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The innovative model based on
artificial intelligence algorithms
to predict recurrence risk of
patients with postoperative
breast cancer

Lixuan Zeng1†, Lei Liu2†, Dongxin Chen1†, Henghui Lu3†,
Yang Xue1, Hongjie Bi1 and Weiwei Yang1*

1Department of Pathology, Harbin Medical University, Harbin, China, 2Department of Breast Surgery,
The Third Affiliated Hospital of Harbin Medical University, Harbin, China, 3Department of
Dermatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
Purpose: This study aimed to develop a machine learning model to

retrospectively study and predict the recurrence risk of breast cancer patients

after surgery by extracting the clinicopathological features of tumors from

unstructured clinical electronic health record (EHR) data.

Methods: This retrospective cohort included 1,841 breast cancer patients who

underwent surgical treatment. To extract the principal features associated with

recurrence risk, the clinical notes and histopathology reports of patients were

collected and feature engineering was used. Predictive models were next

conducted based on this important information. All algorithms were

implemented using Python software. The accuracy of prediction models was

further verified in the test cohort. The area under the curve (AUC), precision,

recall, and F1 score were adopted to evaluate the performance of each model.

Results: A training cohort with 1,289 patients and a test cohort with 552 patients

were recruited. From 2011 to 2019, a total of 1,841 textual reports were included.

For the prediction of recurrence risk, both LSTM, XGBoost, and SVM had

favorable accuracies of 0.89, 0.86, and 0.78. The AUC values of the micro-

average ROC curve corresponding to LSTM, XGBoost, and SVMwere 0.98 ± 0.01,

0.97 ± 0.03, and 0.92 ± 0.06. Especially the LSTM model achieved superior

execution than other models. The accuracy, F1 score, macro-avg F1 score (0.87),

and weighted-avg F1 score (0.89) of the LSTMmodel produced higher values. All

P values were statistically significant. Patients in the high-risk group predicted by

our model performed more resistant to DNA damage and microtubule targeting

drugs than those in the intermediate-risk group. The predicted low-risk patients

were not statistically significant compared with intermediate- or high-risk

patients due to the small sample size (188 low-risk patients were predicted via

our model, and only two of them were administered chemotherapy alone after

surgery). The prognosis of patients predicted by our model was consistent with

the actual follow-up records.
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Conclusions: The constructed model accurately predicted the recurrence risk of

breast cancer patients from EHR data and certainly evaluated the

chemoresistance and prognosis of patients. Therefore, our model can help

clinicians to formulate the individualized management of breast cancer patients.
KEYWORDS

breast cancer, recurrence risk, LSTM, XGBoost, SVM
Introduction

According to estimates from the Global Cancer Observatory

(GLOBOCAN) in 2020, the incidence of female breast cancer

ranked first, surpassing even lung cancer (1). Meanwhile, in

China, the incidence of breast cancer has risen to the fourth

among all cancer types and shows a trend of younger age (2).

Breast cancer seriously harms women’s life and health. Accurately

evaluating the recurrence risk of postoperative breast cancer

patients can greatly improve their prognosis through appropriate

treatment (3).

With the digitization of medical information, machine learning

models have been applied in oncology (4–6). In 2021, artificial

intelligence (AI) was used to predict the occurrence of breast

cancer metastasis by learning from clinical electronic health record

(EHR) data to support individualized diagnosis for patients (7). EHRs

contain numerous longitudinal records, including histopathology,

molecular markers related to breast cancer, radiology, and clinical

information. However, the manual integration of prognostic

information from EHRs by clinical experts is time-consuming,

laborious, and costly (8, 9). Therefore, precisely assessing the

recurrence risk and improving the efficiency of clinical evaluation

plays a crucial role in controlling the disease burden of breast cancer.

Support vector machine (SVM) is a powerful learning algorithm

that is capable of addressing various dimensions of data through

different kernel functions. For example, breast cancer cells were

classified in vitro with an accuracy of 93% using linear and radial

basis function (RBF) kernel SVMs (10). Extreme gradient boosting

(XGBoost) is a decision tree-based algorithm that is widely used in

machine learning. It minimizes the loss function of the model through

a gradient descent algorithm and implements the speed and
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performance of gradient-boosted decision trees (11). Furthermore,

artificial neural networks (ANN) comprise a fundamental

component of deep learning algorithms, demonstrating great

potential in building high prediction accuracy (12–15). Currently, AI

algorithms have proven successful in processing clinical image data,

obtaining desired prediction results (16–18). For example, a two-stage

convolutional neural network (CNN) model was proposed to predict

the occurrence of myocardial infarction and localize the site of

infarction based on vectorcardiogram signals (19). However, further

research is needed to process clinical non-image data using

machine learning.

In this study, we aimed to develop an artificial intelligence

prediction model to regressively identify the recurrence risk of

breast cancer patients after operation. We used SVM, XGBoost, and

LSTM algorithms to integrate the histopathological and molecular

characteristics of tumors in patients’ EHRs. We also validated the

model’s performance in predicting risk categories for patients who

received neoadjuvant and postoperative chemotherapy or

postoperative chemotherapy alone, which can provide a precise

assessment for personalized medicine for cancer patients. Our study

made the following important contributions:
• Developed models based on three AI algorithms (SVM,

XGBoost, and LSTM) that accurately predicted the

recurrence risk of postoperative breast cancer patients.

• Provided a suitable model for recurrence risk prediction

that reflects the chemotherapy resistance of postoperative

patients.

• Our LSTM model approximately evaluated the actual

benefit of patients receiving neoadjuvant chemotherapy.

• Predicted recurrence risk by the LSTM model, accurately

reflecting the prognosis of postoperative breast cancer

patients.
Methods

Clinicopathological data of breast
cancer patients

This retrospective study was designed to predict the risk of

breast cancer patients who underwent surgery through automated

models. The overall methodology of this study is illustrated in
frontiersin.org
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Figure 1. A total of 1,962 patients with breast cancer were recruited

from the Third Affiliated Hospital of Harbin Medical University

from 11/05/2011, to 29/12/2019. There were 121 (6.1%) patients

initially excluded because of incomplete pathological examination

results or lack of clinical notes. Eventually, 1,841 patients were

included in this retrospective analysis. A total of 432 patients

underwent different treatment regimens following surgery and

had complete treatment information, including radiotherapy,

chemotherapy alone, combination therapy, endocrine therapy,

and targeted therapy. Completed follow-up information of

postoperative patients was collected, containing the surveillance

of contralateral breast cancer, lymph node metastases, distant organ

metastases, and other relevant monitoring. All study procedures

were thoroughly reviewed and received ethical approval from the

Harbin Medical University Ethics Committee. Informed written

consent was obtained from each participant prior to their

involvement in the study. A detailed description of the patient

characteristics is found in Supplemental Table 1.
Data parsing and feature extraction

Data preprocessing plays an important role in the application of

machine learning (20). Since medical professionals have multiple

expressions in medical reports, we first broke each note into blocks

and standardized the reporting format, mainly regarding its clinical

concepts and attributes. More details are explained in the

Supplement Data. We further used natural language processing

(NLP) based on the regular expression (regex) in Python to extract

all key terms from EHRs (21). The regular expression can quickly
Frontiers in Oncology 03
analyze large volumes of textual information and has a specialized

syntax. We compiled the regular expression pattern for each feature

according to this specified syntax, thus accurately matching specific

s t r ings (22) . An example be low shows the f ea ture

extraction process:

re.compile (r’ER\([\+\-].*?\)|ER\([\+\-].*?\)’,re.I)
• re.compile: this regular expression was given to return every

line in which the term “ER(+)” or “ER(-)” is present.

Parentheses were probably performed with Chinese and

English format in our data.

• re.I: re.IGNORECASE, this function was given to return

values treated as case-insensitive.

• re.findall() function was next given to return all the

matched strings “[-]” or “[+]” in the form of a list of

numeric labels “0” or “1.”
In addition, NegEx was used to identify whether a term had been

negated, effectively rectifying false-positive cases (23). For instance,

“lymph nodes are not enlarged,” “lymph node-negative,” and “no

evidence of lymphovascular invasion” were considered negative.

After feature extraction, we combined all the features and created a

dataset. The output values of all samples were displayed on the label

with “=1” to match successfully; else, it was “=0” (Table 1). The

missing values in our raw data were filled in “=0.” Eventually, the

accuracy of feature extraction was estimated using the actual values in

the original text snippets (24). Correct extraction was considered true

positive (TP) when the extracted values matched the actual values. A

classification for the module was regarded as false positive (FP) when

the extracted values did not match the actual values. Missed entities
FIGURE 1

Overall workflow of the study. Histopathological features of breast cancer were first extracted and annotated by retrospective retrieving EHR data of
breast cancer patients. The preprocessed information was next generated as a feature set, and models were trained to predict the recurrence risk of
patients. The model was further validated in patients who received neoadjuvant and postoperative chemotherapy or postoperative chemotherapy alone.
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were considered false negative (FN) when actual values were

available, but no extracted values were reported. It was regarded as

a true negative (TN) when no extracted values were produced and

there were no actual values. Supplementary Table 2 shows the

confusion matrix for evaluated extraction.
Model prediction and evaluation

The recurrence risk of postoperative breast cancer patients was

according to the clinical guidelines for the diagnosis and treatment of

Breast cancer in 2021 of Chinese Anti-Cancer Association, Committee

of Breast Cancer Society (CACA-CBCS) (Supplemental Table 3) (25).

It has performed an important premise that Chinese clinicians base on

to comprehensively assess and formulate treatment regimens.

Each prediction model was implemented through the Scikit-

learn library in Python. First, the dataset was loaded into the Pandas

dataframe and split into a training set (70%) and a test (30%) set

with the train_test_split function. In order to avoid extreme values,

the fillna() function was executed to fill the vacant values with

default values and scale numerical variables for range adjustment.

SVM is a supervised learning algorithm commonly employed in

binary classification and regression problems. The basic principle of

SVM is to identify a decision boundary so that samples can be

separated from different classes (26). In this study, the

sklearn.svm.SVC function was adopted to solve the three

classification problems. The linear kernel was first selected to linearly

classify the training set due to the significantly larger feature size than

the sample size (27). Since our data are linearly non-separable, slack

variables were employed during the training process to improve the

generalization ability of the model by allowing some sample points to

be misclassified. Additionally, the decision hyperplane was determined

by soft margin maximization and dual problem settlement. The

application of multiclass classification utilized a one-vs-rest voting

strategy, which means that three binary classifiers are trained (28).

Finally, samples from the test set were predicted separately and the

category with the highest probability was subsequently assigned as the

final prediction.

The XGBoost model containsK base learners in which each learner

predicts the Xi outcome of the i-th input and then acquires the final

classification result by pooling each output fK (Xi) (11). The

xgb.XGBClassifier function was adopted to build the model based on

a set of relevant parameters such as learning rate, number of trees, and

gamma. The grid search strategy was applied from the Sklearn interface

to obtain the best-optimized hyperparameters, which optimizes the

model’s performance and avoids overfitting issues (29). Next, the

XGBoost model was trained using the determined parameters and

10-fold cross-validation (30). The most important features that were

taken into consideration were as follows: distant organ metastasis,

lymph node metastasis (including the number of lymph node

metastases), HER-2, ER, PR, and Ki-67 expression; pathology grade;

menopausal status; age; and lympho-vascular invasion. Eventually,

values were predicted for the test set and evaluated by the module to

obtain the reliability of the XGBoost model (31).

LSTM simulates the memory storage capacity of our brain, which

develops novel artificial intelligence algorithms. Compared with
Frontiers in Oncology 04
traditional neural network algorithms, LSTM can precisely deal with

more complex problems related to time series or sequential data (32,

33). In this study, the LSTM model was constructed in Keras. After

learning meaningful features, dense layers were used to map features

from the high-dimensional data space to a low-dimension

representation space and finally become a column vector, in which

the number of columns is the same as risk categories (34). Specifically,

the first column corresponded to the low risk with “class 0,” the second

column corresponded to the intermediate risk with “class 1,” and the

third column corresponded to the high risk with “class 2.” Each patient

would be obtained a column vector with a sum of 1 through the

softmax_layer. For example, the predicted result for one patient was

shown [0.2,0.7,0.1]. A predicted value of 0.2 represented the probability

of class “0,” 0.7 represented the probability of class “1,” and 0.1

represented the probability of class “2.” This column vector indicated

that this patient was finally classified as the maximum value of the

predicted label “class-1” (intermediate-risk). Moreover,

backpropagation was utilized to optimize the parameters of this

model, thus minimizing the loss function (35). Feature units were

randomly dropped through dropout layers during each feedforward

training to avoid overfitting issues and obtain a generalization model.

To determine the favorable model, the performance of each

model was compared through the receiver operating characteristic

curve (ROC) and the area under the curve (AUC). Since our dataset

has an imbalanced distribution of samples, consisting of disparate

sample sizes in each class. Precision (positive predictive value)–

recall (sensitivity) curves were also applied as indicators to further

assess each model’s performance (36). Other important metrics for

evaluation include accuracy, F1 score, macro-average, micro-

average, and weight-average. A further explanation of these

indicators is provided in the Supplement Data.
Statistical analysis in patients

We divided the 85 patients treated with chemotherapy alone

after surgery into chemo-sensitive and chemo-resistant groups

based on each patient’s response to chemotherapy. The inclusion

criteria of chemotherapeutic resistance are as follows (37, 38): (1)

An increase in tumor volume after postoperative chemotherapy was

observed using B-ultrasound and MRI; (2) sustained increases in

tumor marker levels and clinical symptoms did not relieve; (3) and

patients were confirmed as having progressive disease (PD)

according to Response Evaluation Criteria in Solid Tumors

(RECIST version 1.1). Chemotherapy resistance is considered

when one or all of the criteria are met. In order to retrospectively

validate the predictive effectiveness of our model, we next used a

binary logistic regression approach with chemotherapy resistance as

the dependent variable and the risk categories predicted by our

model as the covariate (39).

For patients treated with neoadjuvant chemotherapy, the

endpoint was time to progression (TTP) because a death event

was not observed at the cutoff in this study. TTP was defined as the

date from registration to invalid treatment or disease progression

(40, 41). For subgroups only undergoing postoperative

chemotherapy, the endpoint of interest was set as invasive
frontiersin.org
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disease-free survival (iDFS). iDFS is calculated as the time interval

from the date of registration to the first recurrence of breast cancer,

the development of contralateral primary breast cancer, or death

from any cause (42).

Kaplan–Meier analysis and the log-rank test were used to assess

survival outcomes in groups treated with neoadjuvant and postoperative

chemotherapy as well as postoperative chemotherapy alone. All statistical

analyses were implemented with the R software 3.5.0 (https://www.r-

project.org/); a P value <0.05 was considered statistically significant.
Results

Training and test cohorts conducted

The included cohorts were randomly divided into training and

test cohorts according to the ratio of 7(n = 1,289):3(n = 552)

(Table 2) (43, 44). The validation set was considered a part of the

training cohort to fine-tune the hyperparameters in our models.

Each group of information was evenly distributed without bias.

Table 2 presents the characteristics of patients. Valuable
Frontiers in Oncology 05
information in EHRs was first segmented and annotated,

including integrated pathological and clinical information from

encounter notes and progress notes. Text snippets were further

processed using feature extraction methods to extract specific string

fields (45). The extractor achieved 95% accuracy, and each string

was then matched against the numeric label “0” or “1”; all matched

features of each patient were aggregated together to form a large

dataset, which simplifies the learning process. This transformation

process involved converting complex multiple input variables into a

more manageable format, which greatly improved the classification

performance of our model (46). The standards for automatic

extraction are shown in the methods.
SVM, XGBoost, and LSTM models predicted
the recurrence risk of postoperative breast
cancer patients

After model development with the training subset, test samples

were uploaded to predict recurrence risk, and this multi-

classification task was conducted via a one-vs-the-rest method.
TABLE 1 Feature extracted labels and descriptions.

Feature names Feature descriptions Illustrative example

Patients Patient ID 616402

Age Years 51

Menopausal status
Pre = 0
Post = 1

1

ER
Estrogen receptor-positive = 1
Estrogen receptor-negative = 0

1

PR
Progesterone receptor-positive = 1
Progesterone receptor-negative = 0

1

HER2
HER2/neu gene overexpressed or amplified = 1
HER2/neu gene neither overexpressed nor amplified = 0

0

Tumor size
Pathological tumor size ≤2cm = 0
Pathological tumor size >2 cm = 1

0

LNM
Positive lymph node metastasis = 1
Negative lymph node metastasis = 0

0

Number of LNM The number of lymph node metastases

G1
Pathology grade I = 1
Pathology grade II, pathology grade III = 0

1

G2
Pathology grade II = 1
Pathology grade I, pathology grade III = 0

0

G3
Pathology grade III = 1
Pathology grade I, pathology grade II = 0

0

LVI
Lympho-vascular invasion (+) = 1
Lympho-vascular invasion (-) = 0

0

Ki-67 (%) The median pathology of Ki-67 proliferative index 5

Distant organ metastasis
Distant organ metastasis = 1
Non-distant organ metastasis = 0

0

Label
Low risk = 0
Intermediate risk = 1
High risk = 2

0
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Specifically, when one category was correctly predicted by the

model, the remaining categories were considered negative (47),

thus generating a confusion matrix for each category (Figure 2). We

computed the evaluation metrics of each category based on the

confusion matrix, such as accuracy, precision, recall, and the area

under the receiver-operating characteristic curve (ROC-AUC)

(Table 3 and Figure 3). In order to further compare the

effectiveness of models, we averaged (macro-average, F1 score)

and weighted (micro-average, weighted-average) the evaluation

indicators of each category (Table 3) (47, 48). Subsequently, we

draw the ROC curve for each prediction category with the true

positive rate (TPR) as the abscissa and the false positive rate (FPR)

as the ordinate and explained the achievement of each model using

a micro-average ROC curve (Figures 3A, C, E). The AUC values of

the micro-average ROC curve corresponding to SVM, XGBoost,

and LSTM were 0.92 ± 0.06, 0.97 ± 0.03, and 0.98 ± 0.01

(Figures 3A, C, E). Additionally, the area under the precision–

recall curve (AUC-PR) is more suitable for assessing performance
06
metrics on processing imbalanced data compared with the area

under the receiver operating characteristic curve (AUC-ROC) (49–

51). The SVM generated the smallest micro-average AUC-PR (0.86

± 0.11), and the LSTM model demonstrated the largest micro-

average AUC-PR (0.96 ± 0.02), which indicates that a great number

of patients were correctly labeled (Figures 3B, D, F). Overall, the

LSTM model accomplished superior performance on the test set,

with a micro-averaged AUC-PR that represents an improvement of

10% and 3% compared with SVM and XGBoost. The LSTM model

manifested a significantly higher accuracy (0.89), F1 score, macro-

F1 score (0.87), and weighted-F1 (0.89) (Table 3).
Breast cancer patients at high recurrence
risk are more likely to be resistant to
chemotherapy after surgery

Chemotherapy resistance is the most crucial reason for

recurrence of breast cancer patients after surgery (52). In order to

exclude the influence of other treatment options on the effect of

chemotherapy, patients who received chemotherapy alone were

included in the experiment. A binary logistic regression analysis

was executed to identify the association between model-based

predicted recurrence risk and chemotherapy resistance in breast

cancer. The inclusion criteria for chemotherapy resistance in this

study are described in the methods. A total of 432 patients received

postoperative treatment, and 85 (20%) patients underwent

chemotherapy alone, which included DNA-damaging drugs such

as anthracyclines and platinum and microtubule-targeting drugs

like paclitaxel. There were 37 patients classified as high-risk by the

LSTM model, 32 of which (86%) were chemotherapy resistant.

Among the 46 intermediate-risk patients predicted by the LSTM

model, 29 (63%) patients were chemotherapy resistant (Table 4).

The results of binary logistic regression showed that the probability

of DNA-damaging drug resistance in high-risk patients predicted

by the LSTMmodel was 4.062 times more than in intermediate-risk

patients (P < 0.05; Figure 4A). Meanwhile, the high-risk patients

predicted by the LSTM model were more likely to be resistant to

microtubule-targeted drugs than the intermediate-risk patients

(high-risk: intermediate-risk = 5.667: 1; P < 0.05; Figure 4A).

These results suggest that high-risk patients predicted by our

model are more resistant to chemotherapy drugs after surgery

and likely to perform more insensitively to paclitaxel. Consistent

results were observed in the SVM and XGBoost models, but the P

values are not significant (Figures 4B, C). We did not include the

low-risk patients because the number of low-risk samples was

insufficient to meet the minimum sample size (n = 10) required

for binary logistic regression analysis.
Our model can predict the neoadjuvant
chemotherapy benefits and the survival
of patients

Neoadjuvant therapy plays an important role in the clinical

practice of systemic treatment for breast cancer patients (53).
TABLE 2 Cohort characteristics for 30% train/70% test experiments in
breast cancer patients.

Characteristic Training set Test set

Number of patients 1,289 552

Gender, %Female 1,282 (99.5) 549 (99.5)

Gender, %Male 7 (0.5) 3 (0.5)

Age, no. (%)

<35 12 (0.9) 8 (1.4)

≥35 1,277 (99.1) 544 (98.6)

Menopausal status

Pre 298 109

Post 984 440

Molecular subtypes

Luminal A/luminal B 609 248

HER2+ 429 178

Triple negative 251 126

Histology

Invasive ductal carcinoma 1,067 443

Invasive lobular carcinoma 53 23

Mixed (IDC and ILC) 48 16

DCIS/LCIS 86 58

Other types 35 12

Recurrence risk assessment

Low-risk 102 86

Intermediate-risk 758 283

High-risk 429 183
IDC, invasive ductal carcinoma; ILC, invasive lobular carcinoma; DCIS, ductal carcinoma in
situ; LCIS, lobular carcinoma in situ; F, female; HER2, human epithelial growth facto
receptor-2.
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Nevertheless, recent research has reported that neoadjuvant

chemotherapy is not necessarily beneficial for patient survival.

Patients who were refractory to neoadjuvant treatment can result

in a higher local recurrence rate after surgery (54, 55). Among our

subgroups treated with neoadjuvant chemotherapy, 52 and 72

patients were predicted to be intermediate and high risk by LSTM,

respectively (Table 5). Contrary to our anticipated outcome, the

results indicate that the majority of patients who received

neoadjuvant chemotherapy did not exhibit a low-risk profile as we

had expected. Moreover, 43 and 23 patients treated with the
postoperative chemotherapy alone were predicted as intermediate
Frontiers in Oncology 07
risk and high risk by LSTM. These results indicated that not all breast

cancer patients should receive neoadjuvant chemotherapy before

surgery. Our predictive model can be utilized to evaluate the

benefit of patients receiving neoadjuvant chemotherapy.

Data were next manually extracted on time to disease

progression (TTP), which was considered a reliable surrogate

endpoint in advanced cancer with medical therapy (Lee, Jang,

Lee, Cho, Lee, Yu, Kim, Yoon, Kim, Han, Oh, Im and Kim 2016).

For patients administered neoadjuvant chemotherapy, the

intermediate-risk operated patients predicted by the LSTM model
was shown to have a longer TTP than the high-risk ones (P < 0.05;
A B C

FIGURE 2

Normalized confusion matrix for the test set of each model. “Class 0,” “class 1,” and “class 2” correspond to low-risk, intermediate-risk, and high-risk
categories. (A) SVM confusion matrix, (B) XGBoost confusion matrix, (C) LSTM confusion matrix.
TABLE 3 Comparison of test set prediction performance between the models.

Precision Recall F1 score Accuracy

SVM

Low-risk 0.85 0.97 0.90

0.78

Intermediate-risk 0.93 0.63 0.75

High-risk 0.64 0.93 0.76

Macro avg 0.81 0.84 0.81

Weighted avg 0.82 0.78 0.78

XGBoost

Low-risk 0.76 0.88 0.82

0.86

Intermediate-risk 0.85 0.89 0.87

High-risk 0.94 0.80 0.86

Macro avg 0.85 0.86 0.85

Weighted avg 0.86 0.86 0.86

LSTM

Low-risk 1 0.65 0.79

0.89

Intermediate-risk 0.83 1 0.91

High-risk 0.99 0.84 0.91

Macro avg 0.94 0.83 0.87

Weighted avg 0.91 0.89 0.89
fr
ontiersin.org

https://doi.org/10.3389/fonc.2023.1117420
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zeng et al. 10.3389/fonc.2023.1117420
Figure 5A). We compared invasive disease-free survival (IDFS) in

the groups that received only postoperative chemotherapy and

found that the high-risk patients acquired poorer IDFS than the

intermediate-risk ones (P < 0.05; Figure 5B). Compared with

intermediate-risk or high-risk, the low-risk sample size was

insufficient to create reliable estimates. However, low-risk patients

actually had better outcomes according to their clinical information.

Therefore, our model can accurately predict the prognosis of breast

cancer patients before treatment and suggest that clinicians provide

the most appropriate treatment regimen for patients, such as

whether to administrate patients with neoadjuvant chemotherapy

or postoperative chemotherapy.
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Discussion

In this study, the advantages and limitations of our proposed

model are as follows: (i) All models can seamlessly classify from

labeled data with an accuracy of over 75%. (ii) The linear SVM

model generates a good non-linear mapping between input and

output variables. It has good robustness and appears to have no

effect on the model when non-supported vector samples are added

and removed, thus avoiding the problems of leaf node selection in

XGBoost and dimension disaster in LSTM. (iii) The XGBoost

model excited more parameters and performed more accurately

than SVM. It illustrated a white box compared with ANN so that
A B

C D

E F

FIGURE 3

Predictive performance of models on the training set for multiclassification of breast cancer patients. The support vector machines (SVM), extreme
gradient boosting (XGBoost), and long short-term memory (LSTM) recurrent neural network models were trained to classify patients with operated
breast cancer from the feature label values. (A, C, E) Receiver-operating characteristics (ROC) curve and (B, D, F) Precision-recall (PR) curve for the test
set was shown to quantify the performance of models. “Class 0,” “class 1,” and “class 2” correspond to low-risk, intermediate-risk, and high-
risk categories.
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the model’s effectiveness can be intuitively evaluated. Moreover, the

XGBoost model has presorted features based on the parameters

before training, which were repeatedly utilized in subsequent

iterations, significantly reducing the computation. (iv) LSTM

realized the highest accuracy among all models, attributed to the

continuous optimization of gradient descent and backpropagation.

(v) The high recurrence risk predicted by the LSTM model was

consistent with the chemotherapy resistance and the worse

prognosis of postoperative patients, which corresponded to the

actual situation. (vi) The SVM algorithm is less sensitive to the

handling of missing data. Clearly, vacant values were filled with the

default value “0” during data preprocessing, which affects the linear

separability in the feature space of SVM. Nevertheless, the XGBoost

algorithm tries different methods at each node and identifies the

best method to handle when missing data are encountered. LSTMs

can learn complex correlations between features, including further

details in default values. (vii) The model uses only a single type of

input information that converts textual clinical reports into labeled

values. Once new variables emerge, we will manually develop and

validate a new set of regular expressions for each specific task.
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We established machine learning algorithms capable of

extracting patient classification information from unstructured

clinical notes. Benefitting from the application of technologies

and frameworks of machine learning, our models for screening

diagnostics with low-cost burden were favorable (56). However,

several unavoidable challenges with machine learning were posed.

First, the data annotation and processing were complicated. In

order to achieve data collection and annotation with high precision,

including the term standardization of biological features, the

variability of descriptive words, and the presence of negative

phrases, we searched for each key term and encoded it with

category encoders through feature engineering and natural

language processing. High accuracy was achieved eventually for

each feature of information abstracting. Secondly, for high-

dimensional scene data exploration (such as medical time-series

data), the XGBoost algorithm cannot effectively eliminate noise

variables (57). Therefore, we conducted a grid search to determine

the algorithms of optimal dimensionality reduction and added

randomness to improve robustness (58). Additionally, an

increasing fraction of the training time in the LSTM model would
TABLE 4 Predictive performance of the LSTM model for postoperative breast cancer patients treated with chemotherapy alone.

Number of patients Recurrence risk assessment
Low-risk (AUC ± SD)

Recurrence risk assessment
Intermediate-risk (AUC ± SD)

Recurrence risk assessment
High-risk (AUC ± SD)

Chemo-sensitive 2 (0.92 ± 0.03) 17 (0.87 ± 0.04) 5 (0.85 ± 0.08)

Chemo-resistant 0 29 (0.84 ± 0.07) 32 (0.86 ± 0.11)
The model’s performance was assessed through the area under the curve (AUC) ± standard deviation (SD).
A

B

C

FIGURE 4

Binary logistic regression was performed to analyze the relationship between the predicted intermediate risk and high risk by each model and
chemotherapy resistance in postoperative breast cancer patients. (A) LSTM, (B) XGBoost, (C) SVM. OR value: odd ratio; The red color indicates a
statistically significant correlation P < 0.05.
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reduce the number of iterations within the same total training time

(59). We utilized forward calculation and backpropagation to

continuously adjust the parameters for extracting the optimal

features. Therefore, we provided a reproducible predicted tool to

predict the recurrence risk of breast cancer patients after surgery.

To further guide clinical practice, our models maintained their

performance in reflecting patient tolerance to chemotherapy drugs.

We verified that high-risk patients tend to be more resistant to

DNA damage and microtubule inhibition drugs than intermediate-

risk patients. This result provides a basis for the clinical treatment

application of different drugs to postoperative breast cancer

patients. Chemotherapy resistance is not only an important risk

factor for cancer recurrence but also a major cause of poor patient

outcomes (52). Meanwhile, our models also validated the prognosis

of patients who underwent neoadjuvant chemotherapy and

postoperative chemotherapy. Since the linkages between EHR

data and death registries were rare, we used TTP or IDFS as

surrogate endpoints to assess differences in survival outcomes of

predicted categories. Our approach highlighted the importance of

estimating the recurrence risk after neoadjuvant chemotherapy,

indicating whether patients routinely receive preoperative

chemotherapy is worth thought-provoking (60, 61). Although

patients classified as low-risk were predicted in our model, the

recurrence was not statistically significant compared with the other

two groups because of the rare number of samples.
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Previous studies have applied natural language processing to

abstract biological factors from medical records to predict breast

cancer staging based on the American Joint Committee on Cancer

(AJCC) staging manual (62). In 2020, researchers also implemented

artificial neural networks to predict breast cancer prognosis by

selecting crucial survival factors, including tumor size, tumor

staging, lymph node metastasis, and other related variables (63).

Moreover, deep learning has shown promise in predicting breast

cancer risk rates by extracting factors such as age, race, and

menstrual history (64). In contrast, our approach significantly

solved the bottleneck of extracting outcomes from a great number

of clinical texts and achieved effective feature extraction in different

scenes. Additionally, those included studies were predominantly

conducted in the United States or Europe, but the data for Asian

breast cancer patients remained unknown. Breast cancer incidence

is strongly correlated with variations in geographic distribution (65,

66). Because of differences in people’s diets and lifestyles, breast

cancer is highly prevalent in the alpine region (67), such as the

northeast of China. An accurate assessment of patients’ recurrence

risk before tailored individual treatment plans can provide valuable

guidance on improving patient outcomes. Our studies contribute to

the development of screening strategies for breast cancer in the

Asian population.

In conclusion, we developed AI-based models that integrate

histopathological features of breast cancer and clinical information
TABLE 5 Predictive performance of the LSTM model for breast cancer patients treated with neoadjuvant and postoperative chemotherapy or
postoperative chemotherapy alone.

Number of patients Recurrence risk assessment
Low-risk (AUC ± SD)

Recurrence risk assessment
Intermediate-risk (AUC ± SD)

Recurrence risk assessment
High-risk (AUC ± SD)

Neoadjuvant and postoperative chemotherapy 3 (0.93 ± 0.01) 52 (0.91 ± 0.03) 72 (0.95 ± 0.03)

Postoperative chemotherapy alone 2 (0.89 ± 0.04) 43 (0.87 ± 0.02) 23 (0.89 ± 0.01)
For patients treated with neoadjuvant and postoperative chemotherapy or postoperative chemotherapy alone, the model was trained to extract postoperative information to classify “high-risk,”
“intermediate-risk,” and “low-risk” labels. The model’s performance was assessed through the area under the curve (AUC) ± standard deviation (SD).
A B

FIGURE 5

Estimation of relative survival in classified patients treated with neoadjuvant therapy and postoperative chemotherapy alone by Kaplan–Meier curve
analysis. Patients predicted to be classified as “Intermediate-risk” presented favorable TTP (A) and iDFS (B) than that patient identified as “high-risk.”
The log-rank test was appropriate to assess performance.
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from preprocessed clinical notes to predict the recurrence risk of

postoperative breast cancer patients. The performance and

generalizability of our model have emphasized the potential

application in the estimation of recurrence risk in breast cancer patients.
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