migration of DCs into the tumor tissues (9).

Within the TME, T cells responding to TAM secreted factors

exhibit upregulated expression of immune suppressive immune

checkpoint molecules such as PD-1, CTLA-4, Lag3, and TIM3
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(39). The expression of the ligand for PD-1 (PDL-1) is often higher

on TAMs than it is on tumor cells, and PDL-1 signaling to TAM

directly can reduce their ability to phagocytose tumor cells (40).

Metabolically, TAMs can reprogram the TME by producing

enzymes that directly alter T cell signaling, or deplete necessary

amino acids needed for T cell survival and proliferation. For

example, TAM production of arginase 1 (Arg-1) leads to the

depletion of L-arginine in turn leading to dysfunction of tumor

infiltrating lymphocytes by TCR z chain downregulation (1, 12, 41).

In another example, TAM (and tumor cells) can overproduce the

enzyme indoleamine dehydrogenase (IDO), which depletes the

TME of tryptophan, a necessary amino acid for T cell survival (42).
2.3 Function of immune suppressive DCs in
the tumor microenvironment

Like TAMs, DCs in the TME exist primarily in an immune

suppressive state and by inactivating effector T cells can promote

more rapid tumor growth and metastasis (9). Immature DCs that

reside in the TME recognize tumor cells and the products of tumor

cell necrosis through damage-associated molecular patterns

(DAMPs) which induce DC phagocytosis and processing of tumor

antigens. This process matures DCs to serve their primary role as

antigen presenting cells, and stimulates migration to lymph nodes,

and ultimately leading to activation or inactivation of both CD4 and

CD8 effector T cells (43). Classically differentiated DCs secrete

proinflammatory cytokines such as IL-12 to activate IFNg
producing T cells and NK cells, which drives differentiation of Th1

T cells and activated CD8+ cytotoxic T cells (44). However, in the

TME most DCs exist in an immature state and become toleragenic

DCs (tDCs) following sustained exposure to cytokines such as VEGF,

IL10 and TGFb (9, 43). tDCs induce T cell anergy through

checkpoint molecule signaling, including signaling via CD28 and

PDL-1 to their cognate receptors CTLA-4 and PD-1 on T cells (45).

tDCs also promote the generation of regulatory T cells (Tregs) from

naïve CD4+ T cells by secretion of IL10 and TGF-b (43).
2.4 MDSCs in the tumor microenvironment

MDSCs are derived from immature monocytes and neutrophils,

mobilized from the bone marrow in response to cytokines associated

with chronic inflammation, including IL-3, GM-CSF, and G-CSF (46).

The two primary populations of MDSC are defined as monocytic

MDSC (M-MDSC) and neutrophilic MDSC (PMN-MDSC), which

have both distinct and overlapping molecular and functional

characteristics. For example, they exhibit distinct gene expression

profiles, and unique immunologic functions such as production of

arginase (PMN-MDSC) or reactive nitrogen or oxygen intermediates

(M-MDSC) (47). Following their mobilization from the bone marrow

and entry into the bloodstream, MDSC are recruited into tumor tissues

in part by following chemokine gradients such as CCL2 and CXCL8,

and other cytokines secreted by tumor cells and immune cells within

the TME (48). Once in the TME, MDSC can be induced to undergo

further differentiation to become more immune suppressive, by factors
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such as TGF-b produced by Tregs. MDSCs can also accumulate in

secondary lymphoid tissues including the spleen and lymph nodes

where they contribute to systemic immune suppression and further

promote tumor progression (38, 49).

The expansion and differentiation of Tregs within the TME, is

promoted in part by MDSC expression of tumor derived peptides

on MHCI and MHCII molecules (50). As another mechanism of

MDSC polarization, histamine released by mast cells binds to

histamine receptor 1 on MDSCs inducing secretion of Arg-1 and

nitric oxide synthase (iNOS) which inhibits T cell proliferation (51).

Recent studies have correlated the abundance of MDSCs with poor

prognosis and poor response to immune checking inhibitor (ICI)

therapy in patients with various cancer types including breast,

colorectal, lung and prostate cancers (52–54).

M-MDSC were originally defined in tumor-bearing mice as

immature bone marrow derived cells that suppressed multiple T cell

functions (55). The population of M-MDSC overall is considered to

be more immune suppressive than PMN-MDSCs despite making

up only 10-20% of the total MDSC population (56). Mechanisms of

M-MDSC-mediated immune suppression include production of

suppressive cytokines IL10 and TGF-b (4); They also promote T cell

apoptosis by TCR-z chain downregulation through secretion of

iNOS, arginase, and and reactive oxygen species (ROS) in mouse

models. Secretion of iNOS also inhibits NK cells, thereby reducing

antibody-dependent cell-mediated cytotoxicity (ADCC) (57). In a

clinical setting, patients with non-small cell lung carcinoma

(NSCLC), circulating tyrosine kinase receptor TIE2hi expressing

M-MDSCs were found to suppress antigen-specificT cell responses

and their presence was linked to poor patient outcomes (58). In

contrast, patients with NSCLC treated with anti-PD-1 checkpoint

blockade that had lower frequencies of both M-MDSCs and PMN-

MDSCs had longer overall progression free survival (59).

PMN-MDSCs comprise the majority of MDSC populations

(60). These PMN-MDSC are metabolically distinctive from

mature neutrophils and promote early tumor dissemination and

establishment of the pre-metastatic niche in the lungs and other

sites (61). They also migrate more effectively and exert significantly

greater immune suppressive activity compared to normal

neutrophils. Mechanisms by which PMN-MDSCs inhibit T cell

function include reactive nitrogen intermediates in mice and dogs,

and ROS in humans (60, 62). Patients with primary and metastatic

lung cancers exhibited high numbers of tumor infiltrating PMN-

MDSCs, which was associated with suppressed NK cell activation

and cytolytic activity, thought to be mediated by both cell-cell

contact with PMN-MDSC and production of soluble factors within

the TME (54).
2.5 Immune modulative TANs in the
tumor microenvironment

Immune suppressive TANs and PMN-MDSCs are recruited to

the TME primarily by the chemokine CXCL8, which signals via the

chemokine receptors CXCL1 and CXCL2 (63). Given their

common origins in the bone marrow and their shared need for

growth factors and cytokines such as G-CSF, IL-6, and IL-17, it is
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somewhat difficult to definitely distinguish TANs from PMN-

MDSCs (47, 63). Within tumor tissues, TANs are classified as

either N1 or N2 populations, analogous to M1 and M2

macrophages (64). Populations of N1 TANs exhibit antitumor

activity, whereas N2 TANs inhibit T cell proliferation and

promote tumor growth (65). TGF-b secreted by tumor cells is

one mechanism that polarizes TANs to the N2 phenotype (64, 66,

67). Within the TME, N2 TANs promote angiogenesis and play a

role in establishing the pre-metastatic niche through secretion of

VEGF and by expression of metalloproteinase-9 (MMP-9) which

decreases the bioavailability of anti-angiogenic molecules (68, 69).

High circulating numbers of N2 TANs have been associated with

increased tumor metastatic progression, and genetic instability in

tumors including melanoma and bronchioloalveolar carcinoma

(70–72). Depletion of N2 TANs in animal models leads to

increased numbers of effector CD8 T cells (73)’ and promotes

their infiltration into the tumor (63). Secretion of TGF-b and IL-10

by N2 TANs stimulates MDSC expansion, further augmenting the

immune suppressive nature of the TME. Importantly, the

mechanisms by which N2 TANs suppress tumor immunity may

in many cases be distinct and different in mice versus humans (74).

In addition to suppressing T cells, both PMN-MDSC and N2

TANs produce neutrophil extracellular traps (NETs). These

complex webs, comprised of extruded DNA molecules studded

with chromatin and other nuclear proteins, can promote tumor

metastasis by trapping migrating tumor cells within tumor blood

vessels, and then facilitating the survival of these early metastatic

tumor cells (75, 76). The NETS secreted by TANs and PMN-MDSC

also interrupt the cytotoxic activities of CD8+ T cells and NK

cells (77).
3 Therapeutic targeting of immune
suppressive macrophages and MDSC

3.1 Direct depletion of myeloid cells
(TAM, MDSC) in the TME

Depletion of immune suppressive myeloid cell populations

within the TME is one method to overcome the immune

suppressive pressure they exert, particularly given that these cells,

especially TAMs, can be quite numerous in the TME, in some cases

comprising over 50% of the entire tumor cell population (78). Below

we provide examples of the multiple strategies designed to deplete

TME populations of immune suppressive TAMs.

3.1.1 Colony-stimulating factor 1
receptor blockade

One approach that has been extensively investigated is TAM

depletion via blocking signaling by the essential macrophage

growth factor receptor colony-stimulating factor 1 receptor (CSF-

1R). CSF-1R is expressed by TAMs and binds to the primary ligands

CSF-1 and IL-34 (79). CSF-1R signaling is crucial to macrophage

differentiation and survival (79, 80). The density of CSF-1R+ TAMs

in tumors correlates with poor outcomes in many tumor types,
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including colon adenocarcinoma, pancreatic cancer, classical

Hodgkin lymphoma, leiomyosarcoma, hepatocellular carcinoma

and breast cancer (81–86). CSF-1R is also expressed by other

immune cells within the TME such as DC, MDSCs and

neutrophils, and blocking CSF-1R signaling may therefore also

deplete these cells in addition to TAMs (87). Disruption of CSF-

1R signaling has been achieved by use of small molecules and

monoclonal antibodies (87, 88). Multiple clinical trials are ongoing

to evaluate the effects of CSF-1/CSF-1R blockade on TAM

populations and tumor control in many both solid tumors and

hematologic cancers (Table 1). To date clinical trials for CSF-1/

CSF-1R blockade have been completed in non-pancreatic

neuroendocrine tumors (89), Hodgkin lymphoma (90), ovarian

cancer (NCT03166891, NCT03901118), non-Hodgkin lymphoma

(NCT03974243) and hepatocellular carcinoma (NCT03245190).

The accumulated results from these trials indicates safety and

tolerability of the CSF-1R inhibitors, but limited efficacy,

suggesting either refined dosage or timing of CSF-1/CSF-1R

blockade, or the need to employ with other combination

therapies (91).
3.1.1.1 Pexidartinib (PLX3397, TURALIO)

The small molecule drug PLX3397 targets CSF1R signaling and

reprograms intra-tumoral immune suppressive myeloid cells (92),

and has been shown to convert immune suppressive M-DSCs to a

more proinflammatory tumoricidal phenotype (93, 94).

PLX3397was approved by the FDA in 2019 for use in the

treatment of diffuse type tenosynovial giant cell tumors (dt-

TGCT), a rare and often unresectable non-life-threatening cancer

of the tendon sheath that is driven by CSF-1 expressing TAMs (95).

CSF-1 activation in dt-TGCT leads to recruitment of CSF-1R+

macrophages which make up a large bulk of the tumor mass (96).

This specific tumor type is well-suited for targeting by CSF-1/CSF-

1R pathway blockade; and treatment with anti-CSF-1R antibodies

has shown significant reduction of CSF-1R+ TAMs within tumor

tissues (97). In a phase III double blind clinical trial, 14.8% of

patients with unresectable dt-TGCT treated with PLX3397 had a

complete response (CR) and 24.6% had a partial response (PR) per

RECIST criteria compared to zero response in the placebo control

group (98).

Current clinical trials are investigating the effectiveness of

PLX3397 in multiple cancer types including melanoma, prostate

cancer, recurrent glioblastoma multiforme (GBM) and

hematological malignancies (99–101). Preclinical use of orally

administered PLX3397 for the treatment of recurrent GBM in

phase II trials did not show statistically significant improvement

in progression free survival of patients compared to historical

controls, and there were no partial or complete responses

observed in their 38-patient cohort (92, 102). In a phase II trial

with 20 patients with relapsed Hodgkin lymphoma, single agent

PLX3397 treatment showed an objective overall response rate

(ORR) of 5% (103). Thus, the value of CSF-1R inhibition alone

for treatment of tumors such as GBM may be limited.

Trials investigating the use of PLX3397 in combination with

other agents are ongoing breast cancer (NCT01042379) and
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unresectable sarcomas and malignant peripheral nerve sheath

tumors (NCT02584647). A Phase II trial in patients with

advanced melanoma and other solid tumors in combination

with PD-1 blocking antibody pembrolizumab (NCT02452424)

was terminated early due to insufficient evidence of clinical

efficacy (101).

3.1.1.2 Chiauranib (CS2164)

The small molecule drug chiauranib is a CSF-1R inhibitor that

also selectively inhibits kinases related to angiogenesis, including

VEGF, PDGFR, and c-kit (104). Chiauranib binds to the ATP

site in VEGFR2 and inhibits kinase activity, as well as reducing

phosphorylation of ERK1/2, thus decreasing expression of genes

related to tumor angiogenesis. Chiauranib has shown efficacy in

preclinical mouse models of hepatocellular carcinoma, colorectal

cancer, and non-Hodgkin lymphoma (NHL) (105–107). Initial

dose escalation trials demonstrated that 67% of patients achieved

stable disease, with acceptable safety and tolerability (104). Current

clinical trials are ongoing, with one phase II trial reported currently

in the US (NCT05271292), evaluating chiauranib as a single agent

to treat advanced solid malignant tumors.

3.1.1.3 Additional small molecule inhibitors of CSF-1R

Other small molecule CSF-1R inhibitors include ARRY-382,

PLX7486, BLZ945 and JNJ-40346527 (edicotinib), and all are

currently being evaluated in clinical trials for treatment of Hodgkin

lymphoma (cHL) (87). A phase I study with ARRY382 for treatment of

advanced solid tumors showed 15% stable disease with no objective

responses observed out of 26 patients when administered in

combination withpembrolizumab (NCT02880371). Phase I and II

clinical studies of the drug JNJ-40346527 in patients with refractory

Hodgkin lymphoma found that 11 of 20 patients (55.0%) had stable

disease (SD) with progression free survival (PFS) times for all treated

patients ranging from 2 days to 352 days (90).

3.1.1.4 Monoclonal antibodies targeting CSF-1 or CSF-R1

Monoclonal antibodies targeting CSF-1R in clinical

development include emactuzumab, AMG820, IMC-CS4,

cabiralizumab, MCS110 (lacnotuzumab) and PD036324 (Table 2).

MCS110 and PD036324 target the CSF-1 (ligand) as opposed to the

CSF-R1 receptor (87). Phase Ia/Ib trials with emactuzumab as either

a single agent or in combination with paclitaxel in patients with

metastatic solid tumors including mesothelioma, soft tissue

sarcoma, ovarian, breast, pancreatic, endometrial cancer and dt-

TGCT have been conducted. Study outcomes in the monotherapy

group did not reveal any patients with objective tumor responses,

with 13% of patients exhibiting SD. When administered in

combination with paclitaxel, 7% of patients had PR with 43%

showing SD (108). This study also demonstrated a significant

reduction in the numbers of CSF-1R+ TAMs in both

monotherapy and combination groups (101). The first human

trial of AMG820 showed increased serum CSF-1 concentrations

and decreased numbers of macrophages (109). Patients

with relapsed or refractory advanced solid tumors treated with

AMG820 experienced a 32% SD rate, while one patient with NSCLC
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TABLE 1 US clinical trials in cancer using Colony-stimulating factor 1 receptor (CSF-1R) blockade as intervention.

CSF-1/
CSF-1R
blockade

NCT
Number

Title Status Study
Results

Conditions Interventions Phases Enrollment

1 NCT03158103 A Study of MEK162
(Binimetinib) in

Combination With
Pexidartinib in Patients

With Advanced
Gastrointestinal Stromal

Tumor (GIST)

Completed No Results
Available

Gastrointestinal
Stromal Tumor (GIST)

MEK162|
Pexidartinib

Phase 1 3

2 NCT02390752 Phase I Trial of Turalio
(R) (Pexidartinib,

PLX3397) in Children
and Young Adults With
Refractory Leukemias
and Refractory Solid
Tumors Including

Neurofibromatosis Type
1 (NF1) Associated

Plexiform
Neurofibromas (PN)

Recruiting No Results
Available

Neurofibroma,
Plexiform|Precursor
Cell Lymphoblastic

Leukemia-Lymphoma|
Leukemia,

Promyelocytic, Acute|
Sarcoma

TURALIO Phase 1 54

3 NCT04635111 A Long-term Study
Evaluating

Hepatotoxicity
Associated With

TURALIO (Pexidartinib)
Treatment

Recruiting No Results
Available

Hepatotoxicity|
Tenosynovial Giant

Cell Tumor

TURALIO 30

4 NCT02371369 Phase 3 Study of
Pexidartinib for

Pigmented Villonodular
Synovitis (PVNS) or

Giant Cell Tumor of the
Tendon Sheath (GCT-

TS)

Completed CR 24.2%,
PR 29.7%

Pigmented
Villonodular Synovitis|
Giant Cell Tumors of
the Tendon Sheath|
Tenosynovial Giant

Cell Tumor

Pexidartinib|
Placebo

Phase 3 120

5 NCT04526704 Study to Evaluate
Discontinuation and Re-

Treatment in
Participants With

Tenosynovial Giant Cell
Tumor (TGCT)

Previously Treated With
Pexidartinib

Active, not
recruiting

No Results
Available

Tenosynovial Giant
Cell Tumor

Pexidartinib Phase 4 32

6 NCT02401815 CGT9486 (Formerly
Known as PLX9486) as a

Single Agent and in
Combination With

PLX3397 (Pexidartinib)
or Sunitinib in

Participants With
Advanced Solid Tumors

Completed No Results
Available

Gastrointestinal
Stromal Tumors

PLX9486|
Pexidartinib|
Sunitinib

Phase 1|
Phase 2

51

7 NCT01349036 A Phase 2 Study of
PLX3397 in Patients
With Recurrent
Glioblastoma

Terminated Surgical
Cohort 1,
Overall
survival

76.9%. SD
 23.1%,

PD
 76.9%.
Non-

Surgical
Cohort 2
Overall
survival
95.5%

Recurrent
Glioblastoma

PLX3397 Phase 2 38
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TABLE 1 Continued

CSF-1/
CSF-1R
blockade

NCT
Number

Title Status Study
Results

Conditions Interventions Phases Enrollment

8 NCT02452424 A Combination Clinical
Study of PLX3397 and

Pembrolizumab To Treat
Advanced Melanoma

and Other Solid Tumors

Terminated no CR in
any dose
escalation.
PR up to
15.4% in
Melanoma

Melanoma|Non-small
Cell Lung Cancer|
Squamous Cell

Carcinoma of the
Head and Neck|
Gastrointestinal
Stromal Tumor
(GIST)|Ovarian

Cancer

PLX3397|
Biological:

Pembrolizumab

Phase 1|
Phase 2

78

9 NCT01790503 A Phase 1b/2 Study of
PLX3397 + Radiation

Therapy +
Temozolomide in

Patients With Newly
Diagnosed Glioblastoma

Completed CR + PR up
to 18.2%,
SD up to
54.5%

Patients With Newly
Diagnosed

Glioblastoma

PLX3397|
Radiation:
Radiation
Therapy|

Temozolomide

Phase 1|
Phase 2

65

10 NCT01525602 Safety Study of PLX3397
and Paclitaxel in Patients
With Advanced Solid

Tumors

Completed Clinical
benefit rate
(CR, PR, or

stable
disease) 33~

67%

Solid Tumors PLX3397|
Paclitaxel

Phase 1 74

11 NCT05271292 Chiauranib for
Advanced Solid

Malignant Tumors and
Relapsed/Refractory

SCLC.

Recruiting No Results
Available

Small-cell Lung
Cancer|Advanced
Solid Malignant

Tumor

Chiauranib Phase 1|
Phase 2

36

12 NCT01316822 A Study of ARRY-382 in
Patients With Selected
Advanced or Metastatic

Cancers

Completed No Results
Available

Metastatic Cancer ARRY-382,
cFMS inhibitor;

oral

Phase 1 26

13 NCT02880371 A Study of ARRY-382 in
Combination With

Pembrolizumab for the
Treatment of Patients
With Advanced Solid

Tumors

Terminated Phase 1b,
10.5% had
confirmed
PR, in phase
2, 3.7%with
PDA had a
PR lasting
2.4 months.

Advanced Solid
Tumors

ARRY-382|
Pembrolizumab

Phase 1|
Phase 2

82

14 NCT01804530 Phase 1 Study of
PLX7486 as Single Agent

in Patients With
Advanced Solid Tumors

Terminated No Results
Available

Solid Tumor|Tumors
of Any Histology With

Activating Trk
(NTRK) Point or
NTRK Fusion
Mutations|

Tenosynovial Giant
Cell Tumor

PLX7486 TsOH Phase 1 59

15 NCT02829723 A Study of BLZ945
Single Agent or BLZ945
in Combination With
PDR001 in Advanced

Solid Tumors

Terminated No Results
Available

Advanced Solid
Tumors

BLZ945|PDR001 Phase 1|
Phase 2

198

16 NCT03557970 JNJ-40346527 in
Treating Participants
With Relapsed or
Refractory Acute
Myeloid Leukemia

Terminated 55.0% SD,
40.0% PD.
PFS for all
treated
patients

ranged from
2 days to
352+ days.

Recurrent Acute
Myeloid Leukemia|
Refractory Acute
Myeloid Leukemia

Drug: Edicotinib|
Other:

Pharmacokinetic
Study

(Continued)
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experienced a PR. All the agents in trials targeting CSF-R1 have

generally been well-tolerated to date, suggesting that sustained CSF-

1R blockade treatment for weeks to months is safe. However, to date

none of the CSF-1 or CSF-1R targeted agents has demonstrated

significant antitumor activity clinically (110).

3.1.2 Trabectedin as myeloid cell
depleting chemotherapy

Trabectedin an alkaloid drug that binds a minor groove of DNA

and blocks the cell cycle and DNA repair pathways (111). It has

been shown to selectively reduce TAMs in tumors without affecting

the infiltration of T cells (112). Treatment with trabectedin also

inhibits local differentiation of monocytes into TAMs (113). Use of

trabectedin in multiple preclinical animal tumor models

demonstrated depletion of TAMs and reduction of tumor growth,

suppression of angiogenesis, and reduced concentrations of IL6,

CCL2 and CXCL8 (114). Current phase II clinical trials of

trabectedin are ongoing for treatment of soft tissue sarcoma, bone

tumors and small round-cell sarcomas, administered in

combination with low-dose radiation therapy (NCT05131386).

Trabectedin is FDA approved for treatment of unresectable or

metastatic liposarcoma and leiomyosarcoma (115) (Table 3).
3.2 Chemokine receptor antagonists
for monocyte and neutrophil
migration inhibition

Chemokine receptor antagonists can reduce the infiltration of

monocytes and MDSCs into the TME. The chemokine CCL2 binds

to the receptor CCR2 expressed on inflammatory monocytes (116),

which signals to circulating monocytes to promote extravasation

from the vasculature and into inflamed tissues (32). Many tumors

secrete large amounts of CCL2, thereby recruiting circulating

inflammatory monocytes into tumor tissues where they then

differentiate into M2 TAMs (32, 117, 118). CCL2 may also play a

minor role in PMN-MDSC recruitment, though the primary

chemokine driving TAN recruitment is CXCL8 (119). There have

been numerous preclinical studies in rodent models assessing

inhibitors of the CCL2-CCR2 axis using either small molecule

CCL2 inhibitors or monoclonal antibodies, and most have
Frontiers in Oncology 08
demonstrated inhibition of tumor growth and/or decreased

metastatic burden (120). In these models, CCL2-CCR2 signaling

blockade has been shown to suppress tumor growth through

multiple pathways including depletion of TAMs and M-MDSC

and increasing infiltrating T cells (32, 118, 120).

3.2.1 CCR2 targeted antibodies
Carlumab (CNTO888) is a CCL2 neutralizing antibody that has

been evaluated in multiple cancer models as either a single agent

immunotherapy or in combination with chemotherapy (121). Pre-

clinical mouse models evaluating carlumab have demonstrated

increased IFNg production by NK cells and antitumoral CD8+ T

cells when combined with anticancer vaccines (122). Carlumab has

demonstrated positive clinical responses when used in combination

with chemotherapeutic drug docetaxel (123); phase II trials have been

completed but Carlumab has since been discontinued (NCT00992186).

MLN1202 (plozalizumab) is a CCR2 blocking monoclonal

antibody currently undergoing phase II clinical trials for

treatment of metastatic bone cancer (NCT01015560). Results so

far show that MLN1202 is relatively well tolerated with only 7.14%

of patients experiencing severe adverse events (SAE). A phase I trial

of MLN1202 in combination with nivolumab was terminated

early due to serious adverse events (NCT02723006), which may

suggest limited potential for MLN1202 as single or combined

immunotherapy agent (124, 125) (Table 4).

3.2.2 CCL2 inhibitors
Bindarit is a small molecule drug that inhibits the synthesis of

CCL2 and has been shown to induce tumor regression in preclinical

studies by inhibiting TAM and MDSC infiltration of the TME in

breast cancer, prostate cancer, and osteosarcoma animal models

(126–129). A second CCL2 inhibitor mNOX-36 has been shown in

a rat model of GBM to significantly inhibit tumor growth (130). The

safety of mNOX-36 is currently being evaluated in Phase I

trials (Table 4).

3.2.3 CCR2 inhibitors
RS 504393 is a small molecule CCR2 antagonist that has shown

activity in blocking M-MDSCs and TAM recruitment into tumors

following gemcitabine treatment in a mouse model of bladder

cancer (131). Another CCR2 inhibitor (BMS CCR2 22), is a high
TABLE 1 Continued

CSF-1/
CSF-1R
blockade

NCT
Number

Title Status Study
Results

Conditions Interventions Phases Enrollment

17 NCT03177460 Daratumumab or FMS
Inhibitor JNJ-40346527

Before Surgery in
Treating Patients With
High-Risk, Resectable
Localized or Locally
Advanced Prostate

Cancer

Active, not
recruiting

No Results
Available

Prostate
Adenocarcinoma|Stage
III Prostate Cancer
AJCC v8|Stage IIIA

Prostate Cancer AJCC
v8|Stage IIIB Prostate
Cancer AJCC v8|Stage
IIIC Prostate Cancer
AJCC v8|Testosterone
Greater Than 150 ng/

dL

Biological:
Daratumumab|
Drug: FMS

Inhibitor JNJ-
40346527|
Procedure:
Radical

Prostatectomy
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TABLE 2 US clinical trials in cancer using Monoclonal antibodies targeting CSF-1 or CDF-1R.

CSF-1/CSF-
1R mono-
clonal anti-
bodies

NCT
Number

Title Status Study
Results

Conditions Interventions Phases Enrollment

1 NCT05417789 Study of
Emactuzumab for
Tenosynovial

Giant Cell Tumor
(TGCT)

Active, not
recruiting

No
Results
Available

TGCT Drug:
Emactuzumab|
Drug: Placebo

Phase 3 128

2 NCT03369964 A Study of
Atezolizumab in
Combination
With an

Immunotherapy
Agent

Investigated With
or Without Anti-
Cd20 Therapy in
Patients With
Relapsed or

Refractory Non-
Hodgkin

Lymphoma

Withdrawn No
Results
Available

Lymphoma, Non-
Hodgkin

Drug:
Atezolizumab|

Drug:
Emactuzumab|

Drug:
Obinutuzumab

Phase 1 0

3 NCT02760797 A Study of
Emactuzumab
and RO7009789
Administered in
Combination in
Participants With
Advanced Solid

Tumors

Completed No
Results
Available

Neoplasms Drug:
Emactuzumab|

Drug: RO7009789

Phase 1 38

4 NCT02323191 A Study of
Emactuzumab

and Atezolizumab
Administered in
Combination in
Participants With
Advanced Solid

Tumors

Completed No
Results
Available

Solid Cancers Drug:
Atezolizumab|

Drug:
Emactuzumab

Phase 1 221

5 NCT02923739 Paclitaxel and
Bevacizumab

With or Without
Emactuzumab in
Treating Patients
With Platinum-
Resistant Ovarian,
Fallopian Tube,
or Primary

Peritoneal Cancer

Completed No
Results
Available

Fallopian Tube
Adenocarcinoma|

Fallopian Tube Clear Cell
Adenocarcinoma|
Fallopian Tube
Endometrioid

Adenocarcinoma|
Fallopian Tube Mucinous

Adenocarcinoma|
Fallopian Tube Serous
Adenocarcinoma|
Fallopian Tube
Transitional Cell

Carcinoma|Fallopian
Tube Undifferentiated
Carcinoma|Malignant

Ovarian Brenner Tumor|
Ovarian

Adenocarcinoma|Ovarian
Clear Cell

Adenocarcinoma|Ovarian
Endometrioid

Adenocarcinoma|Ovarian
Mucinous

Adenocarcinoma|Ovarian
Seromucinous

Biological:
Bevacizumab|
Biological:

Emactuzumab|
Other: Laboratory

Biomarker
Analysis|Drug:
Paclitaxel|Other:
Pharmacological

Study

Phase 2 9

(Continued)
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TABLE 2 Continued

CSF-1/CSF-
1R mono-
clonal anti-
bodies

NCT
Number

Title Status Study
Results

Conditions Interventions Phases Enrollment

Carcinoma|Ovarian
Serous Adenocarcinoma|
Ovarian Transitional Cell

Carcinoma|Ovarian
Undifferentiated

Carcinoma|Primary
Peritoneal Serous
Adenocarcinoma|

Recurrent Fallopian Tube
Carcinoma|Recurrent
Ovarian Carcinoma|
Recurrent Primary

Peritoneal Carcinoma

6 NCT01494688 A Study of
RO5509554 as

Monotherapy and
in Combination
With Paclitaxel in
Participants With
Advanced Solid

Tumors

Completed No
Results
Available

Advanced Solid Tumors Drug: Paclitaxel|
Drug: RO5509554

Phase 1 217

7 NCT01444404 A Study of AMG
820 in Subjects
With Advanced
Solid Tumors

Completed No
Results
Available

Advanced Malignancy|
Advanced Solid Tumors

Drug: AMG 820 Phase 1 25

8 NCT02713529 Safety and
Efficacy Study of
AMG 820 and
Pembrolizumab
Combination in
Select Advanced
Solid Tumor

Cancer

Completed Objective
Response
Rate

(ORR) up
tp 5.3%,
highest
OS 75%
at. 6

months
and

41.7% at
12

months

Pancreatic Cancer|
Colorectal Cancer|Non-
Small Cell Lung Cancer

Biological:
AMG820 and
pembrolizumab

Phase 1|
Phase 2

117

9 NCT01346358 A Study of IMC-
CS4 in Subjects
With Advanced
Solid Tumors

Completed No
Results
Available

Neoplasms Biological: IMC-
CS4

Phase 1 72

10 NCT03153410 Pilot Study With
CY,

Pembrolizumab,
GVAX, and IMC-
CS4 (LY3022855)
in Patients With

Borderline
Resectable

Adenocarcinoma
of the Pancreas

Active, not
recruiting

No
Results
Available

Pancreatic Cancer Drug:
Cyclophosphamide|
Drug: GVAX|Drug:
Pembrolizumab|
Drug: IMC-CS4

Early
Phase 1

12

11 NCT02265536 A Study of
LY3022855 In

Participants With
Breast or Prostate

Cancer

Completed No
Results
Available

Neoplasms|Neoplasm
Metastasis

Drug: LY3022855 Phase 1 36

(Continued)
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TABLE 2 Continued

CSF-1/CSF-
1R mono-
clonal anti-
bodies

NCT
Number

Title Status Study
Results

Conditions Interventions Phases Enrollment

12 NCT03697564 Nivolumab +
Cabiralizumab +
Gemcitabine in
Patients With

Stage IV
Pancreatic Cancer
Achieving Disease

Control in
Response to First-

line
Chemotherapy
(GemCaN Trial).

Suspended No
Results
Available

Pancreatic Cancer Stage
IV

Drug: Gemcitabine|
Drug: Nivolumab

10 MG/ML
Intravenous
Solution

[OPDIVO]|Drug:
Cabiralizumab

Phase 2 40

13 NCT03502330 APX005M With
Nivolumab and
Cabiralizumab in

Advanced
Melanoma, Non-
small Cell Lung
Cancer or Renal
Cell Carcinoma

Active, not
recruiting

No
Results
Available

Advanced Melanoma|
Non-small Cell Lung
Cancer|Renal Cell

Carcinoma

Drug: APX005M|
Drug:

Cabiralizumab|
Drug: Nivolumab

Phase 1 42

14 NCT04848116 Neoadjuvant
Targeting of
Myeloid Cell
Populations in
Combination

With Nivolumab
in Head & Neck

Cancer

Recruiting No
Results
Available

Head and Neck
Squamous Cell
Carcinoma

Drug: Nivolumab|
Drug: HuMax-IL8|

Drug:
Cabiralizumab

Phase 2 24

15 NCT03927105 Nivolumab and
the Antagonistic

CSF-1R
Monoclonal
Antibody

Cabiralizumab
(BMS-986227) in
Patients With
Relapsed/
Refractory

Peripheral T Cell
Lymphoma

Active, not
recruiting

2
paitients
4 month
CR, 1NR,

Peripheral T Cell
Lymphoma

Drug: Nivolumab|
Drug:

cabiralizumab

Phase 2 4

16 NCT03431948 Stereotactic Body
Radiotherapy
(SBRT) Plus

Immunotherapy
for Cancer

Completed No
Results
Available

Cancer Drug: Nivolumab|
Drug:

Cabiralizumab|
Drug: Urelumab|

Radiation:
Stereotactic Body
Radiation Therapy

Phase 1 60

17 NCT04050462 Nivolumab
Combined With
BMS-986253 in
HCC Patients

Active, not
recruiting

No
Results
Available

Hepatocellular Carcinoma Drug: Nivolumab
240 mg IV every 2

weeks +
Cabiralizumab 4
mg/kg IV every 2

weeks|Drug:
Nivolumab 240 mg
IV every 2 weeks +
BMS-986253 1200
mg IV every 2
weeks|Drug:

Nivolumab 240 mg
IV every 2 weeks

Phase 2 23

(Continued)
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TABLE 2 Continued

CSF-1/CSF-
1R mono-
clonal anti-
bodies

NCT
Number

Title Status Study
Results

Conditions Interventions Phases Enrollment

18 NCT04331067 Neoadjuvant
Nivolumab and
Chemotherapy in
Patients With

Localized Triple-
negative Breast

Cancer

Recruiting No
Results
Available

Triple Negative Breast
Cancer

Drug: Paclitaxel|
Drug: Carboplatin|

Biological:
Nivolumab|
Biological:

Cabiralizumab|
Procedure: Tumor
biopsy|Procedure:
Bone marrow|

Procedure: Blood
draw

Phase 1|
Phase 2

31

19 NCT02526017 Study of
Cabiralizumab in
Combination

With Nivolumab
in Patients With

Selected
Advanced
Cancers

Completed highest
OS group

13
months ,
highest
PFS 2.9
months

Advanced Solid Tumors|
Head and Neck Cancer|

Pancreatic Cancer|
Ovarian Cancer|Renal

Cell Carcinoma|
Malignant Glioma|Non-
small Cell Lung Cancer

Biological:
Cabiralizumab|
Biological:
Nivolumab

Phase 1 313

20 NCT02471716 Study of
Cabiralizumab in
Patients With
Pigmented
Villonodular

Synovitis / Diffuse
Type

Tenosynovial
Giant Cell Tumor

Completed ORR up
to 33%

Pigmented Villonodular
Synovitis|Tenosynovial
Giant Cell Tumor

Biological: FPA008 Phase 1|
Phase 2

66

21 NCT03336216 A Study of
Cabiralizumab
Given With

Nivolumab With
and Without

Chemotherapy in
Patients With
Advanced

Pancreatic Cancer

Active, not
recruiting

No
Results
Available

Advanced Pancreatic
Cancer

Biological:
Cabiralizumab|
Drug: Nab-

paclitaxel|Drug:
Onivyde|Biological:
Nivolumab|Drug:
Fluorouracil|Drug:
Gemcitabine|Drug:
Oxaliplatin|Drug:
Leucovorin|Drug:

Irinotecan
Hydrochloride

Phase 2 202

22 NCT03335540 An Adaptive
Study to Match
Patients With

Solid Tumors to
Various

Immunotherapy
Combinations
Based Upon a

Broad Biomarker
Assessment

Completed No
Results
Available

Advanced Cancer Biological:
Nivolumab|
Biological:
Relatlimab|
Biological:

Cabiralizumab|
Biological:

Ipilimumab|Drug:
IDO1 Inhibitor|

Radiation:
Radiation Therapy

Phase 1 20

23 NCT03455764 MCS110 With
BRAF/MEK
Inhibition in
Patients With
Melanoma

Active, not
recruiting

No
Results
Available

Melanoma Drug: MCS110|
Drug: Dabrafenib|
Drug: Trametinib

Phase 1|
Phase 2

43

24 NCT01643850 MCS110 in
Patients With
Pigmented

Completed decrease
in tumor

size

Pigmented Villonodular
Synovitis|PVNS|Giant
Cell Tumor of the

Tendon Sheath|GCCTS|

Drug: MCS110|
Drug: Placebo

Phase 2 36

(Continued)
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affinity CCR2 antagonist that decreases TAM density as

demonstrated in mouse metastatic hepatic cancer models. When

combined with FOLFOX (folinic acid, fluorouracil oxaliplatin)

chemotherapy regimine, administration of BMS CCR2 22

significantly increased efficacy and improved overall survival in

mice with colon adenocarcinomas (117, 118). A third CCR2

antagonist, 747 is a natural product derived from the tree Abies

georgei (132). The drug 747 is considered a selective CCR2

antagonist and has been shown to inhibit TAM recruitment and

increase density of CD8+ tumor infiltrating lymphocytes as well as

increase inflammatory cytokines such as IFN-g in rodent mode.

Treatment with 747 also increased tumor apoptosis when combined

with sorafenib, a tyrosine kinase inhibitor, thereby potentiating

antitumor activity by depleting TAMs (133).

A fourth selective CCR2 inhibitor (PF-04136309) has

demonstrated antitumor activity in an orthotopic mouse model of
Frontiers in Oncology 13
pancreatic cancer (134). Phase Ib clinical trials in patients with

pancreatic cancer evaluated treatment with PF-04136309 in

combination with the chemotherapy regimen FOLFIRINOX

(folinic acid, fluorouracil, irinotecan hydrochloride, and

oxaliplatin) and demonstrated a 49% response rate, compare to

no responding patients treated with FOLFIRINOX alone. In

addition, administration of PF-04136309 in combination with

FOLFIRINOX significantly decreased the numbers of CCR2+

monocytes in bone marrow samples, compared to FOLFIRINOX

alone treated patients (135). A phase I study in patients with

metastatic pancreatic cancer found that PF-04136309 given in

combination with chemotherapy gemcitabine and nab-paclitaxel

significantly decreased CD14+CCR2+ monocytes in circulation.

However, the high incidence of pulmonary toxicity in patients

treated with PF-04136309 led to a discontinuation of further

clinical evaluation (136).
TABLE 2 Continued

CSF-1/CSF-
1R mono-
clonal anti-
bodies

NCT
Number

Title Status Study
Results

Conditions Interventions Phases Enrollment

Villonodular
Synovitis (PVNS)

Tenosynovial Giant Cell
Tumor Localized or
Diffused Type|GCTS

25 NCT02807844 Phase Ib/II Study
of MCS110 in
Combination

With PDR001 in
Patients With
Advanced

Malignancies

Completed Clinical
Benefit
Rate up
to 20%

Triple Negative Breast
Cancer|Pancreatic

Carcinoma|Melanoma|
Endometrial Carcinoma

Drug: MCS110|
Drug: PDR001

Phase 1|
Phase 2

141

26 NCT02435680 Efficacy Study of
MCS110 Given

With Carboplatin
and Gemcitabine
in Advanced

Triple Negative
Breast Cancer

(TNBC)

Completed PFS
average
5.6

months,
SD up tp
55.9%,
ORR up
to 37.5%

Advanced Triple Negative
Breast Cancer (TNBC)
With High TAMs

Drug: MCS110|
Drug: carboplatin|
Drug: gemcitabine

Phase 2 50

27 NCT03742349 Study of Safety
and Efficacy of

Novel
Immunotherapy
Combinations in
Patients With
Triple Negative
Breast Cancer

(TNBC).

Active, not
recruiting

No
Results
Available

Triple Negative Breast
Cancer (TNBC)

Biological:
spartalizumab|
Biological:

LAG525|Drug:
NIR178|Drug:
capmatinib|
Biological:

MCS110|Biological:
canakinumab

Phase 1 64

29 NCT02554812 A Study Of
Avelumab In
Combination
With Other
Cancer

Immunotherapies
In Advanced
Malignancies
(JAVELIN
Medley)

Active, not
recruiting

No
Results
Available

Advanced Cancer Drug: Avelumab|
Drug:

Utomilumab|Drug:
PF-04518600|Drug:
PD 0360324|Drug:

CMP-001

Phase 1|
Phase 2

398
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3.2.4 Dual CCR2/CCR5 inhibitor for
myeloid cell targeting

BMS-813160 is a dual CCR2/CCR5 inhibitor which has been

investigated in phase I and phase II trials as combination therapy
Frontiers in Oncology 14
(137). In ongoing phase II clinical trials for treatment of NSCLC and

hepatocellular cancer, BMS-813160 is being administered in

combination with nivolumab and the anti-CXCL8 drug BMS-986253

(NCT04123379) (138). BMS-813260 is also being investigated in phase
TABLE 3 US clinical trials using Trabectedin as myeloid cell depleting chemotherapy for cancer.

Myeloid
targeted
chemotherapy

NCT
Number

Title Status Study
Results

Conditions Interventions Phases Enrollment

1 NCT03886311 Talimogene
Laherparepvec,
Nivolumab and
Trabectedin for

Sarcoma

Recruiting No Results
Available

Sarcoma Drug: Talimogene
Laherparepvec

100000000 PFU/1 ML
Injection Suspension
[IMLYGIC]|Drug:
Nivolumab IV Soln
100 MG/10ML|Drug:
Trabectedin 0.25 MG/
1 VIAL Intravenous
Powder for Solution

Phase 2 40

2 NCT04535271 Metronomic
Trabectedin,

Gemcitabine, and
Dacarbazine for
Leiomyosarcoma

Recruiting No Results
Available

Leiomyosarcoma Drug: Trabectedin Phase 2 80

3 NCT04076579 Trabectedin in
Combination

With Olaparib in
Advanced

Unresectable or
Metastatic
Sarcoma

Active, not
recruiting

No Results
Available

Sarcoma|
Sarcoma
Metastatic

Drug: Olaparib|Drug:
Trabectedin

Phase 2 29

4 NCT00072670 A Phase 2 Study
of Trabectedin
(Yondelis) in
Adult Male
Participants

With Advanced
Prostate Cancer

Completed No Results
Available

Prostate Cancer Drug: Trabectedin Phase 2 59

5 NCT03074318 Avelumab and
Trabectedin in
Treating Patients

With
Liposarcoma or
Leiomyosarcoma

That is
Metastatic or
Cannot Be
Removed by
Surgery

Terminated up to
18.8% PR ,
66.7% SD
at 12
weeks,
clinical
benefit

rate 56%.
OS highest

group
average
416 days

Metastatic
Leiomyosarcoma|

Metastatic
Liposarcoma|
Unresectable

Leiomyosarcoma|
Unresectable
Liposarcoma

Drug: Avelumab|
Drug: Trabectedin

Phase 1|
Phase 2

35

6 NCT03138161 SAINT:
Trabectedin,

Ipilimumab and
Nivolumab as
First Line

Treatment for
Advanced Soft
Tissue Sarcoma

Recruiting No Results
Available

Advanced Soft
Tissue Sarcoma|
Metastatic Soft
Tissue Sarcoma

Drug: Trabectedin|
Drug: Ipilimumab|
Drug: Nivolumab

Phase 1|
Phase 2

45

7 NCT00147212 ET 743
(Yondelis) in
Men With
Advanced

Prostate Cancer

Completed Prostate
specific
antigen
(PSA)

response
rate 7/50

Prostate Cancer Drug: ET 743 Phase 2 50
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TABLE 4 US clinical trials in cancer targeting CCR2 or CCR5 axis.

CCL2/
CCR2
blockade

NCT
Number

Title Status Study
Results

Conditions Interventions Phases Enrollment

1 NCT01015560 S0916, MLN1202 in
Treating Patients With

Bone Metastases

Completed 7.14% SAE Metastatic
Cancer|

Unspecified
Adult Solid

Tumor, Protocol
Specific

Drug: anti-CCR2
monoclonal antibody
MLN1202|Genetic:

polymorphism analysis|
Other: laboratory
biomarker analysis

Phase 2 44

2 NCT02723006 Study to Evaluate the
Safety, Tolerability,

and
Pharmacodynamics of

Investigational
Treatments in

Combination With
Standard of Care

Immune Checkpoint
Inhibitors in

Participants With
Advanced Melanoma

Terminated up to 58.33%
in arm 3
triple drug
combo

Melanoma Drug: TAK-580|Drug:
TAK-202|Drug:

vedolizumab|Drug:
nivolumab|Drug:

ipilimumab

Phase 1 22

3 NCT01413022 FOLFIRINOX Plus
PF-04136309 in
Patients With

Borderline Resectable
and Locally Advanced

Pancreatic
Adenocarcinoma

Completed No Results
Available

Pancreatic
Neoplasms

Drug: Oxaliplatin|Drug:
Irinotecan|Drug:
Leucovorin|Drug:
Fluorouracil|Other:
laboratory biomarker
analysis|Other: flow
cytometry|Other:

immunohistochemistry
staining method|Other:
pharmacological study|
Drug: PF-04136309

Phase 1 44

4 NCT02732938 Ph1b/2 Study of PF-
04136309 in

Combination With
Gem/Nab-P in First-

line Metastatic
Pancreatic Patients

Terminated PFS not
reported, 11/
17 SAE in
arm 1b

combination
treatment

Metastatic
Pancreatic Ductal
Adenocarcinoma

Drug: PF-04136309|
Drug: Nab-paclitaxel|
Drug: Gemcitabine

Phase 2 22

CCR2/
CCR5
blockade

NCT
Number

Title Status Study
Results

Conditions Interventions Phases Enrollment

1 NCT03184870 A Study of BMS-
813160 in

Combination With
Chemotherapy or
Nivolumab in

Participants With
Advanced Solid

Tumors

Active, not
recruiting

No Results
Available

Colorectal
Cancer|

Pancreatic
Cancer

Drug: BMS-813160|
Biological: Nivolumab|
Drug: Nab-paclitaxel|
Drug: Gemcitabine|

Drug: 5-fluorouracil (5-
FU)|Drug: Leucovorin|

Drug: Irinotecan

Phase 1|
Phase 2

332

2 NCT04123379 Neoadjuvant
Nivolumab With

CCR2/5-inhibitor or
Anti-IL-8) for Non-
small Cell Lung

Cancer (NSCLC) or
Hepatocellular

Carcinoma (HCC)

Recruiting No Results
Available

Non-small Cell
Lung Cancer|
Hepatocellular
Carcinoma

Drug: Nivolumab|Drug:
BMS-813160|Drug:

BMS-986253

Phase 2 50

3 NCT02996110 A Study to Test
Combination

Treatments in People
With Advanced Renal

Cell Carcinoma

Completed ORR up tp
17.4%, PFS
at 24 Weeks
up to 46.8%
in arm5

Advanced Cancer Biological: Nivolumab|
Biological: Ipilimumab|
Biological: Relatlimab|
Drug: BMS-986205|
Drug: BMS-813160

Phase 2 182

(Continued)
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II trials for pancreatic ductal carcinoma and colorectal cancer,

administered in combination with either nivolumab or

chemotherapy (139) (Table 4).

3.2.5 Repurposed angiotensin receptor
antagonists for CCR2 inhibition

Losartan, a type 1 angiotensin II receptor (AT1R) blocker

(ARB), has been found to exert off-target activity as a potent,

non-competitive CCR2 antagonist (140). In a mouse syngeneic

breast cancer model, losartan suppressed lung metastatic tumor

burden significantly (141). In this model, the reduced metastatic

burden was associated with a significant decrease in CD11b+/Ly6C

+ monocytes recruited to the lungs (140). In studies in a dog model

of metastatic osteosarcoma, the combination high dose losartan

(10mg/kg PO BID) with the non-selective tyrosine kinase inhibitor

toceranib demonstrated a response rate (PR) of 25% and clinical

benefit rate of 50% (142). A similar phase I clinical trial is underway

for pediatric osteosarcoma using the combination of losartan with

the non-select ive tyrosine kinase inhibitor sunit inib

(NCT03900793). There are also multiple other clinical trials

currently evaluating losartan in combination with radiation

therapy and chemotherapy or immunotherapy. A phase II clinical

trial of losartan in combination with nivolumab is currently

underway in patients with localized pancreatic cancer

(NCT03563248). In addition, losartan is being evaluated in

combination with radiation therapy and chemotherapy in

pancreatic cancer (NCT03563248, NCT04106856). A recent study

also indicates that losartan treatment can reduce cerebral edema

following immunotherapy in a rodent GBM model (143) (Table 5).

3.2.6 CXCR1 blockade to deplete PMN-MDSC
and TANs

The chemokine CXCL8, which signals via CXCR1 and CXCR2,

triggers the recruitment of PMN-MDSC and TANs into the TME

(144). The receptors CXCR1 and CXCR2 are primarily expressed

on neutrophils (145). CXCR1 is very selective for CXCL8, whereas
Frontiers in Oncology 16
CXCR2 also binds other chemokines. Signaling by CXCR1 and

CXCR2 are major mechanisms for recruiting neutrophils and

PMN-MDSC into the TME which then differentiate into TANs or

PMN-MDSCs (146). High expression of CXCL8 by tumors has

been correlated with poor prognosis in many tumor types (147).

Thus, CXCR1 and CXCR2 antagonists have been evaluated as

strategies to deplete the TME of immune suppressive N2 TANs

and PMN-MDSC (48, 148) (Table 6).

3.2.6.1 CXCR1 antagonist navarixin

The selective CXCR1 antagonist navarixin was originally

developed for treatment of chronic obstructive pulmonary disease

(COPD), asthma and psoriasis (149). A current phase II clinical trial

of navarixin in combination with pembrolizumab is underway in

patients with either PD-1 positive refractory NSCLC, castration

resistant prostate cancer, or microsatellite stable colorectal cancer

(NCT03473925) (150).

3.2.6.2 CXCR1 antagonist reparixin

Reparixin is a small molecule dual antagonist of both CXCR1

and CXCR2 (151, 152). Reparixin was originally evaluated as a drug

to prevent graft rejection for pancreatic islet cells (153). In vitro

studies with reparixin in thyroid cancer found that it also exhibits

direct anti-tumor activity (154). In a phase I clinical trial in patients

with HER-2 negative metastatic breast cancer, reparixin was well

tolerated in combination with paclitaxel chemotherapy (155).

However, phase II double blinded clinical trials in triple negative

breast cancer patients demonstrated no improvement reparixin in

combination with paclitaxel exhibited no additional clinical benefit

compared to treatment with paclitaxel alone (NCT02370238) (156).

3.2.6.3 CXCR1/2 antagonist ladarixin

Ladarixin, like reparixin is a dual CXCR11/2 antagonist

(157). Preclinical evaluation of ladarixin demonstrated

significant activity in a mouse model of pancreatic ductal

adenocarcinomaimproved activity compared to either agent
TABLE 4 Continued

CCL2/
CCR2
blockade

NCT
Number

Title Status Study
Results

Conditions Interventions Phases Enrollment

4 NCT03767582 Trial of Neoadjuvant
and Adjuvant

Nivolumab and BMS-
813160 With or

Without GVAX for
Locally Advanced
Pancreatic Ductal
Adenocarcinomas.

Recruiting No Results
Available

Locally Advanced
Pancreatic Ductal
Adenocarcinoma

(PDAC)|
Pancreatic Ductal
Adenocarcinoma

Radiation: Stereotactic
Body Radiation (SBRT)|
Drug: Nivolumab|Drug:

CCR2/CCR5 dual
antagonist|Drug: GVAX

Phase 1|
Phase 2

30

5 NCT03496662 BMS-813160 With
Nivolumab and

Gemcitabine and Nab-
paclitaxel in

Borderline Resectable
and Locally Advanced
Pancreatic Ductal
Adenocarcinoma

(PDAC)

Active, not
recruiting

SAE up to
68.00% in

dose
expantion

Pancreatic Ductal
Adenocarcinoma

Drug: BMS-813160|
Drug: Nivolumab|Drug:
Gemcitabine|Drug: Nab-
paclitaxel|Procedure:
Biopsy|Procedure:
Peripheral blood

Phase 1|
Phase 2

40
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alone (148, 158). In an animal model of uveal melanoma

administration of ladarixin repolarized TAMs to a M1

phenotype and inhibited tumor cell migration (157). Ladarixin

has been used in clinical trials for diabetes, however clinical trials

for cancers have not been reported.

3.2.6.4 CXCR2 antagonist AZD5069

AZD5069 is a highly selective small molecule antagonist of

CXCR2 receptors that has been shown to inhibit neutrophil

migration in patients with COPD (159). It is currently in clinical

trials to deplete TANs in the TME in patients with metastatic

pancreatic ductal adenocarcinoma and in relapsed metastatic

squamous cell carcinoma of the head and neck in combination

with ICI (160, 161). In addition, AZD5069 is being evaluated in

combination with the androgen receptor antagonist enzalutamide

in phase I/II trials in patients with metastatic castration resistant

prostate cancer (mCRPC) in the UK (NCT03177187). The

combination treatment was well tolerated with no dose limiting

toxicities observed. The study observed that 2 out of 15 patients

experienced a PR and 10 of 15 patients experienced SD, with

responses lasting 2-16 months. Another trial demonstrated that

AZD5069 has antitumor activity and depleted TAN density in

patients with mCRPC (162).
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3.2.6.5 Dual CXCR1/2 antagonist SX-682

SX-682 is another dual CXCR1/2 antagonist, which in rodent

models of head and neck cancer have demonstrated suppression of

PMN-MDSC accumulation and enhanced tumor infiltration with

adoptively transferred NK cells (163, 164). SX-682 is currently being

tested in phase I clinical trials in combination with ICI for

metastatic melanoma (NCT03161431), and in phase II trials for

pancreatic cancer, lung cancer, colon and rectal adenocarcinoma

(NCT05604560, NCT05570825, NCT04599140).
3.3 CXCR4 blockade to inhibit tumor
angiogenesis and metastases

Signaling by the chemokine receptor CXCR4 after binding the

chemokine CXCL12 (SCF-1) triggers increased tumor proliferation,

survival, and chemotaxis (165). Notably, CXCR4 is overexpressed

by many different types of cancers, where it plays a role in tumor

metastasis, and also a critical role in mobilizing and recruiting

MDSC from bone marrow. Blockade of the CXCR4 signaling is

hypothesized to not only decrease tumor angiogenesis but also

decrease the number of cancer stem cells and increase mobilization

and recruitment of effector T cells into the TME (166) (Table 7).
TABLE 5 US clinical trials using Repurposed angiotensin receptor antagonists for CCR2 inhibition in cancer.

Losartan
CCL2
blockade

NCT
Number Title Status

Study
Results Conditions Interventions Phases Enrollment

1 NCT01821729 Proton w/
FOLFIRINOX-
Losartan for

Pancreatic Cancer

Unknown
status

SAE
30.61%

Pancreatic Cancer Drug: FOLFIRINOX|
Drug: Losartan|
Radiation: Proton
Beam Radiation

Phase 2 50

2 NCT04106856 Losartan and
Hypofractionated
Rx After Chemo

for Tx of
Borderline

Resectable or
Locally Advanced
Unresectable

Pancreatic Cancer
(SHAPER)

Recruiting No
Results
Available

Borderline Resectable
Pancreatic Adenocarcinoma|
Locally Advanced Pancreatic
Ductal Adenocarcinoma|

Locally Advanced
Unresectable Pancreatic
Adenocarcinoma|Stage II

Pancreatic Cancer AJCC v8|
Stage IIA Pancreatic Cancer

AJCC v8|Stage IIB
Pancreatic Cancer AJCC v8|
Stage III Pancreatic Cancer

AJCC v8

Radiation:
Hypofractionated
Radiation Therapy|
Drug: Losartan|Drug:
Losartan Potassium|
Other: Quality-of-Life
Assessment|Other:
Questionnaire
Administration

Phase 1 20

3 NCT05077800 FOLFIRINOX +
9-Ing-41 +
Losartan In

Pancreatic Cancer

Recruiting No
Results
Available

Pancreatic Adenocarcinoma|
Pancreatic Adenocarcinoma

Metastatic

Drug:
FOLFIRNINOX|

Drug: Losartan|Drug:
9-ING-41

Phase 2 70

4 NCT05365893 PHL Treatment
in Pancreatic

Cancer

Recruiting No
Results
Available

Pancreatic Ductal
Adenocarcinoma

Combination
Product: Paricalcitol,
Hydroxychloroquine,

Losartan|Other:
Neoadjuvant therapy

Early
Phase 1

20

(Continued)
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TABLE 5 Continued

Losartan
CCL2
blockade

NCT
Number Title Status

Study
Results Conditions Interventions Phases Enrollment

and surgery only
(Control)

5 NCT01234922 Benazepril
Hydrochloride,

Lisinopril,
Ramipril, or
Losartan

Potassium in
Treating

Hypertension in
Patients With
Solid Tumors

Terminated Protocol
was
closed

early due
to slow
accrual,
no SAE
observed

Hypertension|Unspecified
Adult Solid Tumor, Protocol

Specific

Drug: lisinopril|Drug:
losartan potassium|
Other: laboratory
biomarker analysis|
Drug: benazepril

hydrochloride|Drug:
ramipril

Phase 2 6

6 NCT01276613 Tissue
Pharmacokinetics
of Intraoperative
Gemcitabine in

Resectable
Adenocarcinoma
of the Pancreas

Terminated No
Results
Available

Pancreatic Cancer Drug: Gemcitabine|
Drug: Losartan

Early
Phase 1

18

7 NCT04539808 NeoOPTIMIZE:
Early Switching of
mFOLFIRINOX
or Gemcitabine/
Nab-Paclitaxel

Before Surgery for
the Treatment of

Resectable,
Borderline

Resectable, or
Locally-Advanced

Unresectable
Pancreatic Cancer

Recruiting No
Results
Available

Borderline Resectable
Pancreatic Carcinoma|

Locally Advanced
Unresectable Pancreatic

Adenocarcinoma|Resectable
Pancreatic Ductal

Adenocarcinoma|Stage 0
Pancreatic Cancer AJCC v8|
Stage I Pancreatic Cancer

AJCC v8|Stage IA Pancreatic
Cancer AJCC v8|Stage IB

Pancreatic Cancer AJCC v8|
Stage III Pancreatic Cancer
AJCC v8|Stage IV Pancreatic

Cancer AJCC v8

Drug: Capecitabine|
Drug: Fluorouracil|
Drug: Irinotecan

Hydrochloride|Drug:
Leucovorin Calcium|

Drug: Losartan
Potassium|Drug:

Oxaliplatin|Radiation:
Radiation Therapy|
Procedure: Resection

Phase 2 60

8 NCT05607017 Losartan in
Prevention of
Radiation-

Induced Heart
Failure

Not yet
recruiting

No
Results
Available

Breast Cancer|Myocardial
Fibrosis|Radiation-Induced

Fibrosis

Drug: Losartan|
Radiation: Radiation

Therapy

Early
Phase 1

10

9 NCT03563248 Losartan and
Nivolumab in
Combination

With
FOLFIRINOX
and SBRT in
Localized

Pancreatic Cancer

Active, not
recruiting

No
Results
Available

Pancreatic Cancer Drug: FOLFIRINOX|
Drug: Losartan|Drug:
Nivolumab|Radiation:
SBRT|Procedure:

Surgery

Phase 2 168

10 NCT03864042 Pharmacokinetic
Drug-drug

Interaction Study
of Encorafenib
and Binimetinib
on Probe Drugs
in Patients With
BRAF V600-

mutant
Melanoma or

Other Advanced
Solid Tumors

Active, not
recruiting

No
Results
Available

Advanced Solid Tumors|
Metastatic Melanoma

Drug: losartan|Drug:
dextromethorphan|
Drug: caffeine|Drug:
omeprazole|Drug:
midazolam|Drug:
rosuvastatin|Drug:

bupropion immediate
release (IR)|Drug:
encorafenib|Drug:
binimetinib|Drug:

modafinil

Phase 1 56

(Continued)
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TABLE 5 Continued

Losartan
CCL2
blockade

NCT
Number Title Status

Study
Results Conditions Interventions Phases Enrollment

11 NCT03900793 Losartan +
Sunitinib in
Treatment of
Osteosarcoma

Recruiting No
Results
Available

Osteosarcoma Drug: Losartan|Drug:
Sunitinib

Phase 1 41

12 NCT01199978 Hearing
Outcomes Using
Fractionated

Proton Radiation
Therapy for
Vestibular

Schwannoma

Active, not
recruiting

No
Results
Available

Vestibular Schwannoma|
Acoustic Neuroma

Radiation:
Fractionated proton
radiation|Drug:

Losartan

Phase 2 30

13 NCT03878524 Serial
Measurements of
Molecular and
Architectural
Responses to
Therapy

(SMMART)
PRIME Trial

Recruiting No
Results
Available

Accelerated Phase Chronic
Myelogenous Leukemia,
BCR-ABL1 Positive|

Anatomic Stage IV Breast
Cancer AJCC v8|Anemia|

Ann Arbor Stage III
Hodgkin Lymphoma|Ann
Arbor Stage III Non-

Hodgkin Lymphoma|Ann
Arbor Stage IV Hodgkin

Lymphoma|Ann Arbor Stage
IV Non-Hodgkin

Lymphoma|Atypical
Chronic Myeloid Leukemia,
BCR-ABL1 Negative|Blast

Phase Chronic Myelogenous
Leukemia, BCR-ABL1

Positive|Castration-Resistant
Prostate Carcinoma|Chronic
Phase Chronic Myelogenous

Leukemia, BCR-ABL1
Positive|Hematopoietic and

Lymphoid System
Neoplasm|Locally Advanced
Pancreatic Adenocarcinoma|

Metastatic Breast
Carcinoma|Metastatic

Malignant Solid Neoplasm|
Metastatic Pancreatic
Adenocarcinoma|
Myelodysplastic/

Myeloproliferative Neoplasm
With Ring Sideroblasts and

Thrombocytosis|
Myelodysplastic/
Myeloproliferative

Neoplasm, Unclassifiable|
Primary Myelofibrosis|

Recurrent Acute
Lymphoblastic Leukemia|
Recurrent Acute Myeloid

Leukemia|Recurrent Chronic
Lymphocytic Leukemia|

Recurrent Chronic
Myelogenous Leukemia,
BCR-ABL1 Positive|

Recurrent Hematologic
Malignancy|Recurrent
Hodgkin Lymphoma|

Recurrent Myelodysplastic
Syndrome|Recurrent
Myelodysplastic/
Myeloproliferative

Drug: Abemaciclib|
Drug: Abiraterone|
Drug: Afatinib|

Biological:
Bevacizumab|Drug:

Bicalutamide|
Procedure:
Biospecimen

Collection|Drug:
Bortezomib|Drug:
Cabazitaxel|Drug:
Cabozantinib|Drug:
Capecitabine|Drug:
Carboplatin|Drug:
Celecoxib|Drug:

Cobimetinib|Drug:
Copanlisib|Drug:
Dabrafenib|Drug:
Dacomitinib|Drug:
Darolutamide|Drug:
Dasatinib|Drug:
Doxorubicin|
Biological:

Durvalumab|Drug:
Enasidenib|Drug:
Entrectinib|Drug:

Enzalutamide|Drug:
Erlotinib|Drug:
Everolimus|Drug:
Fluorouracil|Drug:
Idelalisib|Drug:

Imatinib|Biological:
Ipilimumab|Drug:
Lenvatinib|Drug:
Leucovorin|Drug:
Lorlatinib|Drug:

Losartan|Drug: Nab-
paclitaxel|Drug:

Neratinib|Biological:
Nivolumab|Drug:
Olaparib|Drug:
Oxaliplatin|Drug:
Palbociclib|Drug:
Panobinostat|
Biological:

Pembrolizumab|
Biological:

Pertuzumab|Drug:
Ponatinib|Other:
Quality-of-Life

Assessment|Drug:
Regorafenib|Drug:
Ruxolitinib|Drug:

Phase 1 40

(Continued)
F
rontiers in Onc
ology
 19
 frontiersin.org

https://doi.org/10.3389/fonc.2023.1116016
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Cao et al. 10.3389/fonc.2023.1116016
3.3.1 AMD3100
AMD3100 (plerixafor) is currently the only FDA approved

CXCR4 inhibitor. This drug was initially developed for treatment

and prevention of HIV, but has now also been approved for

treatment of non-Hodgkin lymphoma (NHL) and multiple

myeloma (MM) (167, 168). Use of AMD3100 in combination

with the anti-VEGFR2 antibody ramucirumab in a mouse model

of colorectal cancer significantly reduced recruitment of immune

suppressive monocytes, as the study demonstrated that depletion of

immune suppressive Ly6Clow monocytes by CXCR4 blockade was

associated with enhanced treatment efficacy of ramucirumab (169,

170). Administration of AMD3100 was also associated with

increased CD8+ T cell infiltration and synergistic activity when

combined with ICI (171) Use of AMD3100 in NHL and MM

suppressed tumor growth and metastasis and was associated with

converting Tregs to a Th1 phenotype and enhancing CD8+ T cell

infiltration (172).

Another mechanism of AMD3100 antitumor activity was to

block CXCR4+ tumor cells from interacting with CXCL12

produced by cancer associated fibroblasts (173). Use of AMD3100
Frontiers in Oncology 20
in combination with ICI in patients with microsatellite unstable

pancreatic or colorectal cancer demonstrated enhanced B cell and T

cell antitumor responses (174). Clinical trials evaluating AMD3100

include phase II trials for metastatic pancreatic cancer, phase I and

II trials for glioma, and phase I and II trials for hematopoietic

malignancies. The proposed mechanism targeted in these trials is to

sensitize the TME to chemotherapy by blocking the CXCR4 and

CXCR/2 axes (175). Other applications of AMD3100 is as a

hematopoietic stem cell (HSC) mobilizing agent (typically in

combination with G-CSF) for hematopoietic stem cell

transplantation (176).

3.3.2 BPRCX807
BPRCX807 is a selective CXCR4 antagonist that has shown

activity in mouse models of hepatocellular carcinoma (177). In

these models BPRCX807 prevented tumor cell migration and

limited the development of metastases. Another activity of

BPRCX807 is to reprogram immune suppressive TAMs to a more

an immunostimulatory M1 phenotype, while at the same time

promoting CD8+ T cell infiltration into tumors (177). Early
TABLE 5 Continued

Losartan
CCL2
blockade

NCT
Number Title Status

Study
Results Conditions Interventions Phases Enrollment

Neoplasm|Recurrent
Myeloproliferative

Neoplasm|Recurrent Non-
Hodgkin Lymphoma|
Recurrent Plasma Cell

Myeloma|Recurrent Small
Lymphocytic Lymphoma|

Refractory Acute
Lymphoblastic Leukemia|
Refractory Acute Myeloid

Leukemia|Refractory
Chronic Lymphocytic
Leukemia|Refractory
Chronic Myelogenous
Leukemia, BCR-ABL1

Positive|Refractory Chronic
Myelomonocytic Leukemia|
Refractory Hematologic
Malignancy|Refractory
Hodgkin Lymphoma|

Refractory Malignant Solid
Neoplasm|Refractory

Myelodysplastic Syndrome|
Refractory Myelodysplastic/

Myeloproliferative
Neoplasm|Refractory Non-

Hodgkin Lymphoma|
Refractory Plasma Cell

Myeloma|Refractory Primary
Myelofibrosis|Refractory

Small Lymphocytic
Lymphoma|Stage II

Pancreatic Cancer AJCC v8|
Stage III Pancreatic Cancer
AJCC v8|Stage IV Pancreatic
Cancer AJCC v8|Stage IV
Prostate Cancer AJCC v8|
Unresectable Pancreatic

Adenocarcinoma

Sirolimus|Drug:
Sorafenib|Drug:
Sunitinib|Drug:
Trametinib|
Biological:

Trastuzumab
Emtansine|Drug:
Tretinoin|Drug:

Vemurafenib|Drug:
Venetoclax|Drug:
Vismodegib|Drug:

Vorinostat
frontiersin.org

https://doi.org/10.3389/fonc.2023.1116016
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Cao et al. 10.3389/fonc.2023.1116016
TABLE 6 US clinical trials using CXCR1 antagonists for cancer treatment.

CXCR1/2
blockade

NCT
Number

Title Status Study
Results

Conditions Interventions Phases Enrollment

Navarixin NCT03473925 Efficacy and Safety
Study of Navarixin

(MK-7123) in
Combination

With
Pembrolizumab
(MK-3475) in
Adults With
Selected

Advanced/
Metastatic Solid
Tumors (MK-
7123-034)

Completed ORR up to
3.9%, PFS up
to 17.5 mo
in NSCLC,
OS up to
13.0 mo.

Solid Tumors|Non-small
Cell Lung Cancer|Castration
Resistant Prostate Cancer|

Microsatellite Stable
Colorectal Cancer

Drug: Navarixin|
Biological:

Pembrolizumab

Phase 2 107

Reparixin NCT02001974 Pilot Study to
Evaluate Reparixin

With Weekly
Paclitaxel in
Patients With
HER 2 Negative
Metastatic Breast
Cancer (MBC)

Completed Clinical
Benefit Rate
(CBR) up to
56.5% in
group 3

combination
treatment.
6mo PFS
25.0%.

Metastatic Breast Cancer Drug: Paclitaxel
+Reparixin

Phase 1 33

NCT01861054 Pilot Study to
Evaluate Safety &
Biological Effects

of Orally
Administered

Reparixin in Early
Breast Cancer

Terminated 5% SAE due
to post op
infection

Breast Cancer Drug: Reparixin Phase 2 20

NCT02370238 A Double-blind
Study of Paclitaxel
in Combination

With Reparixin or
Placebo for

Metastatic Triple-
Negative Breast

Cancer

Completed non placebo
group SD

15/57, CR 1,
PR 15/57

Metastatic Breast Cancer Drug: paclitaxel|
Drug: Reparixin|
Drug: placebo

Phase 2 194

AZD5069 NCT02499328 Study to Assess
MEDI4736 With
Either AZD9150
or AZD5069 in
Advanced Solid

Tumors &
Relapsed
Metastatic

Squamous Cell
Carcinoma of
Head & Neck

Active, not
recruiting

SAE 0 ~
64.29% in

dose
escalation

Advanced Solid Tumors &
Metastatic Squamous Cell
Carcinoma of the Head and

Neck

Drug: AZD9150|
Drug:

MEDI4736|Drug:
AZD5069|Drug:
tremelimumab

(treme)

Phase 1|
Phase 2

340

NCT02583477 Phase Ib/II Study
of MEDI4736
Evaluated in
Different

Combinations in
Metastatic

Pancreatic Ductal
Carcinoma

Completed Dose-
Limiting
Toxicities

(DLT) up to
33.3%, SAE
up to 80.00%
in cohort 2,
study was
terminated
by sponsor

Metastatic Pancreatic Ductal
Adenocarcinoma

Drug: MEDI4736
in combination

with nab-
paclitaxel and
gemcitabine|

Drug: MEDI4736
in combination
with AZD5069

Phase 1|
Phase 2

23

SX-682 NCT05604560 A Neoadjuvant
Study of

Tislelizumab and
SX-682 for

Not yet
recruiting

No Results
Available

Pancreatic Cancer Drug:
Tislelizumab|
Drug: SX-682

Phase 2 25

(Continued)
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TABLE 6 Continued

CXCR1/2
blockade

NCT
Number

Title Status Study
Results

Conditions Interventions Phases Enrollment

Resectable
Pancreas Cancer

NCT04574583 Phase I/II Trial
Investigating the

Safety,
Tolerability,

Pharmacokinetics,
Immune and

Clinical Activity of
SX-682 in

Combination
With BinTrafusp
Alfa (M7824 or
TGF-beta "Trap"/
PD-L1) With

CV301 TRICOM
in Advanced Solid
Tumors (STAT)

Active, not
recruiting

No Results
Available

Metastatic Cancer|Solid
Tumors

Drug: SX-682|
Drug: M7824|

Biological: MVA-
BN-CV301|

Biological: FPV-
CV301

Phase 1|
Phase 2

12

NCT05570825 SX-682 With
Pembrolizumab
for the Treatment
of Metastatic or
Recurrent Stage
IIIC or IV Non-
Small Cell Lung

Cancer

Recruiting No Results
Available

Metastatic Lung Non-Small
Cell Carcinoma|Recurrent
Lung Non-Small Cell

Carcinoma|Stage IIIC Lung
Cancer AJCC v8|Stage IV
Lung Cancer AJCC v8

Procedure:
Biopsy|

Procedure:
Biospecimen
Collection|
Procedure:
Computed

Tomography|
Drug: CXCR1/2
Inhibitor SX-682|

Procedure:
Magnetic
Resonance
Imaging|
Biological:

Pembrolizumab|
Procedure:
Positron
Emission

Tomography

Phase 2 30

NCT04599140 SX-682 and
Nivolumab for the

Treatment of
RAS-Mutated,

MSS Unresectable
or Metastatic

Colorectal Cancer,
the

STOPTRAFFIC-1
Trial

Recruiting No Results
Available

Metastatic Colon
Adenocarcinoma|Metastatic

Colorectal Carcinoma|
Metastatic Rectal

Adenocarcinoma|Stage III
Colon Cancer AJCC v8|Stage
III Rectal Cancer AJCC v8|
Stage IIIA Colon Cancer
AJCC v8|Stage IIIA Rectal
Cancer AJCC v8|Stage IIIB
Colon Cancer AJCC v8|Stage
IIIB Rectal Cancer AJCC v8|
Stage IIIC Colon Cancer
AJCC v8|Stage IIIC Rectal
Cancer AJCC v8|Stage IV

Colon Cancer AJCC v8|Stage
IV Rectal Cancer AJCC v8|
Stage IVA Colon Cancer
AJCC v8|Stage IVA Rectal
Cancer AJCC v8|Stage IVB
Colon Cancer AJCC v8|Stage
IVB Rectal Cancer AJCC v8|
Stage IVC Colon Cancer
AJCC v8|Stage IVC Rectal

Cancer AJCC v8|
Unresectable Colon

Drug: CXCR1/2
Inhibitor SX-682|

Biological:
Nivolumab

Phase 1|
Phase 2

53

(Continued)
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mouse studies provide support for further investigation of CXCR4

blockade as a combination agent along with ICI (172).
4 Metabolic reprogramming to target
myeloid suppressor cells

4.1 IDO inhibitors

The enzyme indoleamine 2,3-dioxygenase 1 (IDO1) converts

the essential amino acid tryptophan (Trp) to kynurenine (Kyn),

thereby leading to an overall depletion of this critical amino acid

within the TME and tumor draining lymph nodes (178).

Overexpression of IDO1 is considered an important driver of

tumor associated immune suppression and a key to establishing

immune tolerance of cancer antigens (179, 180). High intratumoral

IDO1 expression is correlated with poor prognosis in melanoma,

ovarian cancer, colorectal cancer, and lung cancers (181, 182). In

ovarian cancer, high IDO1 expression also correlates with increased

drug resistance (183). A high ratio of tryptophan to kynurenine in

blood is also associated with a poorer prognosis in some cancers

(184–187).

High levels of IDO1 expression by cancer cells can also drive

MDSC expansion (188); Moreover, MDSCs also overexpress IDO1,

triggering a positive feedback loop that reinforces and sustains the
Frontiers in Oncology 23
immune suppressive TME (189). Local depletion of tryptophan by

IDO leads to cell cycle arrest and apoptosis of effector T cells in

tumor tissues (190). In addition, IDO1 positive MDSCs also

contribute to T cell exhaustion through IL-6 secretion. The local

buildup of kynurenine concentrations within the TME also triggers

deleterious alterations in the metabolic properties of tumor

infiltrating T cells and converts CD4 effector cells to Tregs (190–

193). Evaluation of IDO inhibitors in preclinical models

demonstrated a reduction of IDO1+ MDSCs within the TME and

measurable reduction of Kyn concentrations (178). Taken together,

these properties make IDO1 a promising target for reversing

immune suppression through metabolic reprogramming of

the TME.

4.1.1 Epacadostat as an IDO synthesis inhibitor
Van den Eynde et al. summarized the many clinical trials

evaluating epacadostat up to 2020 and in their paper discussed

why the outcomes of these trials have been largely negative. The

majority of these trials have evaluated epacadostat in combination

with checkpoint blockade (CTLA4, PD-L1 or PD-1) and have to

date failed to demonstrate any meaningful clinical benefit. It was

concluded therefore that epacadostat did not improve ICI, as

confirmed in at least 12 clinical trials (194, 195). Due to these

poor results, remaining clinical trials with epacadostat have been

withdrawn, downsized or suspended.
TABLE 6 Continued

CXCR1/2
blockade

NCT
Number

Title Status Study
Results

Conditions Interventions Phases Enrollment

Adenocarcinoma|
Unresectable Rectal
Adenocarcinoma

NCT04477343 A Study to
Evaluate the Safety
and Tolerability of

SX-682 in
Combination

With Nivolumab
as a Maintenance

Therapy in
Patients With
Metastatic

Pancreatic Ductal
Adenocarcinoma

Recruiting No Results
Available

Pancreatic Ductal
Adenocarcinoma|Pancreatic

Cancer

Drug: SX-682|
Drug: Nivolumab

Injectable
Product

Phase 1 20

NCT03161431 SX-682 Treatment
in Subjects With

Metastatic
Melanoma

Concurrently
Treated With
Pembrolizumab

Recruiting No Results
Available

Melanoma Stage III|
Melanoma Stage IV

Drug: SX-682|
Biological:

Pembrolizumab

Phase 1 77

NCT04245397 SX-682 Treatment
in Subjects With
Myelodysplastic
Syndrome Who
Had Disease

Progression or Are
Intolerant to Prior

Therapy

Recruiting No Results
Available

Myelodysplastic Syndromes Drug: SX-682 Phase 1 64
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TABLE 7 US clinical trials using CXCR4 targeting drugs for cancer treatment.

CXCR4
blockade

NCT
Number Title Status

Study
Results Conditions Interventions Phases Enrollment

1 NCT04177810 Plerixafor and
Cemiplimab in
Metastatic

Pancreatic Cancer

Recruiting No Results
Available

Metastatic
Pancreatic Cancer

Drug: Cemiplimab|
Drug: Plerixafor

Phase 2 21

2 NCT01610999 Pilot Study of
Lymphoid Tumor

Microenvironmental
Dysruption Prior to
Autologous Stem

Cell Transplantation

Terminated No Results
Available

Chronic
Lymphocytic
Leukemia|
Lymphoma|

Multiple Myeloma

Drug: Plerixafor Phase 1 7

3 NCT03240861 Genetically
Engineered PBMC

and PBSC
Expressing NY-ESO-

1 TCR After a
Myeloablative
Conditioning

Regimen to Treat
Patients With

Advanced Cancer

Recruiting No Results
Available

HLA-A*0201
Positive Cells
Present|Locally

Advanced
Malignant

Neoplasm|NY-ESO-
1 Positive|

Unresectable
Malignant

Neoplasm|Sarcoma

Other: 18F-FHBG|
Biological: Aldesleukin|

Drug: Busulfan|
Biological: Cellular
Therapy|Procedure:

Computed
Tomography|Biological:

Filgrastim|Drug:
Fludarabine|Procedure:
Leukapheresis|Drug:
Plerixafor|Procedure:
Positron Emission

Tomography

Phase 1 12

4 NCT01977677 Plerixafor After
Radiation Therapy
and Temozolomide
in Treating Patients

With Newly
Diagnosed High
Grade Glioma

Completed 1/3 (33.33%)
SAE at

Plerixafor
200 mcg/kg/

Day

Adult
Ependymoblastoma|
Adult Giant Cell

Glioblastoma|Adult
Glioblastoma|Adult
Gliosarcoma|Adult
Medulloblastoma|

Adult Mixed
Glioma|Adult

Oligodendroglial
Tumors|Adult
Pineoblastoma|

Adult
Supratentorial
Primitive

Neuroectodermal
Tumor (PNET)

Radiation: radiation
therapy|Drug:

temozolomide|Drug:
plerixafor|Other:

laboratory biomarker
analysis|Other:

pharmacological study

Phase 1|
Phase 2

30

5 NCT00512252 AMD3100 Plus
Mitoxantrone,
Etoposide and

Cytarabine in Acute
Myeloid Leukemia

Completed CR up to
47%, 1 yr

Relapse-free
Survival
42.9%

Leukemia, Myeloid,
Acute

Drug: AMD3100|Drug:
Mitoxantrone|Drug:
Etoposide|Drug:

Cytarabine

Phase 1|
Phase 2

52

6 NCT00669669 O6-Benzylguanine-
Mediated Tumor
Sensitization With
Chemoprotected
Autologous Stem
Cell in Treating
Patients With

Malignant Gliomas

Terminated response
rate 9.1%,
no SAE

Glioblastoma|
Gliosarcoma

Radiation: 3-
Dimensional Conformal
Radiation Therapy|

Procedure: Autologous
Hematopoietic Stem
Cell Transplantation|
Drug: Carmustine|

Biological: Filgrastim|
Procedure: In Vitro-
Treated Peripheral
Blood Stem Cell
Transplantation|

Radiation: Intensity-
Modulated Radiation

Therapy|Other:
Laboratory Biomarker
Analysis|Drug: O6-

Phase 1|
Phase 2

12
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TABLE 7 Continued

CXCR4
blockade

NCT
Number Title Status

Study
Results Conditions Interventions Phases Enrollment

Benzylguanine|Drug:
Plerixafor|Radiation:

Proton Beam Radiation
Therapy|Drug:
Temozolomide

7 NCT01160354 Plerixafor and
Clofarabine in

Frontline Treatment
of Elderly Patients

With Acute
Myelogenous

Leukemia (AML)

Terminated CR 35.7%,
PR 7.1%
(Plerixafor
400 mcg/kg

+
Clofarabine),

Acute Myelogenous
Leukemia

Drug: Plerixafor|Drug:
Clofarabine

Phase 1|
Phase 2

22

8 NCT01352650 Decitabine and
Plerixafor in Elderly

Acute Myeloid
Leukemia (AML)

Completed No Results
Available

Acute Myeloid
Leukemia

Drug: plerixafor|Drug:
decitabine

Phase 1 71

9 NCT01027923 IV Plerixafor With
Mitoxantrone
Etoposide and

Cytarabine for Acute
Myeloid Leukemia

(AML)

Terminated No Results
Available

Leukemia, Myeloid,
Acute

Drug: Plerixafor|Drug:
Mitoxantrone|Drug:
Etoposide|Drug:

Cytarabine

Phase 1 6

10 NCT00943943 Granulocyte-colony
Stimulating Factor

(G-CSF) and
Plerixafor Plus

Sorafenib for Acute
Myelogenous

Leukemia (AML)
With FLT3
Mutations

Completed No Results
Available

Acute Myelogenous
Leukemia|Leukemia

Drug: G-CSF|Drug:
Plerixafor|Drug:

Sorafenib

Phase 1 33

11 NCT05088356 Reduced Intensity
Allogeneic HCT in

Advanced
Hematologic

Malignancies w/T-
Cell Depleted Graft

Recruiting No Results
Available

Allogeneic
Hematopoietic Cell
Transplantation
(HCT)|Advanced
Hematologic

Malignancies|Acute
Leukemia|Chronic

Myelogenous
Leukemia|

Myelodysplastic
Syndromes|

Myeloproliferative
Disorders

Drug: Purified
regulatory T-cells (Treg)

plus CD34+ HSPC|
Drug: Fludarabine|
Drug: Melphalan|
Device: CliniMACS

CD34 Reagent System|
Drug: Tacrolimus|Drug:
Cyclophosphamide|

Drug: Plerixafor|Drug:
Filgrastim granulocyte
colony-stimulating
factor (G-CSF) or

equivalent

Phase 1 24

12 NCT00906945 Chemosensitization
With Plerixafor Plus
G-CSF in Acute

Myeloid Leukemia

Completed 45 day CR
30%,

Relapse
Free-survival
Rate 75% at
2 yrs. SAE
2/3 (66.67%)
at dose level

2

Leukemia, Myeloid,
Acute

Drug: G-CSF|Drug:
Plerixafor|Drug:

Mitoxantrone|Drug:
Etoposide|Drug:

Cytarabine

Phase 1|
Phase 2

39

13 NCT00903968 Combination
Plerixafor

(AMD3100)and
Bortezomib in
Relapsed or

Relapsed/Refractory
Multiple Myeloma

Completed SD up to
100% in

dose level 1
and 5. Time

to
Progression
(TTP) 12.6

Multiple Myeloma Drug: Plerixafor|Drug:
bortezomib|Drug:
Dexamethasone

Phase 1|
Phase 2

58
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TABLE 7 Continued

CXCR4
blockade

NCT
Number Title Status

Study
Results Conditions Interventions Phases Enrollment

mo,
Duration of
Response
phase 2

(DOR) 12.9
mo

14 NCT01696461 A Phase II Study
Evaluating the Safety

and Efficacy of
Subcutaneous
Plerixafor

Completed No Results
Available

Related Donors
Donating PBSC to a
Family Member|

Acute Myelogenous
Leukemia|Acute
Lymphoblastic
Leukemia|

Myelodysplastic
Syndrome|Chronic

Myelogenous
Leukemia|Non-

Hodgkin's
Lymphoma|

Hodgkin's Disease|
Chronic

Lymphocytic
Leukemia

Drug: Plerixafor Phase 2 128

15 NCT00990054 Study of Plerixafor
Combined With
Cytarabine and
Daunorubicin in

Patients With Newly
Diagnosed Acute
Myeloid Leukemia

Completed No Results
Available

Acute Myeloid
Leukemia

Drug: Plerixafor Phase 1 36

16 NCT03746080 Whole Brain
Radiation Therapy
With Standard
Temozolomide

Chemo-
Radiotherapy and

Plerixafor in
Treating Patients
With Glioblastoma

Recruiting No Results
Available

Glioblastoma|
Glioblastoma With
Primitive Neuronal

Component|
Gliosarcoma|

Malignant Glioma|
Oligodendroglial

Component Present

Drug: Plerixafor|Drug:
Temozolomide|

Radiation: Whole-Brain
Radiotherapy (WBRT)|
Radiation: Radiation

Therapy

Phase 2 20

17 NCT01339039 Plerixafor
(AMD3100) and
Bevacizumab for
Recurrent High-
Grade Glioma

Terminated No Results
Available

High Grade
Glioma:

Glioblastoma
(GBM)|High Grade

Glioma:
Gliosarcoma|
Anaplastic

Astrocytoma (AA)|
Anaplastic

Oligodendroglioma
(AO)|Mixed
Anaplastic

Oligoastrocytoma
(AOA)

Drug: Plerixafor|Drug:
Bevacizumab|Procedure:

Surgery

Phase 1 26

18 NCT01373229 Lenalidomide +
Plerixafor in

Previously Treated
Chronic

Lymphocytic
Leukemia (CLL)

Completed PFS 11 mo,
OS 5.5 mo,
SAE 93.33%

Leukemia,
Lymphocytic,
Chronic, B-Cell

Drug: Lenalidomide +
Plerixafor (+
Rituximab)

Phase 1 21

19 NCT01065129 Plerixafor and
Granulocyte Colony-
stimulating Factor

Completed No Results
Available

Myelodysplastic
Syndromes

Drug: G-CSF|Drug:
Plerixafor|Drug:
Azacitidine

Phase 1 28

(Continued)
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4.1.2 Navoximod (GDC-0919)
Navoximod has been evaluated clinically as a monotherapy or

in combination with atezolizumab (NCT02048709, NCT02471846,

NCT05469490, and these trials demonstrated that the navoximod

was well tolerated and decreased plasma Kyn concentrations in a

dose dependent manner (181). However, there was no clear tumor

response benefit in the navoximod combination therapy arm when

compared to treatment with atezolizumab alone (196).
4.2 Repurposed beta blockers as MDSC
depleting agents

In addition to stimulation of cortisol release, chronic stress from

inflammation in cancer is associated with prolonged activation of

the sympathetic nervous system (53). Chronic adrenergic activation

and release of catecholamines, primarily norepinephrine (Nor), has

been associated with MDSC mobilization from the bone marrow

and acquisition of greater immune suppressive properties, leading

to both systemic and local immune suppression (197, 198). A

consequence of increased Nor concentrations is higher

concentrations of both MDSCs and TAMs in tumor tissues. For

example, activation of b2-adrenergic receptor (b-AR) signaling was
shown to upregulate STAT3 and NFk-b signaling pathways which

drive development of immune suppressive MDSC and TAMs (199).

Activation of b-AR signaling has been shown to polarize

macrophages to an immunosuppressive M2 phenotype in a

rodent breast cancer model (200, 201). Adrenergic signaling in

tumor cells themselves can also be triggered by tumor

hypoxia (202).
Frontiers in Oncology 27
4.2.1 Propranolol as non-selective b-blocker
Use of non-selective beta blockers such as propranolol have been

investigated for their ability to reprogram immune suppressive cells

within the TME (200, 203). Blocking b-AR signaling by MDSCs with

propranolol can prevent their mobilization from the bone marrow

(204). In addition, propranolol treatment reprograms MDSCs to a less

immune suppressive state by blocking STAT3 signaling (205). This

effect has been demonstrated in rodent models, where treatment with

propranolol reduces MDSC mobilization and accumulation within the

TME, accompanied by inhibition of tumor growth and metastasis

(206). In rodent models, treatment with propranolol blocked the

accumulation of M2 macrophages in metastatic breast cancer and

inhibited metastases (53). In a spontaneous melanoma mouse model,

propranolol treatment significantly reduced intratumoral accumulation

of neutrophils, immune suppressive inflammatory (CD11c-

Ly6ChiLy6G-) macrophages and DCs in both the primary tumor and

metastatic lesions (207). Multiple rodent studies and recent clinical

trials in dogs and human patients have demonstrated the ability of

propranolol 3008 treatment to improve responses to radiation therapy

for glioma, 3009 breast cancer, and pancreatic cancer (200,

208) (Table 8).

In a phase II trial in patients with metastatic breast cancer it was

found that in tumor tissues from propranolol treated patients there

was upregulated expression of genes associated with classical

dendritic cells and an increase in M1 macrophage polarization,

along with an increase in CD69+ activated TAMs (209). Phase I

trials of propranolol with pembrolizumab in patients with

metastatic and locally advanced melanoma showed encouraging

responses and the combination therapy to be well tolerated (210). In

the USA there are currently 17 trials investigating propranolol in
TABLE 7 Continued

CXCR4
blockade

NCT
Number Title Status

Study
Results Conditions Interventions Phases Enrollment

(G-CSF) in
Combination With
Azacitidine for the

Treatment of
Myelodysplastic
Syndrome (MDS)

20 NCT00694590 Study of AMD3100
(Plerixafor) and
Rituximab in
Patients With

Chronic
Lymphocytic

Leukemia or Small
Lymphocytic
Lymphoma

Completed No Results
Available

Chronic
Lymphocytic

Leukemia (CLL)|
Small Lymphocytic
Lymphoma (SLL)

Drug: plerixafor Phase 1 24

21 NCT01319864 POETIC Plerixafor
as a

Chemosensitizing
Agent for Relapsed
Acute Leukemia and
MDS in Pediatric

Patients

Completed No Results
Available

Relapsed/Refractory
AML|Relapsed/
Refractory ALL|
Secondary AML/

MDS|Acute
Leukemia of
Ambiguous

Lineage|AML|ALL

Drug: Plerixafor Dose
Escalation

Phase 1 20
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TABLE 8 US clinical trials using propranolol as cancer treatment.

b-AR
blockade

NCT
Number Title Status

Study
Results Conditions Interventions Phases Enrollment

1 NCT01847001 Study of
Propranolol in

Newly Diagnosed
Breast Cancer

Patients
Undergoing
Neoadjuvant
Chemotherapy

Completed Propranolol +
Neoadjuvant
Chemotherapy

SAE 10%

Locally Advanced
Malignant

Neoplasm|Breast
Cancer

Drug: Propranolol|
Other: DOT imaging|
Drug: Paclitaxel|Drug:
Nab-paclitaxel|Drug:
Trastuzumab|Drug:
Pertuzumab|Drug:
Doxorubicin|Drug:
Cyclophosphamide|
Procedure: Surgery|
Drug: Premedication|
Drug: Anti-nausea
therapy|Drug:
Pegfilgrastim

Phase 2 10

2 NCT01308944 Therapeutic
Targeting of Stress
Factors in Ovarian
Cancer Patients

Completed No Results
Available

Invasive
Epithelial

Ovarian Cancer|
Primary
Peritoneal
Carcinoma|

Fallopian Tube
Cancer

Drug: Propranolol Phase 1 24

3 NCT02165683 Use of Propranolol
to Reduce FDG
Uptake in Brown
Adipose Tissue in
Pediatric Cancer

Patients PET Scans

Completed No Results
Available

Pediatric Cancer Drug: Propranolol Phase 1 10

4 NCT01902966 Feasibility - Beta
Adrenergic

Blockade (BB) in
Cervical Cancer

(CX)

Terminated dose escalation
40 mg by

mouth twice a
day, SAE 20%

Cervical Cancer Drug: Propranolol|
Behavioral: Diary|

Behavioral: Relaxation
Audio Recording|

Behavioral:
Questionnaires

Not
Applicable

6

5 NCT04848519 Propranolol
Hydrochloride and
Pembrolizumab for
the Treatment of
Recurrent or
Metastatic

Urothelial Cancer

Recruiting No Results
Available

Recurrent or
Metastatic

Urothelial Cancer

Drug: Pembrolizumab|
Drug: Propranolol
Hydrochloride

Phase 2 25

6 NCT03152786 Propranolol
Hydrochloride in
Treating Patients
With Prostate

Cancer Undergoing
Surgery

Suspended No Results
Available

Prostate
Carcinoma

Other: Laboratory
Biomarker Analysis|
Drug: Propranolol

Hydrochloride|Other:
Questionnaire

Administration|Other:
Survey Administration

Phase 2 50

7 NCT05651594 Propranolol in
Combination With
Pembrolizumab
and Standard

Chemotherapy for
the Treatment of
Unresectable

Locally Advanced
or Metastatic
Esophageal or

Gastroesophageal
Junction

Adenocarcinoma

Recruiting No Results
Available

Unresectable
Locally Advanced
or Metastatic
Esophageal or

Gastroesophageal
Junction

Adenocarcinoma

Procedure: Biopsy|
Procedure: Biospecimen
Collection|Procedure:

Computed
Tomography|Drug:
Fluorouracil|Drug:
Leucovorin|Drug:

Oxaliplatin|Biological:
Pembrolizumab|Drug:

Propranolol
Hydrochloride|Other:

Questionnaire
Administration

Phase 2 40

(Continued)
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TABLE 8 Continued

b-AR
blockade

NCT
Number Title Status

Study
Results Conditions Interventions Phases Enrollment

8 NCT01504126 Propranolol
Hydrochloride and
Chemotherapy in
Treating Patients
With Ovarian,

Primary Peritoneal,
or Fallopian Tube

Cancer

Completed No Results
Available

Ovarian, Primary
Peritoneal, or
Fallopian Tube

Cancer

Drug: Chemotherapy|
Drug: Propranolol

Hydrochloride|Other:
Quality-of-Life

Assessment|Procedure:
Therapeutic

Conventional Surgery

Early
Phase 1

32

9 NCT04682158 Propranolol With
Standard

Chemoradiation for
Esophageal

Adenocarcinoma

Recruiting No Results
Available

Esophageal
Adenocarcinoma

Drug: Carboplatin|
Radiation: 3
Dimensional

Conformal Radiation
Therapy|Drug:

Propranolol|Radiation:
Intensity Modulated
Radiation Therapy|
Drug: Paclitaxel

Phase 2 60

10 NCT03384836 Propranolol
Hydrochloride and
Pembrolizumab in
Treating Patients
With Stage IIIC-IV
Melanoma That

Cannot Be
Removed by
Surgery

Recruiting No Results
Available

Stage IIIC
Cutaneous

Melanoma AJCC
v7|Stage IV
Cutaneous

Melanoma AJCC
v6 and v7

Other: Laboratory
Biomarker Analysis|

Biological:
Pembrolizumab|Drug:

Propranolol
Hydrochloride

Phase 1|
Phase 2

47

11 NCT00967226 Propranolol Versus
Prednisolone for
Treatment of
Symptomatic
Hemangiomas

Terminated Propranolol
SAE 1/11
(9.09%)

Hemangioma of
Infancy

Drug: propranolol|
Drug: Prednisolone

Phase 2 19

12 NCT05312255 Non-
chemotherapeutic
Interventions for
the Improvement
of Quality of Life
and Immune
Function in
Patients With

Multiple Myeloma

Recruiting No Results
Available

Plasma Cell
Myeloma|

Recurrent Plasma
Cell Myeloma|
Refractory
Plasma Cell
Myeloma|
Smoldering
Plasma Cell
Myeloma

Behavioral: Behavioral
Intervention|Drug:
Beta-Adrenergic
Antagonist|Drug:
Propranolol|Other:
Quality-of-Life

Assessment|Other:
Questionnaire

Administration|Other:
Resistance Training|
Other: Short-Term

Fasting

Not
Applicable

150

13 NCT01074437 Corticosteroids
With Placebo

Versus
Corticosteroids

With Propranolol
Treatment of
Infantile

Hemangiomas (IH)

Terminated Has Results Hemangioma Drug: Prednisolone
(Corticosteroid)|Drug:
Propranolol|Drug:

Placebo

Phase 2 9

14 NCT05479123 Assessing the
Impact of Dosage
Frequency of
Propranolol on
Sleep Patterns in
Patients With

Infantile
Hemangiomas

Recruiting No Results
Available

Infantile
Hemangioma

Drug: Propranolol three
times a day|Drug:
Propranolol twice a
day|Drug: Timolol

Phase 4 174

15 NCT01056341 Study to
Demonstrate the

Completed Propranolol
3mg/kg/d 6

Infantile
Hemangioma

Drug: Propranolol|
Drug: Placebo

Phase 2|
Phase 3

512

(Continued)
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breast cancer, cervical cancer, prostate, esophageal, infantile

hemangioma and hepatocellular carcinoma. Further studies are

warranted to elucidate the clinical benefit of propranolol as a

repurposed immunotherapy for TME reprogramming (Table 8).
4.3 Tyrosine kinase inhibitors

Tyrosine kinase inhibitors (TKIs), especially early generation

non-specific TKIs such as sunitinib, have been shown to alter the

immune suppressive TME, in part by reprogramming TAMs from

M2 to M1 phenotypes, by reducing total TAM infiltrates and by

blocking the accumulation of MDSCs and TANs (211–213).

Tyrosine kinase receptors are extremely diverse family of

receptors and there are >40 FDA approved TKI drugs. These

TKIs are categorized according to the main receptor targeting

sites which include, anaplastic lymphoma kinase (ALK),

epidermal growth factor receptor (EGFR), FMS-like tyrosine

kinase 3 (FLT3), vascular endothelial growth factor (VEGFR), and

tropomyosin receptor kinase (TRK) (214). The positive clinical

benefits observed when TKIs are combined with ICI indicate that

the TKI impact on the TME is substantial and complementary to

ICI therapy. The list of multi-target TKIs is quite extensive,

therefore few are selected here for discussion to illustrate their

potential as immunotherapy drugs.

4.3.1 VEGFR targeted TKIs
4.3.1.1 Sunitinib (SU011248, Sutent)

Sunitinib is a small molecule inhibitor that targets multiple

kinases, with inhibitory effects against signaling by VEGFR, PDGFR

and c-kit (215). It is an FDA approved agent for treatment of renal

cell carcinoma and gastrointestinal stromal tumors (216). To date

there are currently 270 US trials of sunitinib to treat, alone or in

combination, many different cancers, including breast, hepatic,

lung, and renal cancers. Early generation, multi-function TKIs

such as sunitinib have been shown to exert impressive immune

modulatory effects (217, 218). For example, sunitinib has been

shown to deplete both MDSC and Tregs, in part by inhibiting

STAT3 signaling (219); and in clinical trials positive responses to
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treatment with sunitinib has been associated with Treg depletion

(220, 221).

4.3.1.2 Sorafenib (Nexavar, BAY 43-9006)

Sorafenib is another small molecule multi-kinase inhibitor,

which in hepatocellular carcinoma has shown clinical benefit and

antitumoral activity that is associated with immune remodeling of

the TME (222). For example, treatment with sorafenib has been

reported to selectively decrease Tregs numbers without impacting

effector T cell numbers (223). Sorafenib has been shown to regulate

the differentiation DCs in the TME (224) and to repolarize M2

TAMs to an M1 phenotype through inhibition of miR-101

expression and reduction of TGF-b secretion. Sorafenib has also

been reported to induce secretion of pro-inflammatory cytokines

such as IL-12 by TAMs (225, 226) and to decrease expression of

PD-L1 on MDCS and plasmacytoid DCs (227, 228). There are 430

clinical trials registered in the US using sorafenib in cancer patients

ranging from phase I to phase IV clinical trials, with many focused

on renal cell carcinoma.

4.3.1.3 Lenvatinib (E7080, Lenvima)

Lenvatinib is another multitarget TKI that has shown in phase

III trials clinical benefit as reflected by significantly increased overall

survival times in patients with hepatocellular carcinoma (227).

There are currently 128 registered lenvatinib clinical trials in the

USA, with multiple phase I through phase III trials for treatment of

thyroid cancer, renal cell carcinoma, hepatocellular carcinoma and

melanoma. The antitumor activity of lenvatinib is also heavily

linked to its anti-angiogenic properties (229). In addition,

Lenvatinib has been shown to reduce TAMs and increase IFNg
secreting CD8 effector T cells in tumor tissues in a mouse model of

colon carcinoma (230).

4.3.2 EGFR targeted TKI
EGFR targeted TKIs disrupt the immune suppressive TME by

several mechanism including blocking cancer cell migration and

nutrient delivery through targeting of endothelial cells and

suppressing pericyte coverage (231). Highly proliferative cancer

stem cells also express EGFR and can be inhibited by EGFR targeted
TABLE 8 Continued

b-AR
blockade

NCT
Number Title Status

Study
Results Conditions Interventions Phases Enrollment

Efficacy and Safety
of Propranolol Oral
Solution in Infants
With Proliferating

Infantile
Hemangiomas

Requiring Systemic
Therapy

Months, 60.4%
resolution.

SAE 4.95% for
Propranolol

3mg/kg/day for
6 months

16 NCT01265576 Study of Sorafenib
With or Without
VT-122 in Patients

With
Hepatocellular

Carcinoma (HCC)

Unknown
status

No Results
Available

HCC Drug: Sorafenib|Drug:
VT-122 (propranolol
plus etodolac)|Drug:

Placebo

Phase 2 20
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TKIs (232). For example, EGFR-mutated NSCLC is known to be

especially sensitive to treatment with EGFR TKIs (233); and these

TKIS are therefore often a first line treatment for this cancer (233,

234). Many EGFR TKI drugs have been developed, and first-

generation drugs such as gefitinib, erlotinib, and afatinib are

approved for the treatment of EGFR mutated NSCLC. Currently

third generation EGFR TKI drugs are being investigated as

monotherapy and in combination with chemotherapy (213).

There are currently around 8 FDA approved EGFR targeted TKI

(235) with over 1200 total clinical trials in the US ranging from

phase I to phase IV.
5 Future opportunities for
myeloid cells as targets in
cancer immunotherapy

Many different strategies targeting immune suppressor cells

within the TME to reverse or ameliorate immune suppression have

been evaluated. To date, the most successful strategies have been

those targeting MDSCs, including the use of multi-function TKIs

and repurposed beta blockers. For reprogramming TAMs, the most

studied targets to date have been CSF-R1 inhibitors, either as

biologics or targeted agents, though clinical responses to date

have not been impressive (201, 236, 237). Other strategies have

been even less successful, including the use of arginase and IDO

inhibitors to reprogram metabolic pathways used by TAMs and

tumor cells (194, 238). In the future, the most successful rational

strategies will likely employ drugs and biologics targeting multiple

different complementary pathways of tumor immune evasion, to

block non-redundant mechanisms and pathways. Such

combination strategies may also include creative uses of radiation

therapy to enhance tumor immunogenicity, while MDSC or

inflammatory monocyte targeted drugs can be used to relieve

radiation induced inflammatory responses. Other gains will

undoubtedly be realized when newer drugs and biologics with
Frontiers in Oncology 31
greater activity or more specific targeting of myeloid cell

pathways enter the clinic. Thus, it is likely that we will see greater

use of myeloid targeted agents as part of a more comprehensive

strategy and platform for cancer immunotherapy (235).
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