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Background: Architectural distortion (AD) is a common imaging manifestation of

breast cancer, but is also seen in benign lesions. This study aimed to construct

deep learning models using mask regional convolutional neural network (Mask-

RCNN) for AD identification in full-field digital mammography (FFDM) and

evaluate the performance of models for malignant AD diagnosis.

Methods: This retrospective diagnostic study was conducted at the Second

Affiliated Hospital of Guangzhou University of Chinese Medicine between

January 2011 and December 2020. Patients with AD in the breast in FFDM

were included. Machine learning models for AD identification were developed

using the Mask RCNN method. Receiver operating characteristics (ROC) curves,

their areas under the curve (AUCs), and recall/sensitivity were used to evaluate

the models. Models with the highest AUCs were selected for malignant AD

diagnosis.

Results: A total of 349 AD patients (190 with malignant AD) were enrolled.

EfficientNetV2, EfficientNetV1, ResNext, and ResNet were developed for AD

identification, with AUCs of 0.89, 0.87, 0.81 and 0.79. The AUC of

EfficientNetV2 was significantly higher than EfficientNetV1 (0.89 vs. 0.78,

P=0.001) for malignant AD diagnosis, and the recall/sensitivity of the

EfficientNetV2 model was 0.93.

Conclusion: The Mask-RCNN-based EfficientNetV2 model has a good

diagnostic value for malignant AD.

KEYWORDS

deep learning, convolutional neural network, artificial intelligence, malignant
architectural distortion, full-field digital mammography
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1 Introduction

Breast cancer is the most common malignancy in women,

ranking the highest incidence among women in the world (1, 2).

According to the latest global cancer burden data, the number of

new breast cancer cases worldwide reached 2.26 million in 2020,

surpassing lung cancer and becoming the most common cancer in

the world (1, 2).

Breast cancer screening with mammography is considered

effective at reducing breast cancer-related mortality (3, 4). The

common imaging manifestations of breast cancer are masses and

calcification, followed by architectural distortion (AD). It is

sometimes the only manifestation of breast cancer and has

important imaging value. On the other hand, AD is seen in

malignant and benign lesions (such as sclerosing adenosis, radial

scar, postoperative scar, and fat necrosis after trauma, among

others). AD is a structural deformation without a defined mass in

breast tissue as a fine line or protrusion radiating from a point and a

focal contraction, twisted or stiff at the edge of the parenchymal

gland (5). AD is more subtle relative to masses and calcification

with clear boundaries. AD lesions are often poorly defined, overlap

and cover with normal glands, and the lesions are not easy

to identify.

There are no established noninvasive standards for the

distinction between benign and malignant AD. The literature

reported different diagnostic efficacy of various imaging methods

for cancer manifesting as AD, such as magnetic resonance imaging

(MR) (6), digital breast tomosynthesis (DBT) (7), contrast

enhanced spectral mammography (CESM) (8), and the positive

predictive value (PPV) varies 34%-88% (8, 9). Amitai et al. reported

that the specificity of MRI for AD diagnosis was 68%, and the

overall accuracy was 73% (6). Goh et al. reported that the accuracy

of CEDM for malignant AD was 72.5% (10). Patel et al. reported

that the accuracy of CESM for malignant AD was 82% (8). However

the judgment of benign and malignant AD lesions is still difficult

for radiologists.

Recently, artificial intelligence (AI) algorithms have been

extensively applied in the medical field. Available artificial

intelligence (AI) including radiomics and deep learning have been

applied to analyze images for detection and diagnosis of lesions in

various clinical applications (11–13). Available AI is advanced and

approach radiologists’ performance, especially for mammography (7).

The Mask Regional CNN (Mask-RCNN) (14, 15) is a deep

neural network aimed at solving instance segmentation problems in

machine learning. It effectively combines the two tasks of target

detection and image segmentation. However, limited Mask RCNN-

based deep learning have been developed for AD identification and

malignant AD diagnosis. Rehman et al. recently developed an

automated computer-aided diagnostic system using computer

vision and deep learning to predict breast cancer based on the

architectural distortion on DM and reported great accuracy (16).

Xiao et al. proposed two AI methods, radiomics and deep learning,

to build diagnostic models for patients presenting with architectural

distortion on Digital Breast Tomosynthesis (DBT) images (17).
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Although DBT can provide better spatial information for

detection and characterization of architectural distortion, many

hospital breast X-ray examination are still 2D mammography

because of economic reasons not updated equipment timely.

Fortunately, AI can be applied to develop fully-automatic

computer-aided diagnostic systems (18, 19) and help radiologists

improve the diagnostic efficiency (20). Yun et al. underscore the

potential of using deep learning methods to enhance the overall

accuracy of pretest mammography for malignant AD (20).

Therefore, this study aimed to construct and optimize deep

learning models by Mask-RCNN for AD identification in FFDM

and evaluate the performance of models for the diagnosis of

malignant AD.
2 Materials and methods

2.1 Study design and participants

This retrospective diagnostic study was conducted at the Second

Affiliated Hospital of Guangzhou University of Chinese Medicine

between January 2011 and December 2020. Patients with breast AD

in full-field digital mammography (FFDM) were included. The

inclusion criteria were 1) AD according to the fifth edition of the

breast imaging reporting and data system (BI-RADS) diagnostic

criteria for architectural distortion (5) and 2) available surgical or

biopsy pathological results. The exclusion criteria were 1) patients

with obvious mass in the breast or 2) incomplete clinical data or

images. Finally, a total of 349 patients were included in this study.

Each patient on one side of the breast image contains at least one

AD lesions.
2.2 Data collection and image annotation

The demographic information and clinical characteristics of the

patients were collected, including age, menopause status, pathology,

childbirth history, menopausal age, and surgical history. The

mammogram images were collected from the Giotto FFDM

system (internazionale medico scientifica, IMS, Bologna, Italy).

The images for each patient were taken in four standard views:

right craniocaudal (R-CC), left craniocaudal (L-CC), right

mediolateral oblique (R-MLO), and left mediolateral oblique (L-

MLO). The images from the eligible patients were exported to the

computer in medical digital imaging and communication (DICOM)

format for data anonymization. All images were re-screened to

remove substandard images (i.e., incomplete image sequences, poor

image quality, artifacts, and cases with clear masses). A total of six

radiologists participated in the image processing, and they were

divided into three groups, each group including a junior and a

senior radiologist. The AD structures on images were outlined and

annotated by a group of two experienced radiologists with the ITK-

SNAP software (version 3.8). The outlined scope had to include all

lesions (such as AD with calcification or asymmetry). The breast
frontiersin.org
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fibroglandular tissue (FGT) and imaging features of the lesions

including size of lesion, calcification and BI-RADS classification

were recorded.

The segmented images were saved in the “.nii” format, and the

Python code was used to calculate the regions of interest (ROI) and

intersection over union (IOU) to assess the consistency of focal

delineation. IOU was calculated according to Equation 1, with A

and B representing the ROI area delineated by different radiologists.

Images with IOU >0.5 were included in the study (Figure 1A), and

images with IOU <0.5 were redelineated (Figure 1B). All six

radiologists participated in the redelineation process, reviewed the

film again, and delineated the image again after reaching an

agreement (Figure 1C). Typical malignant and benign AD images

are shown in Figures 1D, E.
Frontiers in Oncology 03
IOU =
A ∩ B
A ∪ B

(1)
2.3 Deep learning model construction

The Mask RCNN was used to construct deep learning models in

this study. A combination of training-aware neural architecture

search and scaling was used to optimize training speed jointly and

to develop these models. The image size of the mammograms used

in this study was 2816×3584 pixels. In order to better detect and

classify the benign and malignant AD lesions, the images were first

scaled to 1024×1024, and Mask RCNN was used to detect and

segment the breast AD lesions. There are two stages of Mask
FIGURE 1

Typical images and image annotation of architectural distortion. (A) With intersection over union (IOU) > 0.5, the image was successfully delineated
and included in the model training. The red outlined area was marked by the senior radiologist, and the green outlined area was marked by the
junior radiologist. (B) With IOU <0.5, the image was re-delineated. The red outlined area was marked by the senior radiologist, and the green
outlined area was marked by the junior radiologist. (C) The green outlined area represents the lesion area delineated by the radiologists, the yellow
area represents the machine identification area, and the red box is the lesion range identified by machine learning models. (D) FFDM images of a 45-
year-old female diagnosed with malignant AD (write arrow). The BI-RADS score is 4C. The pathology was invasive ductal carcinoma. Limited stiffness
was seen on the right breast andspiculated margins. (E) FFDM images of 64-years-old female with benign AD (write arrow). The BI-RADS score is
4C.The pathology was Complex sclerosinglesion. Stellate shadow and scattered cord were seen on the left breast.
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RCNN. Both stages are connected to the backbone structure, which

is an FPN neural network that consists of a bottom-up pathway, a

top-bottom pathway, and lateral connections. The bottom-up

pathway can be any ConvNet and Transformer, such as ResNet,

ResNext (21, 22), EfficientNetV1 and EfficientNetV2, which

extracts the features from raw images. As a network for extracting

features, the performance of ResNet and EfficientNet is widely

recognized. The ResNet network solves the problem of gradient

explosion and training overfitting caused by too deep a network.

The ResNext network adds more branches on the basis of ResNet,

thereby improving the network’s ability to learn features.

EfficientNet V1 and V2 networks use the function of network

search on the basis of ResNet, and further enhance the performance

and efficiency of the network through parameter combinations. The

top-bottom pathway generates a feature pyramid map similar in

size to the bottom-up pathway. Lateral connections are

convolutions and adding operations between two corresponding

levels of the two pathways.

After extracting the ROI of the AD lesions, the ROI was restored

to its original image size. A square area containing the lesion area

was extracted from the center of the lesion (Figure 1C), and the

network was used for benign and malignant classification.
2.4 Data preprocessing and model training

First, the DICOM data was converted into 16-bit PNG. Then,

the image was processed by data augmentation and normalization.

Data augmentation includes geometric transformations, color space

augmentations, kernel filters, mixing images, and random erasing.

Data augmentation can expand samples, prevent overfitting, and

improve model robustness. During training, the random erasing

method randomly selects a rectangular area in the original image.

Then replace the pixels in that area with random values. For the

detected and segmented network, the augmented and normalized

image and label were scaled to 1024×1024. The ROI of AD lesions is

realized by the segmentation algorithm. For the classification of the

benign and malignant lesions, lesions often only occupy a small part

of the image, so AD lesions are extracted according to the detected

ROI, and then the extracted image is scaled to 512×512. Then, 349

patients with 1396 valid images were obtained (349×2×2 = 1396).

There were 698 images on one side of the breast with 708 AD

lesions in total, with more than one AD lesion detected in some

images, and 698 images of contralateral breast without AD lesion.

Among all patients, 60% were randomly selected as the training

set,20% as the test set, and the other 20% as the validation set. A

total of 209 patients with 836 validated images were included in the

training set, while 70 patients with 280 images were included in the

test set and the same images for the validation set. The training set

was used for model training and parameter learning of the model

and automatically saved the best model at any time and processed

all training data during training. The test set was used for evaluating

the diagnostic performance of models. The validation set was

applied to save the best model parameters during training and

guide the choice of parameters and models.
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When training the Mask RCNN, four feature extraction

networks were selected for comparison: EfficientNetV2,

EfficientNetV1, ResNet, and ResNext. During training, Mask

RCNN used the multi-task loss, including CrossEntropy Loss for

category loss, L1 loss for regression box loss function, and

CrossEntropy Loss for the mask loss function. After 50 epochs of

training, four network model weights with the best performance in

the validation set were obtained. The models with the highest AUC

for AD identification were selected as the backbone of Mask RCNN

for malignant AD identification. The pathological diagnosis was

used as the gold standard for malignant AD diagnosis. The process

of Mask RCNNmodel training and model validation for benign and

malignant AD classification is shown in Figure 2.
2.5 Statistical analysis

Statistical analysis was performed with SPSS 22.0 (IBM, Armonk,

NY, USA). The normality test was performed using the Kolmogorov-

Smirnov test. Continuous variables with a normal distribution were

described as means ± standard deviation (SD) and compared using

Student’s t-test. Continuous variables with a skewed distribution were

described as median (interquartile range) and compared using

Mann-Whitney U-test. Categorical data were presented as n (%)

and compared with the chi-square test or Fisher’s exact test. The

diagnostic performance of the models was evaluated in the validation

set. The receiver operating characteristic (ROC) curve and area under

the ROC curve (AUC) were determined, and the Delong test was

used for the comparison of AUC. Accuracy, specificity, precision,

recall/sensitivity, F1-score, Dice, and Jacc were selected as

performance metrics of the deep learning models (Supplementary

Material). In addition, 95% confidence intervals (CI) were calculated.

Two-sided P-values <0.05 were considered statistically significant.
3 Results

A total of 349 patients were included: 159 with benign AD and

190 with malignant AD. Patients with malignant AD were aged 49.0

(43.0-56.0) years, and 102 (53.7%) patients were menopausal.

Patients with benign AD were aged 48.0 (43.0-52.0) years, and 62

(36.7%) patients were menopausal. There were no differences

between the two groups for age (P=0.26), but significantly more

patients with malignant AD were menopausal (P=0.01) (Table 1).

The maximum diameter and vertical diameter of malignant AD are

greater than benign AD. The median of maximum diameter and

vertical diameter of malignant AD was 1.7cm/1.3cm, the benign AD

was 1.1cm/0.9cm. Benign and malignant AD patients had different

distributions of FGT (P=0.02) and BI-RADS classification

(P<0.001). There were no differences in calcification between the

two groups (P=0.23) (Table 1). In the malignant group, 116 (61.1%)

patients had invasive ductal carcinoma (IDC), 12 (6.3%) had

invasive lobular carcinoma (ILC), eight (4.2%) had ductal

carcinoma in situ (DCIS), one (0.5%) had mucinous carcinoma,

two had medullary carcinoma (1.1%), 12 had mixed carcinomas
frontiersin.org
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(6.3%), and 39 cases were recorded as “breast malignancy” without

detailed pathology (the malignant pathology of the 39 cases were

further confirmed by a telephone follow-up) (Table 2). In the

benign group, 92 (57.9%) patients had breast fibrocystic

hyperplasia, 17 (10.7%) had postoperative scars, 34 (21.4%) had a

radial scar or sclerosing lesion, nine (5.7%) had benign tumors, one
Frontiers in Oncology 05
(0.6%) had chronic mastitis, and six (3.8%) had breast

fibromatosis (Table 2).

The accuracy, precision, recall/sensitivity, F1-score, Dice, Jacc

of EfficientNetV2 for AD identification were 0.80, 0.91, 0.66, 0.77,

0.64, and 0.51, while those of EfficientNetV1 were 0.79, 0.84, 0.69,

0.76, 0.63, and 0.50, respectively (Table 3). The accuracy of ResNext,
TABLE 1 Demographic information and image features of AD patients.

Characteristics Malignant AD
(n = 190)

Benign AD
(n = 159)

P value

Age (IQR range), years 49.0 (43.0-56.0) 48.0 (43.0-52.0) 0.26

Menopause, n (%) 102 (53.7%) 62 (36.7%) 0.01

Size of AD (L/H cm)
(median)

1.7/1.3 1.1/0.9

FGT 0.02

Almost entirely fatty 1 (0.5%) 2 (1.3%)

Scattered densities 38 (20.0%) 19 (11.9%)

Heterogeneous dense 146 (76.8%) 126 (79.2%)

Extremely dense 5 (2.63%) 12 (7.5%)

BI-RADS classification <0.001

II 6 (3.2%) 10 (6.3%)

III 1 (0.5%) 8 (5.0%)

IVa 3 (1.6%) 15 (9.4%)

IVb 3 (1.6%) 2 (1.3%)

IVc 67 (35.3%) 115 (72.3%)

V 110 (57.9%) 9 (5.7%)

Calcification, n (%) 115 (60.5%) 91 (53.9%) 0.23
fron
AD, architectural distortion; IQR, interquartile range; FGT, fibroglandular tissue. L/H, the median of maximum diameter/maximum vertical diameter of AD.
A B

FIGURE 2

Flow chart of Mask RCNN model training and validation for benign and malignant AD classification. (A) The process of Mask RCNN model
construction and training. (B) The validation of Mask RCNN models for AD classification.
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and ResNet for AD identification were 0.73 and 0.72, respectively

(Table 3). The AUCs of EfficientNetV2, EfficientNetV1, ResNext,

and ResNet for AD identification were 0.89 (95% CI: 0.83-0.96),

0.87 (95% CI: 0.78-0.93), 0.81 (95% CI: 0.71-0.88), and 0.79 (95%

CI: 0.70-0.88), respectively (Figure 3A). The EfficientNetV2 model

had significantly higher AUC for AD identification than ResNet and

ResNext (P=0.005 and P=0.028, respectively), and there was no

significant difference in AUC between EfficientNetV2 and

EfficientNetV1 in AD identification (P=0.125). Therefore,

EfficientNetV2 and EfficientNetV1 were selected as the models

for malignant AD diagnosis.

The AUC of EfficientNetV2 (AUC=0.89, 95% CI: 0.81-0.95) was

significantly higher than that of EfficientNetV1 (AUC=0.78, 95%

CI: 0.68-0.86) for malignant AD diagnosis (P=0.001) (Figure 3B).
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The accuracy, precision, recall/sensitivity, F1 score, and specificity

of EfficientNetV2 for malignant AD diagnosis were 0.84, 0.83, 0.93,

0.84, and 0.74, while those of EfficientNetV1 were 0.82, 0.87, 0.77,

0.82, and 0.87, respectively (Table 4).
4 Discussion

This study constructed four deep learning models based on the

Mask RCNN method for AD identification, and the EfficientNetV2

model has a great diagnostic value for malignant AD, with an AUC

of 0.89 and recall/sensitivity of 0.93. The EfficientNetV2 model

might help radiologists in malignant AD diagnosis, decreasing the

need for invasive diagnostic procedures.

Identifying subtle lesions in mammography screening is

challenging, with 12.5% of malignancies missed in clinical

practice (23, 24). In this study, 110 out of 190 malignant ADs

were diagnosed as BI-RADS 5 grade, mainly because the images

included typical malignant morphological features or malignant

calcification with obvious malignant features. On the other hand,

132 of 159 benign AD were diagnosed with BI-RADS with grade 4,

with 115 diagnosed with 4c and nine with grade 5, with a high rate

of misdiagnosis as malignant lesions (Figures 1D, E). From these

two images, both lesions had typical spiculated margins which the

radiologists considered malignancy. Because spiculated margins of

radiologically detected masses have been well-known morphologic

criteria for breast malignancy (25, 26). However, the pathological

findings were IDC and sclerosing lesion. It suggested that

radiologists could find AD signs in FFDM, but the accuracy of

benign vs. malignant differentiation was low, with many cases

misdiagnosed as malignant lesions. Therefore, it is of great

difficulty for radiologists to identify the AD lesions and

differentiate between benign and malignant AD simply based on

the morphological characteristics of FFDM observed by the

naked eyes.

In routine clinical work, it is necessary to confirm imaging

lesions using other imaging methods, such as DBT, Contrast-

enhanced mammography (CEM), ultrasound, and MRI, and often
TABLE 2 Pathology of AD patients with architectural distortion.

Pathology Cases (n%)

Malignant AD
IDC
ILC

190
116 (61.1%)
12 (6.3%)

DCIS 8 (4.2%)

mucinous carcinoma 1 (0.5%)

medullary carcinoma 2 (1.1%)

mixed carcinoma 12 (6.3%)

confirmed malignancy without detailed pathology 39 (20.5%)

Benign AD 159

fibrocystic hyperplasia 92 (57.9%)

postoperative scar 7 (10.7%)

radial scar or sclerosing lesion 34 (21.4%)

benign tumor 9 (5.7%)

chronic mastitis 1 (0.6%)

breast fibromatosis 6 (3.8%)
AD, architectural distortion; IDC, invasive ductal carcinoma; ILC, invasive lobular carcinoma;
DCIS, ductal carcinoma in situ.
TABLE 3 Diagnostic performances of different models for AD identification.

Validation Set ResNext Resnet EfficientNetV1 EfficientNetV2

Accuracy 0.73 (0.62-0.84) 0.72 (0.51-0.85) 0.79 (0.68-0.89) 0.80 (0.72-0.94)

Precision 0.74 (0.62-0.84) 0.75 (0.53-0.90) 0.84 (0.80-0.95) 0.91 (0.84-0.98)

Recall/Sensitivity 0.68 (0.54-0.80) 0.64 (0.42-0.82) 0.69 (0.56-0.84) 0.66 (0.52-0.74)

F1-score 0.71 (0.60-0.80) 0.69 (0.46-0.89) 0.76 (0.66-0.90) 0.77 (0.68-0.90)

Dice 0.61 (0.32-0.91) 0.60 (0.27-0.94) 0.63 (0.24-0.90) 0.64 (0.27-0.91)

Jacc 0.49 (0.26-0.80) 0.48 (0.24-0.96) 0.50 (0.17-0.82) 0.51 (0.23-0.84)

AUC 0.81 (0.71-0.88) 0.79 (0.70-0.88) 0.87 (0.78-0.94) 0.89 (0.83-0.96)

AUC value differences between models 0.08 (0.01-0.20)
(P=0.028)

0.10 (0.03-0.18)
(P=0.005)

0.02 (-0.01-0.10)
(P=0.125)

Reference
AD, architectural distortion; AUC, area under the curve.
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an invasive diagnostic method must be performed in case of doubt.

It is reported that the negative predictive value of contrast-

enhanced MRI (CEMR) is 100% (6), which can help exclude

malignant lesions, but CEMR had a low positive predictive value

of 30%. It is also reported that the sensitivity, specificity, PPV, and

NPV of Contrast-enhanced digital mammography (CEDM) are

100%, 42.6%, 48.5%, and 100% (10) for the diagnosis of malignant

AD, respectively. Although the sensitivity of CEMR and CEDM

examination is high, they had low positive predictive values, which

means that not all the enhanced lesions are malignant, and some are

benign lesions. Therefore, even the use of complementary imaging

can remain inconclusive. MRI and CEM in routine breast

diagnostic tests or screening are not currently standard for AD

testing, given the lack of cost-effectiveness and exact diagnostic

efficacy (9). A biopsy can provide pathological results, but as an

invasive procedure with risks, it brings anxiety to patients and has a

chance of a missed diagnosis of malignant foci. Therefore, it is

clinically meaningful to find other methods to improve the

diagnosis of AD without biopsy.

The fifth edition of the BI-RADS recommends that malignant

lesions should be suspected without a definite trauma or surgical

history, and further biopsy is recommended (5). Surgical excision has

long been advocated for managing DM-detected AD, but more recent
Frontiers in Oncology 07
evidence suggests that surgical excision of DM-detected AD is not

necessary in certain nonmalignant cases, such as when needle biopsy

yields radial scar without associated atypia (27–29). Some authors

have also proposed that managing nonmalignant architectural

distortion on DBT remains controversial; imaging surveillance can

be considered for AD on DBT yielding radial scar without atypia or

other concordant benign pathologies without atypia at biopsy (30). A

biopsy can sometimes provide error pathological results because the

needle can sample tissues besides the malignant foci. Therefore, it is

clinically meaningful to find other methods to improve the diagnosis

of malignant AD without biopsy.

This study aimed to construct an AI model with good diagnostic

value for malignant AD. In this study, we built a lesion extraction

algorithm corresponding to malignant AD and computed its

performance, and at the same time, we used the advanced

EfficientNet convolutional neural network with higher computing

efficiency and better generalization ability. EfficientNet is based on a

lightweight convolutional neural network, which has better model

compression ability. It can be widely used in mobile image

recognition, object detection, image segmentation, and other

tasks, and can meet the more stringent limitations of computing

resources (31–34). The EfficientNetV2 model had an accuracy of

0.84, precision of 0.83, recall/sensitivity of 0.93, and F1 score of 0.84
A B

FIGURE 3

Comparison of receiver operating characteristics (ROC) curves of deep learning models. (A) ROC curves of the EfficientNetV1, EfficientNetV2,
ResNet, and ResNext models for architectural distortion identification. (B) ROC curves of the EfficientNetV1 and EfficientNetV2 models for malignant
architectural distortion diagnosis.
TABLE 4 The diagnostic performance of EfficientNetV2 and EfficientNetV1 for malignant AD.

Validation set EfficientNetV2 EfficientNetV1

Accuracy 0.84 (0.77-0.95) 0.82 (0.72-0.90)

Precision 0.83 (0.72-0.93) 0.87 (0.80-0.96)

Recall/Sensitivity 0.93 (0.83-0.98) 0.77 (0.65-0.88)

F1 score 0.84 (0.77-0.95) 0.82 (0.72-0.90)

Specificity 0.74 (0.62-0.92) 0.87 (0.75-0.95)

AUC 0.89 (0.81-0.95) 0.78 (0.68-0.86)

AUC value differences between models 0.11 (0.04-0.18) (P=0.001) Reference
AD, architectural distortion; AUC, area under the curve.
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for malignant AD diagnosis, indicating a huge application potential

of deep learning models in the diagnosis of malignant AD.

Hand-craft feature extraction techniques showed some value for

determining malignant ADs, but these methods still rely on an

operator detecting the image features (35). We hope to use deep

learning method to establish computer automatic recognition of

image features and diagnostic process, to help radiologists improve

work efficiency and diagnostic accuracy. Murali et al. used a support

vector machine and achieved an accuracy of 90% using 150 AD

ROIs (36). Banik et al. examined 4224 ROIs using the gobar filter

and phase portrait analysis method and achieved a sensitivity of

90% (37). Jasionowska et al. used a complicated two-step approach

(Gobar filter followed by 2-D Fourier transform) and achieved 84%

accuracy (38). Other models also achieved relatively good

accuracies (39, 40). Still, an issue with deep learning is that the AI

model and source of the data can influence the outcomes and that a

model that achieves high accuracy with one database might have

lower performance with another database. Rehman et al. achieved

accuracies of 0.95, 0.97, and 0.98 for the diagnosis of malignant

using a larger amount of mammographies from three different

databases (16). The reason for their better results may be a database

based on larger amounts of data. Fortunately, the increasing

availability of mammography databases will help with the

development of AI. Even though the present study did not

compare multiple imaging methods, the diagnostic accuracy of

the EfficientNetV2 model appears promising. It is hoped that AI

can be continuously developed and improved in the future, and they

may assist radiologists in improving diagnostic accuracy.

This study has some limitations. First, the work is limited by its

retrospective design, which leads to some degree of selection bias.

Second, only one center was involved, limiting the number of cases.

External validation studies are needed. Even with deficiencies, it is

still believed that maximizing the clinical application of AI remains

an ultimate goal for improving breast cancer screening.

In conclusion, the EfficientNetV2 established based on the Mask

RCNN deep learning method has a good diagnostic value for

malignant AD. It might help radiologists with malignant AD

diagnoses. The results underscore the potential of using deep

learning methods to enhance the overall accuracy of mammography

for malignant AD.
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Glossary

AD architectural distortion

Mask-RCNN mask regional convolutional neural network

ROC receiver operating characteristic

AUC areas under the curve

FFDM full-field digital mammography

MRI magnetic resonance imaging

DBT digital breast tomosynthesis

CESM contrast enhanced spectral mammography

CEDM contrast-enhanced digital mammography

CEM contrast-enhanced mammography

CEMR contrast-enhanced magnetic resonance imaging

PPV positive predictive value

NPV negative predictive value

AI artificial intelligence

CNN convolutional neural network

CC Craniocaudal

MLO mediolateral oblique

DICOM digital imaging and communication

FGT fibroglandular tissue

FPN Feature Pyramid Networks

BI-RADS Breast Imaging-Reporting and Data System

ROI regions of interest

IOU intersection over union

PNG Portable Network Graphic

CI confidence intervals

Dice dice similarity coefficient

Jacc Jaccard similarity coefficient

IDC invasive ductal carcinoma

ILC invasive lobular carcinoma

DCIS ductal carcinoma in situ

IQR Inter-Quartile Range
F
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