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In osteosarcoma patients, metastasis of the primary cancer is the leading cause

of death. At present, management options to prevent metastasis are limited and

non-curative. In this study, we review the current state of knowledge on the

molecular mechanisms of metastasis and discuss promising new therapies to

combat osteosarcoma metastasis. Genomic and epigenomic changes,

metabolic reprogramming, transcription factors, dysregulation of physiologic

pathways, and alterations to the tumor microenvironment are some of the

changes reportedly involved in the regulation of osteosarcoma metastasis. Key

factors within the tumor microenvironment include infiltrating lymphocytes,

macrophages, cancer-associated fibroblasts, platelets, and extracellular

components such as vesicles, proteins, and other secreted molecules. We

conclude by discussing potential osteosarcoma-limiting agents and their

clinical studies.

KEYWORDS
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Abbreviations: BMDCs, bone marrow-derived cells; CAF, cancer-associated fibroblast; DCR, disease control

rate; DNMTs, DNA methyltransferases; ECM, extracellular matrix; EFS, event-free survival; ERK,

extracellular signal-regulated kinase; EVs, extracellular vesicles; GLS-1, glutaminase-1; MAPK, mitogen-

activated protein kinase; MMPs, matrix metalloproteinases; NPs, nanoparticles; ORR, objective response rate;

OS, overall survival; PFS, progression-free survival; SCNAs, somatic copy number alterations.
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Introduction

Osteosarcoma is the most common primary malignant bone tumor

in children and young adults. Current treatment options for osteosarcoma

include neoadjuvant chemotherapy, wide tumor resection, and adjuvant

chemotherapy. Unfortunately, these treatment options are limited in

efficacy, and management outcomes have not improved in the last 30

years. The 5-year overall survival of osteosarcoma patients with primary

localized tumors is 60%–70%, whereas survival drops to approximately

20% in patients with metastasis (1). Distant metastasis is found in

approximately 10% of patients at diagnosis, but eventually develops in

approximately 50% of patients, commonly contributing to death (2).

Hence, one approach to improving overall survival in patients with

osteosarcoma is to prevent or delay tumor metastasis. While the

mechanisms governing osteosarcoma metastasis remain unclear,

developments in molecular technology have enabled us to study

osteosarcoma and other cancers more closely. These findings help to

pave the way towards novel, effective, and hopefully curative therapies.

In this review, we discuss recent studies that highlight potential

factors implicated in osteosarcomametastasis (Figure 1), and highlight a

few emerging anti-cancer agents with potential anti-metastatic activity.
Tumor cell alterations

Genomic alterations
The genomic profile of osteosarcoma differs greatly from that of

other malignant tumors. For example, unlike in breast cancer or
Frontiers in Oncology 02
melanoma, few targetable recurrent point mutations exist within

the protein-coding genes identified in osteosarcoma. In addition,

widespread recurrent somatic copy number alterations (SCNAs)

and structural rearrangements have been detected and proposed to

be responsible for osteosarcoma carcinogenesis and progression.

Even among osteosarcoma patients, SCNAs and structural

rearrangements are highly heterogeneous (3).

Among osteosarcoma samples, metastatic tumors demonstrate

significantly higher mutational burden and genomic instability than

primary tumors. Mutated genes are enriched in the PI3K-Akt

pathway at both the early and late stages of tumor evolution and

in the MAPK pathway at the metastatic stage (4).

Examination of metastatic samples of osteosarcoma revealed

alterations in key genes that may play vital roles in metastasis. These

alterations include the loss of TP53, RB1, and CDKN2A, or the gain

of MYC and MDM2 (4). TP53 is commonly mutated in various

cancers including osteosarcoma, and most of the mutations occur in

the DNA-binding domain and are characterized as either structural

or contact mutations. In addition to inhibitory effects on wild-type

TP53 activity, gain-of-function activity promoting tumor

progression was also noted. Studies have shown that contact

mutations are stronger drivers of osteosarcoma metastasis (5).

RB1 is a well-established tumor suppressor gene reported to be

mutated in multiple malignant tumor types including

osteosarcoma. RB1 mutation in osteosarcoma is responsible for

tumor carcinogenesis and progression. At a molecular level, RB1

loss leads to aberrant spliceosome function due to the upregulation

of E2F3a, a mediator of spliceosome gene expression (6).
FIGURE 1

Changes to the tumor cell and tumor microenvironment that facilitate osteosarcoma metastasis.
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Amplification of 17p11.2 chromosomal region containing

TOP3A led to increased expression of TOP3A, which supported

the maintenance of telomeres through the alternative lengthening of

telomeres (ALT) mechanism in osteosarcoma (3).

Structural rearrangements in osteosarcoma can also result in

novel fusion genes that may participate in tumor progression and

metastasis. For example, the fusion gene Rab22a-NeoF1 was

detected in osteosarcoma samples. The resultant fusion protein

activates RhoA and promotes cell migration, invasion, and lung

metastasis after acetylation on K7 (7). When secreted, it also alters

the function of adjacent tumor-negative cells and stimulates

macrophages toward M2 polarization (8).

Personalized therapy targeting patient-specific genes with copy

number alterations and expression changes was tested in patient-

derived tumor xenografts and showed a significant decrease in

tumor burden (9).

Epigenomic changes
Epigenetic changes are commonly found in osteosarcoma and

are involved in multiple aspects of tumor progression including

metastasis (10). For example, the methyltransferase DNMT3A

inhibits miR-149 expression by DNA methylation to activate the

NOTCH1/Hedgehog pathway, thereby promoting the proliferation

and metastasis of osteosarcoma (11). The long non-coding RNA

(lncRNA) THAP9-AS1 binds to and promotes methylation of the

SOCS3 promoter region with DNA methyltransferases (DNMTs)

and activates the JAK2/STAT3 signaling pathway to facilitate

osteosarcoma growth and metastasis (12). In fact, inhibiting

DNMT-1 sensitized osteosarcoma cells to cabozantinib and other

targeted agents by repressing the Notch pathway and subsequently

upregulating expression of miR-34a (13).

RNAmodifications also play a role in osteosarcomametastasis. The

m6A demethylase FTOmediates mRNA demethylation, promoting the

decay of KLF3 mRNA and decreasing its expression, consequently

facilitating osteosarcoma proliferation and metastasis (14). Also, the

destabilizing effects of FTO onDACT1mRNA promotesWnt signaling

and consequently osteosarcoma metastasis (15). In addition, ALKBH5-

mediated m6A methylation upregulates the expression of USP22 and

RNF40, subsequently inhibiting the ubiquitination of histone H2A,

promoting osteosarcoma growth and metastasis (16). Upregulation of

TRIM7 due to the loss of m6A RNA modifications has also been

reported to promote osteosarcoma metastasis and chemoresistance by

inducing the ubiquitination of BRMS1 (17).

The prognostic role of epigenetic changes in osteosarcoma have

also been extensively studied. Immune-related DNA methylation

patterns can be used to predict survival and tumor

microenvironment patterns (18). RNA methylation-related

signatures of metabolic genes and lncRNAs have also been

proposed to be useful tools in the estimation of patient survival

and immune landscapes of osteosarcoma (19, 20).

Metabolic reprogramming
Metabolic reprograming is one of the key features of

osteosarcoma, and its role in tumor progression, drug resistance,

and metastasis is well established (21). Various metabolic gene
Frontiers in Oncology 03
signatures have been found to predict survival in osteosarcoma

patients (19, 22–24). For example, comprehensive metabolic

profiling of osteosarcoma based on UHPLC-HRMS unveiled a

panel of two metabolites, 5-aminopentanamide and 13(S)-

HpOTrE (FA 18:3 + 2O), which was found to be an accurate

indicator of lung metastases (25).

Aerobic glycolysis, also known as the Warburg effect, supports

biosynthesis and metabolic processes necessary for osteosarcoma

growth and metastasis (26). Key enzymes involved in this process,

such as PGC1a, PKM2, ALDOA, and LDHA, can directly influence

tumor progression and metastasis. For instance, miR-23b-3p

downregulates PGC1a and promotes a metabolic shift from

oxidative phosphorylation to glycolysis, supporting osteosarcoma

progression (27).

PKM2 is another key enzyme regulating glycolysis, which acts

on its substrate phosphoenolpyruvate (PEP) to form pyruvate (28).

IRF7 was found to downregulate PKM2 via transcriptional

suppression, inhibiting aerobic glycolysis in osteosarcoma (29).

The SLIT2/ROBO1 axis contributes to the Warburg effect by

act ivat ing the SRC/ERK/c-MYC/PFKFB2 pathway in

osteosarcoma (30). ROCK2 can promote glycolysis and

osteosarcoma tumor growth by upregulating HKII via the pPI3K/

AKT signaling pathway (31). Aldolase A (ALDOA) stimulation by

the lncRNA KCNQ1OT1 sponging miR-34c-5p promotes aerobic

glycolysis in osteosarcoma to support metastasis (32).

Lactate dehydrogenase A (LDHA) catalyzes the conversion of

pyruvate to lactate. The upregulation of LDHA is involved in cancer

cell growth and migration, the development of stem-cell like traits,

and chemoresistance (33). KDM6B regulates H3K27me3

demethylation in the promoter region of LDHA, thereby

promoting LDHA expression and aerobic glycolysis in

osteosarcoma cells, and hence facilitating tumor metastasis (34).

The m6A-reading protein YTH N6-methyladenosine RNA-

binding protein 3 (YTHDF3) contributes to osteosarcoma

progression by promoting aerobic glycolysis through

enhancement of PGK1 mRNA stability in an m6A-dependent

manner (35).

IDH1 is an important TCA cycle enzyme that catalyzes the

conversion of isocitrate to a-ketoglutarate. High levels of IDH1

have been detected in osteosarcoma and correlated with poor

survival. Hsp90-AHA1 was found to upregulate IHD1 and

promote growth and metastasis in osteosarcoma (36).

Besides glucose metabolism, changes in lipid and amino acid

metabolism have also been reported to participate in osteosarcoma

metastasis. Lipid profiles differ in metastatic osteosarcoma cell lines

compared to non-metastatic cells. For example, diacylglycerols are

overexpressed in metastatic osteosarcoma cells, and the blockage of

its synthesis can in fact inhibit cell migration (37). Highly metastatic

osteosarcoma cell lines require glutamine for proliferation, and

conversely, glutaminase-1 (GLS-1) inhibition limits metastatic

progression in osteosarcoma (38).

CD47 is a key factor mediating immune evasion of tumor cells

from the innate immune system. Increased uptake of leucine and

glutamine in osteosarcoma cells through upregulation of LAT2

activates mTORC1 and subsequent c-Myc-mediated transcription
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of CD47, enabling evasion of innate immune mechanisms and

thereby promoting metastasis (39).

Dysregulated pathways
Dysregulated signaling pathways have also been reported to be

involved in osteosarcoma metastasis (Figure 2).

Wnt/b-catenin signaling pathway

The Wnt/b-catenin signaling pathway is reported to play a

crucial role in cell fate determination, proliferation, and migration

in cancer. Cytoplasmic b-catenin undergoes ubiquitination and

proteasomal degradation mediated by a destruction complex

composed of Axin, APC, PP2A, GSK3, and CK1a. On the other

hand, nuclear translocated b-catenin acts as a transcriptional

coactivator for the TCF/LEF family of transcription factors

promoting the expression of Wnt-target genes such as C-myc,

RUNX2, and CyclinD1, which subsequently promotes the

epithelial–mesenchymal transition and facilitates osteosarcoma

metastasis (40, 41).

RUVBL1 can be regulated by CircMYO10/miR-370-3p in

osteosarcoma and influences osteosarcoma progression.

Molecularly, RUVBL1 enhances the transcriptional activity of the

b-catenin/LEF1 complex by mediating chromatin remodeling at the

promoter regions of LEF1 target genes, consequently promoting

osteosarcoma metastasis (42).

C-Jun-MMP9/Bcl-2 pathway

As upstream signaling agents of MMPs, mitogen-activated

protein kinase (MAPK) is a family of serine/threonine kinases

that includes extracellular signal-regulated kinase (ERK)1/2, c-Jun

N-terminal kinase (JNK) 1/2, and p38. Activation of MAPK is

followed by the phosphorylation of various cytosolic substrates that

participate in numerous cellular activities such as cell proliferation,

differentiation, invasion, migration, and death (43, 44).

Activated by CERB3, c-Jun upregulates MMP9 and Bcl-2 to

promote osteosarcoma proliferation and metastasis (45).
Frontiers in Oncology 04
Rho GTPases

Rho GTPases belong to the Ras superfamily of GTPases, which

are implicated in cell proliferation, cell cycle progression, and

migration. Dysregulation of Rho GTPase functions is involved in

osteosarcoma progression and metastasis (46).

RhoA activation in tumor cells leads to osteosarcoma metastasis

to the lung (47, 48). The fusion protein Rab22a-NeoF1 either

directly binds and activates RhoA, or is secreted together with its

binding partner PKY2 by tumor-positive cells, taken up by tumor-

negative cells, and facilitating RhoA activation via PYK2 (3, 49).

The Rho-associated coiled-coil containing protein kinase 1

(ROCK1) was reported to be a proliferation- and metastasis-

related gene in various cancers including osteosarcoma (50).

ROCK1 is regulated in osteosarcoma by lncRNA DANCR/miR-

335-5p/miR-1972 (51).

JAK-STAT pathways

Signal transducer and activator of transcription (STAT) consists

of seven members involved in the regulation of cell proliferation,

differentiation, and survival. The activation of STAT1 in

osteosarcoma cells suppressed EMT, resulting in increased

apoptosis and cell cycle arrest, and decreased colony formation,

cell migration, and invasion. Increased expression of COL6A1

promoted STAT1 degradation, which subsequently facilitated

osteosarcoma metastasis (52). Furthermore, STAT3 is

overexpressed in osteosarcoma and associated with poor survival.

Activation of STAT3 upregulates the expression of target oncogenes

and facilitates osteosarcoma metastasis (53).
Transcription factors
Dysregulation of transcription factors also contributes to

osteosarcoma metastasis. NRF2 regulates intracellular ROS

balance, the AMPK/mTOR autophagy signaling pathway, and the

Warburg effect. TRIM22 inhibits osteosarcoma progression by

binding to and destabilizing NRF2 in a KEAP1-independent

manner (54).
FIGURE 2

Signaling pathways that contribute to osteosarcoma metastasis when dysregulated.
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RUNX proteins are DNA-binding transcription factors that

regulate the expression of multiple genes involved in cellular

differentiation and cell-cycle progression. RUNX2 is essential to

osteoblast maturation and bone development, and can either

suppress or promote carcinogenesis based on the clinical

condition (55). Studies of osteosarcoma tumors have revealed that

levels of RUNX2 DNA, RNA, and protein are significantly elevated

in osteosarcoma tumors. Chromobox homolog4 (CBX4) is

overexpressed in osteosarcoma cell lines and tissues, and

promotes osteosarcoma metastasis by transcriptionally

upregulating RUNX2 via the recruitment of GCN5 to the RUNX2

promoter (56).

Cyclic AMP-responsive element-binding protein 3 (CERB3),

also known as LZIP or LUMAN, is a member of the leucine zipper

transcription factor family. Its tumor-promoting role in

osteosarcoma is regulated by circular RNA circTADA2A-miR-

203a-3p. Molecularly, CREB3 can bind directly to the c-Jun

promoter and regulate the transcriptional activity of c-Jun in

osteosarcoma. MMP9 and Bcl-2 can be regulated by c-Jun and

part ic ipate in CREB3-c-Jun modulated osteosarcoma

progression (45).

The transcription activators YAP/YAZ regulate EMT through

AXL in osteosarcoma and influences cell differentiation, cell fate,

and metastasis (57).
Tumor microenvironment

The tumor microenvironment includes cellular components,

extracellular matrix, vesicles, and secreted molecules that interact

with each other to regulate tumor progression, immune evasion,

drug resistance, and metastasis (58, 59).

The cellular components of the tumor microenvironment are

mainly composed of infiltrating lymphocytes, macrophages,

fibroblasts, and platelets. The composition and functions of these

cells are dynamically regulated by local tumor cells and can be

influenced by therapeutic agents. The recruitment and/or activation

of certain cells in the microenvironment play pivotal roles in

osteosarcoma metastasis (60).

The prognostic role of tumor-infiltrating lymphocytes in the

osteosarcoma tumor microenvironment has been explored. The

presence of tumor-infiltrating CD4+ or CD8+ cells was correlated

with improved overall survival and progression-free survival in

osteosarcoma patients (61).

In addition to tumor-infiltrating lymphocytes, the functional

states of macrophages in the tumor microenvironment have also

been associated with osteosarcoma progression and metastasis. M1-

polarized macrophages are generally regarded as tumor-

suppressing, while M2-type macrophages exhibit tumor-

promoting roles in osteosarcoma. Molecularly, M2-type

macrophages secrete cytokines such as IL-10, TGF-b, and VEGF

to promote osteosarcoma EMT and metastasis (62). The M2-

polarized macrophages are primarily induced by the activation of

Stat3 secondary to stimulation by tumor cell secretions such as

exosomes or vesicles. For instance, tumor-derived exosomes have

been reported to induce M2 macrophage polarization via Tim-3 to
Frontiers in Oncology 05
promote osteosarcoma metastasis (62). PYK2 secretion by

osteosarcoma cells recruits bone marrow-derived cells (BMDCs)

and induces M2 macrophage polarization by activating Stat3 in

macrophage cells (8). In the presence of chemotherapy,

macrophages secrete IL-18 and enable the upregulation of LAT2

in adjacent osteosarcoma cells, which, in turn, promotes tumor

evasion by upregulating CD47 (39).

Cancer-associated fibroblasts (CAFs) comprise a large

proportion of cells in the tumor microenvironment. These cells

can be identified by the presence of a-smooth muscle actin,

fibroblast activation protein, and vimentin. Activated CAFs are

thought to promote tumor cell growth, invasion, metastasis, drug

resistance, and reprogramming (63). At a molecular level, CAFs

build up and remodel the extracellular matrix, enabling tumor cells

to invade through the TME. In addition, CAFs modulate cancer cell

behavior through the secretion of growth factors, cytokines, and

chemokines such as IL-1beta, IL-6, IL-8, TGF-b, and collagen (63).

CAFs can be activated and reprogrammed by various

mechanisms, contributing to tumor metastasis. Increased levels of

COL6A1 in tumor cells are packaged into exosomes and

transported to activated CAFs, which, in turn, promote tumor

invasion and metastasis by secreting TGF-b (52). CAFs in the

lung can also be reprogrammed to support osteosarcoma metastasis

under the influence of TGF-b1 found in osteosarcoma-derived

extracellular vesicles (64).

Platelet aggregation and activation can be induced by tumor

cells to support tumor metastasis in osteosarcoma. Osteosarcoma

cells highly express PDPN, which binds with CLEC-2 on the surface

of platelets, leading to platelet activation and subsequent tumor

metastasis. At a molecular level, activated platelets secrete various

growth factors and cytokines such as PDGF, TGF-b, and LPA,

thereby inducing EMT and promoting cell migration and invasion

in osteosarcoma. In addition, aggregated platelets form clusters with

tumor cells, which are then trapped in the microvasculature of

various organs such as the lung, triggering tumor metastasis (65).

The extracellular matrix (ECM) is extensively altered in

osteosarcoma, beginning with the collagens and proteoglycans

that make it up. Increased expression of several sarcomatous

matrix proteins has been associated with poor response to

chemotherapy and poor prognosis in clinical studies of

osteosarcoma. NELL1 is a secreted osteoinductive protein, which

has bone anabolic and anti-osteoclastic effects. NELL1 can promote

osteosarcoma metastasis by regulating the expression of key

matricellular proteins through the induction of FAK/Src

signaling (66).

The procollagen C-proteinase enhancer protein (PCOLCE) is a

secreted glycoprotein that enhances procollagen C-proteinase

participation in ECM reconstruction. PCOLCE is upregulated by

TWIST1 in osteosarcoma and promotes osteosarcoma metastasis to

the lung (67).

The extracellular matrix glycoprotein tenascin-C is highly

expressed in the tumor microenvironment and promotes the

migration, invasion, and metastatic progression of osteosarcoma.

Tenascin-C functions by binding with its receptor integrin a9b1,
which abolishes actin stress fiber formation and inhibits YAP and

its downstream target gene expression (68).
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Extracellular vesicles (EVs) are secreted by both tumor cells and

their adjacent non-tumor counterparts with diameters ranging from

30 to 150 nm (69). These vesicles are rich in biologically active

components such as proteins, lipids, and nucleic acids, and play

important roles in the exchange of biomolecules between different

cell types (70). Many studies have correlated EVs with

carcinogenesis, progression, and metastasis in osteosarcoma

(71–73).
Results of the recent clinical trials of
advanced or metastatic osteosarcoma

To date, there remains no established effective treatment for

metastatic osteosarcoma. Multiple clinical trials have been

conducted in recent years to investigate the viability of novel

agents or treatment combinations. We compiled key findings

from clinical trials in advanced or metastatic osteosarcoma within

the last 7 years (summarized in Table 1).

Wen et al. reported a Phase 1 clinical trial investigating the

efficacy of the combination therapy of pegylated liposomal

doxorubicin and cisplatin in metastatic and recurrent

osteosarcoma (74). In 15 cases, the 6-week objective response rate

was 13.3% and the disease control rate was 66.7%. Other trials on

targeted therapies such as regorafenib (77, 78), dinutuximab (79),

robatumumab (76), sorafenib, and everolimus (75) demonstrated

limited success with the overall 6-month progression-free survival

rate of less than 50%.

The efficacy of combinatorial chemotherapy and targeted

therapy treatments has also been tested in metastatic or
Frontiers in Oncology 06
unresectable osteosarcoma. A single-arm Phase 2 clinical trial

involving 28 patients treated with pazopanib and topotecan failed

to show any significant improvement in survival (6-month

progression-free survival of 45.4%) (80).

Immunotherapy is an emerging treatment modality that has

shown promising results in selected cases in melanoma and lung

cancers. However, osteosarcoma patients did not seem to respond

well to immune checkpoint inhibitors (81–83). The addition of

interleukin-2 immunotherapy to a four-agent chemotherapy

regimen for treating metastatic osteosarcoma did result in a 3-

year event-free survival of 34.3% and 3-year overall survival of

45.0% (84), but a combination of targeted therapy and

immunotherapy did not elicit better outcomes (85, 86).

Radiotherapy with radium 223 was also assessed in a clinical

trial that involved 18 patients with recurrent or metastatic

osteosarcoma (87). This Phase 1 single-arm multi-center trial

reported a median overall survival of 25 weeks.
Ongoing clinical trials

There are currently several ongoing clinical trials involving

metastatic osteosarcoma registered in ClinicalTrials.gov (Table 2).

These include Phase 1, 2, and 3 trials. Interventions being

inves t igated inc lude chemotherapy , immunotherapy ,

radiotherapy, or targeted therapy alone; and combinatorial

chemotherapy and immunotherapy, chemotherapy and targeted

therapy, and targeted therapy and immunotherapy. Favorable

outcomes from these trials have the potential to transform the

landscape of clinical management of metastatic osteosarcoma.
TABLE 1 Results of recent clinical trials involving patients with advanced or metastatic osteosarcoma.

Treatment
type

Intervention
agents Inclusion criteria Trial

phase
Number
of cases

Study
design Results Year of

publication References

Chemotherapy
Pegylated liposomal
doxorubicin
+cisplatin

Metastatic and
recurrent
osteosarcoma

Phase 1 15
Single arm,
multiple
center

6-week ORR,
13.3%; DCR,
66.7%

2022
Xi-zhi Wen
(74)

Targeted
therapy

Sorafenib and
everolimus

Relapsed or
unresectable
osteosarcoma
progressing after
standard treatment
(methotrexate,
cisplatin, and
doxorubicin, with or
without ifosfamide)

Phase 2 38
Single arm,
multiple
center

6-month PFS, 45% 2015
Giovanni
Grignani (75)

Robatumumab

Resectable
osteosarcoma
metastases (Group 1, n
= 31), Unresectable
osteosarcoma
metastases (Group 2, n
= 29)

Phase 2 60
Case–control
study

>6-month DCR,
9.7% vs. 0; median
OS 24 m vs. 8.2 m

2016
Peter M.
Anderson
(76)

Regorafenib vs.
placebo

Progressive metastatic
osteosarcoma

Phase 2 42

Randomized
double-
blind, multi
center

Median PFS 3.6 m
vs. 1.7 m

2019
Lara E. Davis
(77)

(Continued)
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Discussion

Osteosarcoma is the most common primary bone malignancy

affecting children and young adults. More than 10% of patients are

diagnosed with distant metastasis, and the 5-year overall survival of

these patients is approximately 20%. However, current

management options to prevent metastasis are limited

and ineffective.
Emerging treatment options

Growing research on tumor cell alterations, behavior, and their

surrounding microenvironment has informed the investigation of
Frontiers in Oncology 07
novel treatment options in preclinical settings. These include

inhibitors targeting key metastasis-promoting proteins, approved

drugs with newly discovered anti-metastatic roles, bioactive

nanoparticles, and traditional Chinese medicine agents (Figure 3).

Inhibitors targeting key metastasis-promoting
proteins

Multiple key drivers of osteosarcoma metastasis have been

reported, and inhibitors targeting these specific drivers have been

developed and assessed. The covalent CDK7 inhibitor THZ2

demonstrated significant suppression of osteosarcoma tumor

growth and metastasis by targeting super-enhancer-associated

oncogenes (88). Tegavivint, a novel b-catenin/transducing b-like
protein 1 (TBL1) inhibitor, exhibits anti-proliferative activity

against osteosarcoma cells in vitro and in vivo through
TABLE 1 Continued

Treatment
type

Intervention
agents Inclusion criteria Trial

phase
Number
of cases

Study
design Results Year of

publication References

Regorafenib vs.
placebo

Metastatic
osteosarcoma

Phase 2 43

Randomized
double-
blind, multi
center

8-week PFS 65%
vs. 0

2019
Florence
Duffaud (78)

Dinutuximab

Recurrent pulmonary
osteosarcoma in
complete surgical
remission

Phase 2 39
Single arm,
single center

12-month DCR
(event-free
survival), 28.2%

2022
Pooja
Hingorani
(79)

Chemotherapy
and targeted
therapy

Pazopanib
+topotecan

Metastatic or
unresectable
osteosarcoma

Phase 2 28
Single arm,
open

12-w PFS, 69.5%;
24-w PFS, 45.4%;
12-month PFS,
18.2%;median
PFS, 4.5 months;
median OS, 11.1
months; ORR, 4%.

2021
Brian Schulte
(80)

Immunotherapy

Trivalent
ganglioside vaccine
+ OPT-821 VS
OPT-821

Metastatic
osteosarcoma
following complete
metastasectomy as
subgroup

Phase 2 14

Randomized
double-
blind, multi
center

12-month RFS
34.5% vs. 34.8% in
general, subgroup
data not shown

2022
Evan
Rosenbaum
(81)

Pembrolizumab
Advanced or
metastatic
osteosarcoma

Phase 2 22
Single arm,
multiple
center

BOR, 5% 2017
Hussein A
Tawbi (82)

Ipilimumab
Advanced or
metastatic
osteosarcoma

Phase 1 8
Single arm,
multiple
center

6-w PFS, 0% 2016
Melinda S.
Merchant
(83)

Chemotherapy
and
immunotherapy

Chemotherapy(4
agents) and
interleukin-2

Primary metastatic
osteosarcoma

Phase 2 35
Single arm,
single center

3-y EFS, 34.3%; 3-
y OS, 45.0%

2017
Cristina
Meazza (84)

Targeted
therapy and
immunotherapy

Nivolumab
+bempegaldesleukin

Advanced or
metastatic
osteosarcoma

Phase 2 10
Single arm,
open

6-month DCR,
0%; median PFS, 2
months; median
OS, 6.3 months

2022
Sandra P.
D’Angelo (85)

Durvalumab plus
tremelimumab

Advanced or
metastatic
osteosarcoma

Phase 2 5
Single arm,
single center

12-w PFS, 0% 2022
Neeta
Somaiah (86)

Radiotherapy Radium 223
Recurrent/metastatic
osteosarcoma

Phase 1 18
Single arm,
multiple
center

Median OS, 25 w 2019
Vivek
Subbiah (87)
ORR, objective response rate; PFS, progression free survival; DCR, disease control rate; OS: overall survival; RFS, recurrent free survival; BOR, best of response; EFS, event-free survival.
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downregulation of the Wnt signaling pathway (89). CDK12 has

been reported to facilitate genome stability through the regulation

of DDR genes; accordingly, the CDK12 inhibitors THZ531 and E9

were found to disrupt osteosarcoma metastasis (90). BMTP-11

targets IL-11R a and inhibits osteosarcoma tumor growth and

lung metastasis (91). A quinoline-based DNA methyltransferase

inhibitor can induce cell cycle arrest and osteoblastic differentiation
Frontiers in Oncology 08
in osteosarcoma. It also showed synergistic effects with doxorubicin

and cisplatin in treating osteosarcoma (92).

Approved drugs with newly discovered anti-
metastatic roles

Drugs previously FDA-approved for other indications have

been reported to inhibit osteosarcoma progression and metastasis.
TABLE 2 Ongoing clinical trials involving patients with metastatic osteosarcoma.

Intervention type Interventions Phases Enrollment Status NCT
Number

Chemotherapy

Methotrexate, Doxorubicin, Cisplatin, Ifosfamide, and Etoposide
(MAPIE) with or without Zoledronic acid

Phase 3 318
Active, not
recruiting

NCT00470223

Drug: Ascorbate
Early
Phase 1

20 Recruiting NCT04634227

Drug: Doxorubicin Phase 1 11
Active, not
recruiting

NCT02811523

Chemotherapy
+immunotherapy

Drug: Mifamurtide|Combination Product: EI or M-API regimen
depending on patient age

Phase 2 126 Recruiting NCT03643133

Drug: Cyclophosphamide|Drug: attIL2-T cells Phase 1 40
Not yet
recruiting

NCT05621668

Genetic: GD2 T cells|Biological: VZV vaccine|Drug: Fludarabine|Drug:
Cyclophosphamide

Phase 1 26
Active, not
recruiting

NCT01953900

Chemotherapy
+targeted therapy

Drug: Chemotherapy (gemcitabine and docetaxel) plus BIO-11006 Phase 2 10
Active, not
recruiting

NCT04183062

Methotrexate, Doxorubicin, and Cisplatin (MAP) with or without
Cabozantinib

Phase 2|
Phase 3

1,122
Not yet
recruiting

NCT05691478

Drug: Apatinib|Drug: GD regimen Phase 2 43
Active, not
recruiting

NCT03742193

Drug: carboplatin|Drug: dasatinib|Drug: etoposide phosphate|Drug:
ifosfamide

Phase 1|
Phase 2

7
Active, not
recruiting

NCT00788125

Immunotherapy

Biological: Dinutuximab|Biological: Sargramostim Phase 2 41
Active, not
recruiting

NCT02484443

Biological: Denosumab Phase 2 56
Active, not
recruiting

NCT02470091

Biological: Durvalumab|Biological: Oleclumab Phase 2 75 Recruiting NCT04668300

Biological: Aerosolized Aldesleukin Phase 1 70
Active, not
recruiting

NCT01590069

Drug: Iscador*P Phase 2 32
Not yet
recruiting

NCT05726383

Biological: Ipilimumab|Biological: Nivolumab|Other: Quality-of-Life
Assessment

Phase 2 164
Active, not
recruiting

NCT02500797

Radiotherapy Drug: Iodine I 131 MOAB 8H9 Phase 1 120
Active, not
recruiting

NCT00089245

Targeted thearpy
+immunotherapy

Biological: Atezolizumab|Drug: Cabozantinib Phase 2 40
Not yet
recruiting

NCT05019703

Drug: Regorafenib 40 MG|Drug: Regorafenib 20MG|Drug: Nivolumab Phase 2 48 Recruiting NCT04803877

Targeted therapy

Drug: Natalizumab
Phase 1|
Phase 2

20 Recruiting NCT03811886

Drug: Cabozantinib S-malate Phase 2 90
Active, not
recruiting

NCT02243605

Drug: Regorafenib|Drug: Placebo Phase 2 132 Recruiting NCT02389244
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The FDA-approved DNA methylation inhibitor decitabine has

demonstrated the ability to decrease proliferation, induce

osteoblast differentiation, and reduce metastasis to visceral organs.

Decitabine exposure in osteosarcoma reduces the protein

expression of the metastasis-associated markers VIMENTIN,

SLUG, ZEB1, and MMP9, with a concurrent decrease in mRNA

expression of the known stem cell markers SOX2, OCT4, and

NANOG. Normal osteoblasts express estrogen receptor a (ERa),
whereas osteosarcoma cells do not due to promoter DNA

methylation. Treatment of 143B osteosarcoma cells with

decitabine led to ERa expression and decreased proliferation and

induction of osteoblast differentiation (93).

Pramlintide, an FDA-approved drug for type 2 diabetes, was

found to inhibit glycolysis and osteosarcoma tumor growth both in
Frontiers in Oncology 09
vitro and in vivo by inducing apoptosis (94). Melatonin attenuates

chemokine CCL24 levels through inhibition of the JNK pathway to

hinder human osteosarcoma cell invasion (95). All-trans retinoic

acid prevents osteosarcoma metastasis by inhibiting M2

polarization of tumor-associated macrophages (96).
Bioactive nanoparticles
Bioactive nanoparticles (NPs), such as gold NPs, copper oxide

NPs, iron oxide NPs, and zinc oxide nanoparticles (ZnO NPs), have

been recently discovered to possess significant tumor-suppressing

roles (97–99). ZnO NPs can inhibit osteosarcoma metastasis by

degrading b-catenin in the HIF-1 a/BNIP3/LC3B-mediated

mitophagy pathway (100).
FIGURE 3

Novel therapies that have demonstrated anti-metastatic effects in osteosarcoma in preclinical studies.
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Traditional Chinese medicine agents
The anti-tumor roles of traditional Chinese medicines and

herbs have been explored in osteosarcoma. Ailanthone (AIL), a

major component of the Chinese medicine Ailanthus altissima, can

induce metabolic reprogramming in osteosarcoma, leading to

growth inhibition both in vitro and in vivo. Molecularly, AIL

induces cell cycle arrest and apoptosis in osteosarcoma cells by

downregulating the serine biosynthetic pathway (101). Other

natural compounds or herbs such as degalactotigonin (102) and

shikonin (103) have also been reported to inhibit osteosarcoma

growth and metastasis.
Navigating the challenges of osteosarcoma

Osteosarcoma research is particularly challenging (Figure 4). The

low prevalence of osteosarcoma makes the conducting of rigorous

clinical trials especially challenging. Heterogeneity within and between

patient tumors also limits the generalizability of study findings.

Thankfully, advancements in biotechnology and molecular techniques

have paved the way for solutions to some of these challenges. For

example, patient-derived xenograft models and organoid cultures have

emerged as viable cancer models for experimentation, offering increased

biomimicry, which should lead to stronger correlations with patient

outcomes. Furthermore, detailed molecular characterization of
Frontiers in Oncology 10
osteosarcoma has allowed for the development of personalized

therapies that target specific biomarkers and patient genomic profiles,

increasing efficacy of potential treatments.
Conclusion

We reviewed the current literature on contributors to

osteosarcoma metastasis, including genomic and epigenomic

changes, metabolic reprogramming, transcription factors,

dysregulation of physiologic pathways, and alterations to the

tumor microenvironment. In addition, we discussed potential

emerging therapies to suppress osteosarcoma metastasis. Further

research on the molecular mechanisms of osteosarcoma metastasis,

combined with growing molecular technologies, can inform the

development of novel, personalized, and targeted therapies to

ultimately improve outcomes in osteosarcoma patients.
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98. Soto KM, Luzardo-Ocampo I, López-Romero JM, Mendoza S, Loarca-Piña G,
Rivera-Muñoz EM, et al. Gold nanoparticles synthesized with common mullein
(Verbascum thapsus) and castor bean (Ricinus communis) ethanolic extracts
displayed antiproliferative effects and induced caspase 3 activity in human HT29 and
SW480 cancer cells. Pharmaceutics Switzerland; (2022) 14. doi: 10.3390/
pharmaceutics14102069

99. Alshawwa SZ, Mohammed EJ, Hashim N, Sharaf M, Selim S, Alhuthali HM,
et al. In Situ Biosynthesis of reduced alpha hematite (a-Fe(2)O(3)) nanoparticles by
stevia rebaudiana l. leaf extract: insights into antioxidant, antimicrobial, and anticancer
properties. Antibiot (Basel Switzerland) Switzerland; (2022) 11.

100. He G, Nie J-J, Liu X, Ding Z, Luo P, Liu Y, et al. Zinc oxide nanoparticles
inhibit osteosarcoma metastasis by downregulating b-catenin via HIF-1a/BNIP3/
LC3B-mediated mitophagy pathway. Bioact Mater (2023) 19:690–702. doi: 10.1016/
j.bioactmat.2022.05.006

101. Zhang Y, Gong R, Liu Y, Sun X, Liang J, Zhou Y, et al. Ailanthone inhibits
proliferation, migration and invasion of osteosarcoma cells by downregulating the
serine biosynthetic pathway. Front Oncol Switzerland; (2022) 12:842406. doi: 10.3389/
fonc.2022.842406

102. Zhao Z, Jia Q, Wu M-S, Xie X, Wang Y, Song G, et al. Degalactotigonin, a
natural compound from solanum nigrum l., inhibits growth and metastasis of
osteosarcoma through GSK3b inactivation-mediated repression of the Hedgehog/
Gli1 pathway. Clin Cancer Res United States; (2018) 24:130–44. doi: 10.1158/1078-
0432.CCR-17-0692

103. Li S, Zhang T, Xu W, Ding J, Yin F, Xu J, et al. Sarcoma-targeting peptide-
decorated polypeptide nanogel intracellularly delivers shikonin for upregulated
osteosarcoma necroptosis and diminished pulmonary metastasis. Theranostics.
(2018) 8:1361–75. doi: 10.7150/thno.18299
frontiersin.org

https://doi.org/10.1016/S1470-2045(18)30742-3
https://doi.org/10.1016/S1470-2045(18)30742-3
https://doi.org/10.1200/JCO.18.02374
https://doi.org/10.1200/JCO.18.02374
https://doi.org/10.1016/j.ejca.2022.05.035
https://doi.org/10.1016/j.ejca.2022.05.035
https://doi.org/10.1038/s41416-021-01448-0
https://doi.org/10.1038/s41416-021-01448-0
https://doi.org/10.1016/j.ejca.2022.09.003
https://doi.org/10.1016/S1470-2045(17)30624-1
https://doi.org/10.1158/1078-0432.CCR-15-0491
https://doi.org/10.1007/s12032-017-1052-9
https://doi.org/10.1007/s12032-017-1052-9
https://doi.org/10.1038/s41467-022-30874-8
https://doi.org/10.1016/S1470-2045(22)00392-8
https://doi.org/10.1158/1078-0432.CCR-18-3964
https://doi.org/10.1158/1078-0432.CCR-19-1418
https://doi.org/10.1093/jnci/djz026
https://doi.org/10.1172/JCI127718
https://doi.org/10.1073/pnas.1704173114
https://doi.org/10.1158/1535-7163.MCT-17-0818
https://doi.org/10.1158/0008-5472.CAN-18-1255
https://doi.org/10.3390/cancers14174310
https://doi.org/10.1111/jpi.12507
https://doi.org/10.1158/2326-6066.CIR-16-0259
https://doi.org/10.1158/2326-6066.CIR-16-0259
https://doi.org/10.3390/nano12193324
https://doi.org/10.3390/pharmaceutics14102069
https://doi.org/10.3390/pharmaceutics14102069
https://doi.org/10.1016/j.bioactmat.2022.05.006
https://doi.org/10.1016/j.bioactmat.2022.05.006
https://doi.org/10.3389/fonc.2022.842406
https://doi.org/10.3389/fonc.2022.842406
https://doi.org/10.1158/1078-0432.CCR-17-0692
https://doi.org/10.1158/1078-0432.CCR-17-0692
https://doi.org/10.7150/thno.18299
https://doi.org/10.3389/fonc.2023.1117867
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

	Molecular mechanisms of osteosarcoma metastasis and possible treatment opportunities
	Introduction
	Tumor cell alterations
	Genomic alterations
	Epigenomic changes
	Metabolic reprogramming
	Dysregulated pathways
	Wnt/β-catenin signaling pathway
	C-Jun-MMP9/Bcl-2 pathway
	Rho GTPases
	JAK-STAT pathways

	Transcription factors

	Tumor microenvironment
	Results of the recent clinical trials of advanced or metastatic osteosarcoma
	Ongoing clinical trials

	Discussion
	Emerging treatment options
	Inhibitors targeting key metastasis-promoting proteins
	Approved drugs with newly discovered anti-metastatic roles
	Bioactive nanoparticles
	Traditional Chinese medicine agents

	Navigating the challenges of osteosarcoma

	Conclusion
	Author contributions
	Funding
	Acknowledgments
	References


