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Cancer is a disease with ecological and evolutionary unity, which seriously affects

the survival and quality of human beings. Currently, many reports have suggested

Gas6 plays an important role in cancer. Binding of gas6 to TAM receptors is

associated with the carcinogenetic mechanisms of multiple malignancies, such

as in breast cancer, chronic lymphocytic leukemia, non-small cell lung cancer,

melanoma, prostate cancer, etc., and shortened overall survival. It is accepted

that the Gas6/TAM pathway can promote the malignant transformation of

various types of cancer cells. Gas6 has the highest affinity for Axl, an important

member of the TAM receptor family. Knockdown of the TAM receptors Axl

significantly affects cell cycle progression in tumor cells. Interestingly, Gas6 also

has an essential function in the tumormicroenvironment. The Gas6/AXL pathway

regulates angiogenesis, immune-related molecular markers and the secretion of

certain cytokines in the tumor microenvironment, and also modulates the

functions of a variety of immune cells. In addition, evidence suggests that the

Gas6/AXL pathway is involved in tumor therapy resistance. Recently, multiple

studies have begun to explore in depth the importance of the Gas6/AXL pathway

as a potential tumor therapeutic target as well as its broad promise in

immunotherapy; therefore, a timely review of the characteristics of the Gas6/

AXL pathway and its value in tumor treatment strategies is warranted. This

comprehensive review assessed the roles of Gas6 and AXL receptors and their

associated pathways in carcinogenesis and cancer progression, summarized the

impact of Gas6/AXL on the tumor microenvironment, and highlighted the recent

research progress on the relationship between Gas6/AXL and cancer

drug resistance.
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1 Introduction

Cancer is a disease with ecological and evolutionary unity, which

seriously affects the survival and quality of human beings (1). Cancer

cells are described as invasive species and its metastasis as a

multidirectional ecological dispersal. The foundational ecological

principles include intraspecific relationship (e.g communication)

and interspecific relationship (e.g competition, predation,

parasitism and mutualism) are interpreted to understand cancer

progression. In this review, we will mainly introduce the role of the

Gas/AXL signaling in cancer cells, discuss its interaction with the

tumor immune microenvironment, and its relationship with

tumor progression.

Currently, many reports have suggested TAM receptors and

ligands play an important role in cancer. TAM receptor family

members include Tyro3, Axl, MerTK (collectively known as TAM)

(2). The TAM ligand family includes human growth inhibitor

specific 6 (GAS6), PROS1, LGALS3, Tulp-1 etc (3). Typical of

these ligands include GAS6 and PROS1. GAS6 activates all

members of the TAM receptor family, including AXL, while

PROS1 activates only Tyro3 and MerTK (4). GAS6 gene

expresses the Gas6 protein, a vitamin K-binding protein,

originally reported to be upregulated in fibroblasts induced by

growth inhibition under serum starvation conditions (5, 6), and

can activate AXL in a concentration-dependent manner (7),

showing the highest affinity for the Axl among all the TAM

receptor family (8, 9). Gas6 binds to AXL, to regulate cell survival

(10–13), promote tumor cell proliferation and migration, induce

epithelial mesenchymal transition (EMT), inhibit tumor cell

apoptosis, and participate in tumor stem cell maintenance (14–

18) by activating multiple downstream pathways including JAK/

STAT3 (19), PI3K/AKT/mTOR (20), Grb2/RAS/MEK/ERK1/2 (21)

and FAK/Src/NF kappa B (22). In addition, Gas6/AXL shapes the

suppressive tumor immune microenvironment by modulating

angiogenesis in the tumor microenvironment (23), regulates

immune-related molecular markers and controls the secretion of

certain cytokines (24), regulates the functions of multiple immune

cells (25), and interacts with tumor cells, host immune cells, and

abnormal physiological factors (26). In adult normal cells, such as

normal brain tissue, hippocampus, heart and liver, AXL expression

is relatively low (27, 28); however, in certain malignant cells such as

breast cancer, chronic lymphocytic leukemia, non-small cell lung

cancer, melanoma, and prostate cancer cells, AXL is abnormally

overexpressed (29–40), promotes tumor progression and reduces

overall survival. Therefore, AXL may constitute an important

prognostic biomarker and a potential therapeutic target. With the

current review, we discussed the roles of Gas6 and AXL receptors in

carcinogenesis and tumor progression; then we summarized the

effects of the Gas6/AXL axis on the TME; finally, we focused on

recent progress on the relationship between Gas6/AXL and cancer

therapeutic resistance, to provide novel directions for future

experimental design and tumor treatment strategies.
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2 Biological functions of Gas6/AXL

2.1 Gas6

The TAM ligand family includes human growth inhibitor

specific 6 (GAS6), PROS1, LGALS3, Tulp-1 etc (3). Typical of

these ligands include GAS6 and PROS1. GAS6 activates all

members of the TAM receptor family, including AXL, while

PROS1 activates only Tyro3 and MerTK (4). GAS6 is a vitamin

K-dependent protein abundantly expressed in fibroblasts 3T3 cells

induced by growth inhibition under serum starvation conditions

(6). Sequencing of the Gas6 protein by Manfioletti and colleagues

revealed Gas6 is a secreted protein containing 678 amino acids with

a molecular weight of 75 kDa (5, 6). It consists of an N-terminal Gla

structural domain with a disulfide bond-maintained loop behind it,

and four epidermal growth factor (EGF)-like structural domains

next to the loop (41, 42) and a sex hormone-binding globulin

(SHBG)-like structural domain at the C-terminal.
2.2 TAM receptors, especially focusing
on AXL

TAM is the receptor of Gas6. TAM binds to Gas ligands and

exerts multiple effects in diverse cells (2). TAM receptors mainly

regulate cell survival, mediate removal of apoptotic cells through

phagocytes via non-inflammatory reactions, and affect natural killer

cell differentiation and platelet aggregation etc. (29, 43–45). The

TAM receptor family belongs to receptor tyrosine kinases (RTKs),

consisting of the three receptors Axl, MerTK and Tyro3. Gas6 can

activate AXL in a concentration-dependent manner. Furthermore,

Gas6 shows the highest affinity for the Axl receptor in the TAM

family, and it was reported that AXL as one of the receptors has 3-

10 times higher affinity for Gas6 compared with the other two

members (8).

AXL, firstly identified in 1991, is a 140 kDa protein. In adult

normal cells, such as normal brain tissue, hippocampus, heart and

liver, AXL expression is relatively low (27, 28), but AXL levels are

abnormally high in many human cancers, including non-small cell

lung cancer (NSCLC), esophageal cancer, glioblastoma, breast

cancer and chronic lymphocytic leukemia (29–40), which is

associated with reduced overall survival and enhanced disease

progression. Some cancer models further revealed that AXL

expression is related to tumor cell motility, metastasis, and

invasion. Thus, AXL has great potential as a promising

prognostic biomarker and therapeutic target.

TAM has a single hydrophobic transmembrane structural

domain, comprising extracellular structural domains similar to

intercellular adhesion molecules (ICAM) and vascular cell

adhesion molecules (VCAM) (46), which contain the sequence of

fibronectin and immunoglobulin (47), thus promoting cell

aggregation through homophilic or heterophilic binding (48). In
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addition, TAM contains a tyrosine kinase structural domain,

indicating this family of receptors have both the characteristics of

an adhesion molecule and the activity of a tyrosine kinase. The Ig-

like structural domain of the TAM receptor interacts with the

laminin G-like domains of its ligand, thereby activating an

intracellular signaling cascade that regulates many genes

transcriptionally (46).
3 Role of Gas6/AXL signaling
in tumorigenesis

Upregulation of Gas6/AXL is associated with carcinogenesis in

multiple malignancies and shortens overall survival, and may be

involved in tumor cell proliferation, migration, apoptosis, and

maintenance of tumor stem cells through multiple signaling

pathways (Figure 1). Signaling pathways downstream Gas6/AXL

signaling, including PI3K/AKT/mTOR, NF-kB, JAK/STAT3 and

RAS/RAF/MEK/ERK, play critical roles in tumor cell cycle

regulation, malignancy and drug resistance (14–17).
3.1 Gas6/AXL signaling axis promotes
tumor cell proliferation

Post-binding activation of AXL and GAS6 is correlated with

enhanced proliferation and survival in multiple tumors, including

prostate, colorectal, gastric and renal cancers, and osteosarcoma (10–

13). The main pathways controlling tumor cell proliferation

induction include the STAT3 (19), PI3K/AKT (20), Grb2/RAS/

MEK/ERK1/2 (21) and FAK/Src/NF kappa B pathways (22). Gas6

promotes the proliferation of AXL-expressing prostate cancer cells by
Frontiers in Oncology 03
enhancing Akt phosphorylation (49). Gas6 induces ERK signaling by

interacting with AXL and promotes melanoma cell proliferation (50).

Gas6/AXL signaling activates Src, local adhesion kinase (FAK) and

NFkB to promote proliferation in nerve sheath tumor cells (22). In

experimental studies of NSCLC and thyroid cancer, AXL silencing

inhibited xenograft growth in nude mice (51, 52). In addition, it was

shown cancer cells promote tumor growth by stimulating infiltrating

leukocytes to express the mitogenic protein Gas6 (53).
3.2 Gas6/AXL signaling axis affects
epithelial-to-mesenchymal transition

AXL is considered a driver of tumor metastasis. AXL activity

highly contributes to the acquisition of migratory potential in cells

(54). Tumor metastasis is tightly correlated with EMT. The

intercellular adhesion of noncancerous epithelial cells contributes

to maintaining tissue integrity; whereas mesenchymal cells migrate

and invade (55). AXL activation drives EMT, suppresses the

expression of epithelial biomarkers (e.g. E-calmodulin) and

promotes the expression of mesenchymal biomarkers (e.g. N-

calmodulin, Snail, Vimentin, Slug, a-catenin protein and a-SMA)

(18) (36, 56–58),. Li and collaborators observed that Gas6

interaction with AXL induced tumor cell migration mostly by

upregulating Slug in prostate and skin cancer cells (59). Yang and

colleagues demonstrated AXL affects cell adhesion by

phosphorylating myoglutinin on tyrosine in active myoglutinin

filaments. This may indicate that AXL is involved in tumor cell

migration (60). Similar findings have been reported in liposarcoma,

and pancreatic, lung, breast and thyroid cancers (61–63). This

further demonstrates an important role for the AXL pathway in

tumor cell migration and invasion.
FIGURE 1

Molecular structure diagram of Gas6 and AXL and the multiple signaling pathways involved in the regulation of tumor cell proliferation, migration
and apoptosis, as well as the maintenance of tumor stem cells by Gas6/AXL.
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3.3 GAS6/AXL signaling inhibits apoptosis

Several reports have shown AXL’s association with suppressed

apoptosis. The Gas6/AXL pathway represses apoptosis through

PI3K/Akt pathway activation as well as via BAD (BCL2-

associated cell death agonist) phosphorylation and ERK1/2 (64)

activation. For example, Li et al, have shown that Axl is expressed in

the cardiomyocytes in patients with sepsis, exogenous recombinant

Gas6 can inhibit the activation of Axl/PI3K/Akt/NF-kB signaling

pathway caused by bacterial infection, thereby inhibiting tumor

necrosis factor (TNF)-a release and apoptosis, ameliorating sepsis-

induced myocardial dysfunction (65). And it was found in tumor

cells that the Axl-Gas6 receptor-ligand interaction can inhibit cell

apoptosis and promote tumor progression by activating the AKT

pathway and activating the NF-kB pathway (66, 67). In the TME,

Gas6 can also inhibit apoptotic events in cultured VSMCs by

phosphorylating AXL. Gas6 and AXL amounts increase upon

vascular injury, playing a major role in neointima formation by

inhibiting apoptosis (68). Under serum starvation conditions, acute

myeloid leukemia (AML) Nomo-1 and Kasumi-1 cells with Gas6

and AXL silenced with two distinct shRNAs showed a two- to three-

fold increase in apoptosis (69).
3.4 Gas6/AXL is associated with stem
cell maintenance

Cancer stem cells can self-renew, differentiate, and become

tumorigenic, which has a dramatic impact on tumor resistance,

recurrence and metastasis (70). AXL correlates with many stem cell

markers, including Isl1, Cdc2a, Bglap1, CD44 and ALDH1 (18).

Gas6/AXL signaling stabilizes b-catenin through a p-AKT-
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dependent pathway thereby regulating the self-renewal capacity of

leukemic stem cells (71). Gas6 can also enhance PI3K/AKT

signaling through an AXL-dependent autocrine manner, thereby

promoting factor-1 alpha (HIF-1a)-driven secretion of multiple

growth factor-mediated maintenance of mesenchymal stem cells

function (72).
4 Role of Gas6/AXL in the TME

The abovementioned findings described the cell-autonomous

role of Gas6/AXL in malignant cells. The present section mainly

summarizes the cell-dependent role of Gas6/AXL in the TME in

malignant cells, e.g., the roles of immune and vascular smooth

muscle cells (VSMC) on tumor development (Figure 2). The TME

consists of tumor cells, tumor-supporting cells such as fibroblasts

and vascular endothelial cells, secreted factors, and even impaired

physiological conditions (73). In general, AXL is expressed on

tumor cells, but recent reports detected AXL on bone marrow-

derived cells (BMDC), dendritic cells (DC), giant phagocytosis cells,

mononuclear cells, natural killers (NKs) and platelets (74). Myeloid

cells may express AXL to apoptotic phagocytotic cells and debris.

Additionally, tumor cells upregulate AXL and Gas6 expression in

presence of monocyte myeloid-derived suppressor cells (M-

MDSCs) and polymorphonuclear myeloid-derived suppressor

cells (PMN-MDSCs) (26). Furthermore, hypoxia increases the

expression of hypoxia-inducible factors-1 and -2 to upregulate

genes conferring an aggressive tumor phenotype (75). Mounting

evidence suggests hypoxic upregulation is tightly correlated with

AXL expression and stability (76). Besides hypoxia, multiple

cytokines upregulate AXL (77). Therefore, interactions among the

tumor, host immune cells, and abnormal physiological factors in the
FIGURE 2

The Gas6/AXL pathway promotes the formation of an immunosuppressive microenvironment through multiple pathways: 1) regulating immune-
related biomolecules, i.e., inhibiting the expression of MHC-I molecules and enhancing PD- L1 expression on tumor cells, promoting the secretion
of immunosuppressive cytokines (e.g., IL-4, CCL3-5 and G-CSF) and inhibiting the secretion of chemokines that recruit Th1, CD8+ T cells and NK
cells (CXCL9, CXCL10 and CXCL11); 2)enhancing the development and activation of NK cells; promoting the expression of Tie2 and VEGFR-2 on
vascular endothelial cells, thereby inducing angiogenesis and reducing vascular permeability; enhancing the differentiation of DC cells to the
immunosuppressive phenotype; 3) regulating immune cell functions, i.e., promoting M2-type polarization of macrophages, increasing the
immunosuppressive activity of Treg cells and promoting T-cell repulsion.
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TME may upregulate AXL and Gas6, thus promoting a pro-tumor

microenvironment. Therefore, AXL might be a key mediator in the

tumor malignant microenvironment.
4.1 The Role of Gas6/AXL signaling
in angiogenesis

AXL is widely synthesized by endothelial cells and could

promote angiogenesis by regulating the production of VEGF and

PDGF, thus participating in the mediation of normal and tumor

vascular systems. For instance, suppression of AXL reduces the

expression of Tie2 and VEGFR-2 (78), leading to impaired vascular

endotheliogenesis and affecting vascular permeability. Additionally,

AXL suppression in xenograft-bearing mice decreases the

endothelial cell marker CD31 in tumors (79) and reduces cancer

cell-triggered angiogenesis. Downregulation of AXL or Gas6

can impair the formation and function of the vascular

endothelium (80).
4.2 Gas6/AXL regulation of tumor immune
response-related biomolecules

Substantial evidence shows GAS6/AXL signaling is important

in the promotion of an immunosuppressive TME. The GAS6/AXL

axis regulates many tumor immune-related biomolecules, e.g.,

major histocompatibility complex I (MHC-I) and programmed

death ligand-1 (PD-L1) in tumor cells (24), and the levels of

secreted anti-inflammatory cytokines such as IL-4, CCL3-5 and

granulocyte colony-stimulating factor (G-CSF) (81). In addition,

GAS6/AXL signaling also regulates the development and infiltration

of several immune cells such as macrophages, DCs, NKs and

regulatory T cells (Tregs), thus making it possible for tumors to

evade immune surveillance.

4.2.1 MHC-I
MHC-I molecules are found on all nucleated cells. Professional

antigen presenting cells (APCs) lyse tumor cells by presenting

MHC-I antigen epitopes to CD8+ T cells, inducing them to

recognize tumor cells and secreting perforin and granzyme.

Evidence indicates AXL is negatively associated with MHC-I

molecules. Rothlin et al. found that TAM deficient mice have

elevated in vivo amounts of MHC-I in myeloid cells, confirming

for the first time an association between MHC-I and Axl (82). Jeon

and co-workers demonstrated the AXL suppressor Q702 decreased

the expression of TAM signature genes and upregulated MHC-I

signature genes in tumor samples, and also reported upregulated

CD8 T cell and NK cell signature genes in a time-dependent

manner (83). Aguilera and collaborators suggested that in

treatment unresponsive tumors, AXL was high expressed with

antigen presentation suppressed through MHC-I, mediating

immunological microenvironment reprogram and knockout of

Axl in tumor cell lines increased surface MHC-I amounts in NF-

kB independent pathway (84). Of more concern is the elevated AXL
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expression and the reduced expression of MHC class I molecules in

the melanoma immunotherapy-resistant phenotype (85). In

summary, there seems to be an extremely subtle relationship

between AXL and MHC-I, which may be one of the mechanisms

involved in immune evasion. But the exact regulation mechanism of

how does AXL impact on MHC-I expression are still unclear, which

deserves further exploration in subsequent studies.

4.2.2 PD-L1
PD-L1 is produced by a variety of tumor cells, and its

interaction with its receptor induces pathways for blocking T cell

activation (86) to evade the host immune response (87). In cancer

immunotherapy, TAM receptors play a key role in regulating

immune checkpoint signaling associated with the PD-1 axis (88).

In 2014, researchers demonstrated that activation of PtdSer-TAM-

PD-L1-PI3k/Akt signaling in breast cancer promotes immune

escape and chemotherapy resistance in tumors. A recent analysis

showed increased expression of PD-L1 in HPV-negative head-and-

neck squamous cell carcinoma (HNSCC) cells through AXL and

PI3K signaling, which correlated with resistance to radiotherapy,

causing local treatment failure and enhancing mortality in HNSCC

(89). In lung adenocarcinoma PC9 and H1975 cel ls ,

pharmacological Axl inhibition with the selective Axl inhibitors

bemcentinib and BGB324 markedly reduced PD-L1 and PD-L2

expression. In addition, in a preclinical model of breast cancer,

combination of AXL suppression and anti-PD-1 resulted in both

primary and metastatic tumor shrinkage, increased CD8T cell

infiltration, and an increased rate of NK cell activation (90),

which could not be achieved after treatment with either drug

alone. Thus, AXL receptor kinase may affect the tumor immune

microenvironment by regulating PD-L1 expression (91).

4.2.3 Altered secretion
Gas6/AXL signaling promotes immunosuppression and generates

a pro-tumormicroenvironment by altering and regulating the secretion

of cytokines associated with immune cell function and movement (92).

G-CSF promotes granulocyte-myeloid-derived suppressor cell (G-

MDSC) accumulation in the tumor immune microenvironment (93).

Axl knockout results in reduced secretion of G-CSF (84). The selective

Axl inhibitor bemcentinib reduces G-CSF secretion in pancreatic

cancer animal models (94). Further data also showed

pharmacological inhibition of Axl downregulates the pro-

tumorigenic inflammatory factor IL-4 in tumors (95). Axl inhibition

attenuates the secretion of chemokines (CCL 2-4 and CCL 5) involved

in the recruitment of immunosuppressive cells, including M2

macrophages and MDSCs, but promotes the secretion of chemokines

(CXCL9-11) enhancing the recruitment of immune-effector cells such

as CD8+ T cells and NKs (96).
4.3 Gas6/TAM signaling regulates immune
cell function

As Gas6/AXL signaling triggers an immunosuppressive tumor

microenvironment, the functions of diverse immune cells and the
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overall makeup of the tumor immune microenvironment are

modified in this process.

4.3.1 The Gas6/AXL pathway regulates the
functions of macrophages and dendritic cells

Tumor cells develop specific mechanisms, including

efferocytosis, for removing apoptotic cells to regulate the immune

response. AXL expression on specialized phagocytes (macrophages

and dendritic cells) in various tumor settings is important for

homeostasis under physiological conditions. The main

mechanisms involve macrophage polarization and efferocytosis of

apoptotic cells (43, 97).

TAM receptor-mediated efferocytosis has tumor-promoting

functions such as immunosuppression, tumor metastasis, and

resistance to therapeutics (25). Gas6/AXL removes apoptotic

residues by activating efferocytosis in macrophages and DCs, an

effect impaired in AXL-deficient mice (98). Activation of Axl and

Mertk receptor kinases is essential for PtdSer-dependent

efferocytosis of apoptotic cells. It was shown Axl- and Mertk-

induced efferocytosis of apoptotic cells inhibits innate immune

responses orchestrated by macrophages and DCs (99), thereby

generating a TME that favors the formation of tumor

development and metastasis (100). Chiu and colleagues found

that in oral squamous cell carcinoma, AXL signaling controls the

polarization of tumor-associated macrophages toward the M2

phenotype with elevated expression of M2 markers and genes

(101). After TAM receptor-mediated efferocytosis and

phagocytosis, tumor-associated macrophages tend to polarize

toward the immunosuppressive phenotype (M2 macrophages) in

response to various cytokines and suppress antitumor immunity

(102). The underpinning mechanism might involve Axl/PI3K/Akt/

NF-kB signaling, in which the TAM receptor binds directly to PI3K,

leading to PI3K phosphorylation of Akt. This results in macrophage

polarization toward the M2 phenotype while reducing the amounts

of M1 macrophages (103).

Additionally, efferocytosis in turn upregulates TAM receptor in

tumor APCs, making them polarize to an immunosuppressive

phenotype (102). DCs have moderate AXL expression prior to

encountering pathogens. However, after pathogen encounter, AXL

is significantly overexpressed via strong induction of the JAK/

STAT1 pathway (82), thus shifting the pro-inflammatory state to

an immunosuppressive state (104). The shift in the APC phenotype

leads to diminished T-cell antigen presentation, reduced T-cell

activation, and impaired antigen-dependent antitumor immunity,

generating a more aggressive and tolerant TME (8).

4.3.2 The Gas6/AXL pathway regulates the
activation of natural killer cells

The Gas6/AXL pathway plays a key role in the regulation of NK

cell activity (105). It regulates the normal developmental process of

NK cells and the function of killing infected cells (106) by

controlling the expression of receptors necessary for NK cell

activation (105). Several studies have shown that NK cell

dysfunction is associated with tumor progression in multiple

aspects, including immune evasion and tumor metastasis. Under
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hypoxic conditions, inhibition of NK cell function promotes the

formation of pre-metastatic niches (107). Recombinant Gas6 and

anti-AXL antibodies upregulate NK cell-specific receptors and NK

cell-related genes (108), thereby promoting NK cell receptor

activation. The cytotoxic function of NK cells was impaired in

AXL-inactivated mice. Significantly less NK cells were produced by

human CD34+ hematopoietic stem cells after blocking Gas6’s

interaction with AXL by AXL-Fc or warfarin (106). In addition,

interleukin 15 (IL-15), in case of AXL depletion, fails to induce

multiple pathways necessary for NK cell development (2, 109).

Thus, AXL is highly correlated with NK cell activation and function.

4.3.3 The Gas6/AXL pathway promotes effector T
cell exclusion

The physical contact of effector T cells with tumor cells is the

basis for the efficacy of immunotherapy. Certain stromal cells in the

TME present a state of an immune desert within the tumor by

excluding T cells close to malignant cells (110). The main

mechanisms include insufficient activation of DCs leading to

blunted antigen presentation and the lack of tumor antigens in

the TME to initiate the T-cell response (110).

The receptor tyrosine kinase (RTK) AXL may be a potential

mediator of T-cell rejection, increasing tumor cell invasion and

metastasis and suppressing the immune response by enhancing T-

cell rejection (111). The mechanism appears to involve a role for

AXL in the inhibition of antigen presentation and production of

myeloid-supporting inflammatory molecules, which leads to an

inadequate adaptive immunity and T-cell rejection (84). AXL

inhibitors have immune activating and antitumor effects. In a

previous study, CD4+ and CD8+ T cell amounts were

significantly increased in tumor-bearing mice administered the

AXL inhibitor R428 (96), corroborating Holtzhausen et al. (26).

In transgenic mouse models, AXL gene deletion increases T-cell

infiltration in the tumor microenvironment by up to 20 times, while

making tumor cells 50 times more sensitive to radiotherapy and

immune checkpoint therapy (112). A recent mouse study

demonstrated that AXL inhibitors impact the immune status and

tumor growth in lung cancer. Application of AXL inhibitors to treat

mice resulted in delayed tumor growth, elevated rate of effector

memory helper T cells, enhanced infiltration of central memory

cytotoxic T cells, increased amounts of CD86+ macrophages, and

elevated proportion of CD80 high-expression macrophages in the

tumor model (113).

4.3.4 The Gas6/AXL pathway regulates the
immunosuppressive activity of Tregs

Regulatory T cells (Tregs) regulate immune evasion, considered

the primary mechanism of evasion from immune surveillance

(114). Tregs inhibit multiple physiological and pathological

immune reactions, which are essential for maintaining self-

tolerance and immune homeostasis (115). Gas6 enhances the

inhibitory effect of Tregs mainly through the AXL receptor (23).

The proliferative activity of T cells is obtained mainly via IL-2, a

powerful growth factor. After GAS6 addition to a co-culture system

comprising CD4+CD25-T cells and CD4+CD25+ Tregs, T-cell
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proliferation was reduced as well as IL-2 expression. After Axl

knockout, Foxp3 expression in Tregs was decreased and IL-2

expression was increased. Therefore, Gas6 can inhibit CD4+ T

cells by depleting IL-2 or inhibiting IL-2 production (116). These

findings corroborated findings by Zhao and colleagues in

mice (116).
5 Gas6/AXL signaling controls drug
resistance in cancer

Tumor cell resistance is an important issue in cancer therapy,

often leading to failed treatment or recurrent disease. Besides its

roles in survival, proliferation and migration, AXL expression is a

possible mechanism underlying resistance to immunotherapy,

chemotherapy and molecularly targeted therapies. AXL may lead

to innate or acquired resistance to chemotherapy, immunotherapy,

molecularly targeted therapies and even radiotherapy (117, 118).
5.1 Gas6/AXL and chemotherapy resistance

Hong et al. found that chemotherapeutic agents such as

etoposide (VP-16) and cisplatin induce AXL upregulation in

resistant acute leukemia, as a potential mechanism of

chemoresistance (38). Wang and collaborators demonstrated

AXL’s involvement in breast cancer resistance to adriamycin.

AXL inhibitors combined with adriamycin markedly decrease the

tumor load as well as invasion and metastasis in adriamycin-

resistant breast cancer (119). AXL was also reported in pancreatic

ductal adenocarcinoma to promote resistance to chemotherapy

(120). AXL mRNA amounts were significantly elevated in

cisplatin-resistant ovarian cancer cells compared with cisplatin-

sensitive cells (121).
5.2 Gas6/AXL and targeted therapy
drug resistance

Widespread overexpression of AXL is also found in tumors

following resistance to various targeted therapies (122, 123),

resulting in cell tolerance or under-response to molecular targeted

therapies such as EGFR, VEGFR, ALK, ERK, and PI3Ka inhibitors

(79, 122). Inhibition of AXL, either by silencing or pharmacological

intervention, effectively circumvents the resistance of targeted drug-

resistant cell lines to certain targeted drugs. AXL overexpression

and Kit downregulation were detected in imatinib-resistant

gastrointestinal mesenchymal tumors, hence the term ‘‘tyrosine

kinase switch’’ was coined for AXL (118). The same findings were

reported in NSCLC models with resistance to erlotinib. Taniguchi

et al. further showed that EGFR mutant NSCLC administered

ostatinib had increased AXL expression, the extent of which was

inversely correlated with the effect of ostatinib. The combination of

AXL inhibitors increased sensitivity to ostatinib treatment

compared with ostatinib monotherapy, both in primary and

resistant cases, thereby reducing tumor size and slowing tumor
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growth (124). In addition, current evidence suggests that AXL

overexpression modulates acquired resistance to cetuximab in

NSCLC and HNSCC models (122).
5.3 Gas6/AXL and immunotherapy resistance

As described in Section 3 of this paper, the Gas6/AXL pathway

regulates the immune microenvironment by modulating important

components of the immune microenvironment, including the

tumor’s vascular system; critical biomarkers such as MHC-I

molecules and PD-L1; important cytokines such as IL-4, CCL3-5

and G-CSF; and key immune cells such as phagocytes, DCs, NK

cells, effector T cells and Tregs. In addition, it induces the formation

of an immunosuppressive microenvironment, suppresses the host’s

antitumor immunity, and mediates tumor immune escape.

Therefore, the relationship between Gas6/AXL signaling and

resistance to immunotherapy deserves further attention. By

comparing the transcriptomes of PD-1-responding and non-

responding tumors, Hugo et al. found that AXL is upregulated in

non-responding tumors (125) and may be one of the key genes

mediating resistance to immunotherapy. The relationship between

AXL and resistance to immunotherapy was further investigated by

Aguilera and colleagues, who found that in Py8119 cells, a mouse

breast cancer cell line expressing Axl, radiotherapy combined with

immune checkpoint inhibitors induced a limited initial immune

response, exhibiting an immunotherapy-resistant state. Py8119 cells

with Axl knockdown (by the CRISPR technology) transplanted into

naive C57Bl/6 mice showed sensitivity to immunotherapy, delayed

tumor growth, increased expression of MHC-I molecules and

enhanced infiltration of mature DCs, CD4+ T cells, and CD8+ T

cells in the tumor tissue (84). Mechanistically, AXL-mediated

immune resistance involves a complex molecular network of

multiple pathways and targets. Targeting AXL to sensitize to

immunotherapy is associated with multiple biological events,

including MAPK inhibition, NF-kB activation, and ICAM1 and

ULBP1 upregulation (126). Further studies should focus on

validating these findings and exploring how AXL drives

immune resistance.

The above evidence provides a theoretical basis for the

development of AXL-related drugs in combination with

conventional therapeutic modalities based on synthetic lethality

in the context of tumor resistance to therapy. Given the role of

AXL in cancer growth and metastasis as well as its relatively low

expression in normal tissues compared with tumor tissues, AXL

represents a highly potential therapeutic target in cancer therapy.

Currently, a series of therapeutic drugs targeting AXL have been

developed, including small molecule inhibitors (117, 127),

monoclonal antibodies (mAbs), antibody-drug conjugates

(ADCs) (128), soluble receptors (129), and chimeric antigen

receptors (CARs) T Cells (130). Some of drugs show obvious

anti-tumor activity (Tables 1, 2). In addition, the potential of AXL

inhibitors in combination with other anti-tumor therapies

(especially checkpoint inhibition) has also received increasing

attention. For example, multiple AXL drugs including

bemcentinib, ONO-7475 (131), sitravantinib (127), mecbotamab
frontiersin.org

https://doi.org/10.3389/fonc.2023.1121130
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhai et al. 10.3389/fonc.2023.1121130
vedotin (128), and batiraxcept (129) in combination with ICI for

patients refractory to first-line immune drugs are currently in

phase I-III trails (Tables 1, 2). However, there are still many

problems to be solved in the current research on AXL-related

drugs, which need to be further clarified according to the

research results.
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6 Problems and prospects

Roles for Gas6/AXL signaling in cancer development and

progression, and shaping of the tumor microenvironment are

gradually being revealed. Recently, substantial resources have been

deployed to develop broad therapies targeting Gas6/AXL in cancer
TABLE 1 Clinical study of GAS6/AXL related drugs for cancer.

Target Drug
type

Drugs Condition(s) Phase NCT no Satus

AXL ADCs BA3011/CAB-AXL-ADC NSCLC 2 NCT04681131 Recruiting

Sarcoma 1/2 NCT03425279 Recruiting

Ovarian Cancer 2 NCT04918186 Recruiting

AXL Small
molecules

Bemcentinib/BGB324/
R428

MS 2 NCT03824080 Completed

NSCLC 2 NCT03184571 Completed

Breast Cancer 2 NCT03184558 Terminated

NSCLC 1/2 NCT02424617 Completed

AML/MS 1/2 NCT02488408 Active, not
recruiting

Glioblastoma 1 NCT03965494 Active, not
recruiting

AXL Small
molecules

SCL-391 Solid Tumor 1 NCT03990454 Recruiting

AXL mAbs Tilvestamab/BGB149 Ovarian Neoplasms 1 NCT04893551 Recruiting

AXL ADCs Enapotamab vedotin Solid Tumors 1/2 NCT02988817 Completed

AXL mAbs Mecbotamab vedotin/
CABAXL-ADC

Advanced Solid Tumors 1/2 NCT03425279 Recruiting

ADCs NSCLC 2 NCT04681131 Recruiting

AXL ADCs Mipasetamab uzoptirine
/ADCT-601

Advanced Solid Tumors 1 NCT05389462 Recruiting

Gas6/AXL Small
molecules

Batiraxcept/AVB-S6-500 Ovarian Cancer 1 NCT03639246 Completed

Urothelial Carcinoma 1 NCT04004442 Active, not
recruiting

Ovarian Cancer 3 NCT04729608 Active, not
recruiting

Pancreatic Adenocarcinoma 1/2 NCT04983407 Recruiting

CCRCC 1/2 NCT04300140 Active, not
recruiting

ovarian, fallopian tube, or primary
peritoneal cancer

1/2 NCT04019288 Active, not
recruiting

Axl, Met, RON, FLT3 Small
molecules

BMS-777607/ASLAN002 Advanced Solid Tumors 1/2 NCT00605618 Completed

Malignant Solid Tumour 1 NCT01721148 Completed

Axl, Met Small
molecules

BPI-9016 M Solid Tumors 1 NCT02478866 Completed

Axl, MerTK INCB081776 Solid Tumors 1 NCT03522142 Recruiting

Axl, Aurora A and B, JAK2, Alk,
Abl, Mer

Small
molecules

TP-0903/Dubermatinib Advanced Solid Tumors 1 NCT02729298 Completed

FLT3 Mutated AML 1 NCT04518345 Completed

Axl, Src kinases, Abl, TGF, BMP ADCs BA3011/CAB-AXL-ADC NSCLC 2 NCT04681131 Recruiting

(Continued)
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(132). Currently, cancer drug development strategies targeting AXL

and other family members of its receptor include small-molecule

inhibitors, monoclonal antibodies, and soluble receptors. Most of

these studies focused on the exploration of small molecule inhibitors,

while some reports focused on the regulation of its upstream effector
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Gas6. Among these drugs, BGB324 currently shows promising

results in early studies of acute myeloid leukemia, based on its

high specificity (133, 134). In addition, as mentioned above, a

growing number of studies have started to examine the impact of

AXL on conventional therapy, e.g., AXL inhibitors in combination
TABLE 1 Continued

Target Drug
type

Drugs Condition(s) Phase NCT no Satus

Solid Tumor 2 NCT03425279 Recruiting

Ovarian Cancer 2 NCT04918186 Recruiting

AXL, MER, TYRO3, VEGFR2, KIT,
METAXL, MER

Small
molecules

SNS-314 Advanced solid tumors 1 NCT00519662 Completed

Axl, MerTK Small
molecules

ONO-7475 Acute Leukemias 1/2 NCT03176277 Terminated

Advanced or Metastatic Solid
Tumors

1 NCT03730337 Suspended

AXL, MER, TYRO3, VEGFR2, KIT,
MET

Small
molecules

Sitravatinib (MGCD516) CCRCC 2 NCT03680521 Active, not
recruiting

Metastatic Non-Squamous NSCLC 3 NCT03906071 Active, not
recruiting

NSCLC 2 NCT02954991 Completed

Advanced Cancer 1 NCT02219711 Completed

Advanced or Metastatic Kidney
Cancer

1/2 NCT03015740 Completed

CCRCC 1 NCT04518046 Active, not
recruiting

Urothelial Carcinoma 2 NCT03606174 Completed

HCC/GC/GJC 1/2 NCT03941873 Active, not
recruiting

NSCLC 2 NCT02664935 Active, not
recruiting
antibody-drug conjugates= ADCs; monoclonal antibodies= mAbs; Non-Small Cell Lung Cancer= NSCLC; Myelodysplastic Syndromes= MS; Acute Myeloid Leukemia= AML; Clear Cell Renal
Cell Carcinoma= CCRCC; Hepatocellular Carcinoma= HCC; Gastric Cancer= GC; Gastroesophageal Junction Cancer= GJC.
TABLE 2 Published clinical studies of GAS6/AXL related drugs for cancer.

Target Drugs Condition(s) Design Phase Clinical responses NCT no Satus time of the
latest results

Gas6 AVB-S6-
500

Ovarian Cancer A: AVB-S6-
500+PLD B:
AVB-S6-500
+Pac

1b/2 A: ORR: 10.7%; mDoR:4.2 months;
PFS: 3.6months; OS: 11.2months
B: ORR: 34.8%; mDoR:7.0 months;
PFS: 3.1months; OS: 10.3months

NCT03639246 Completed 2021

AXL,
MER,
TYRO3,
VEGFR2,
KIT, MET

Sitravatinib
/MGCD516

CCRCC Sitravatinib
+nivolumab

1/2 ORR: 35.7%; PFS: 11.7months NCT0301574 Completed 2022

Advanced
Cancer

Sitravatinib 1 ORR: 11.8% NCT02219711 Completed 2022

Liposarcoma Sitravatinib 2 mPFS: 11.7 weeks; OS: 31.7 weeks NCT02978859 Active,
not
recruiting

2023

NSCLC Sitravatinib
+tislelizumab

1 ORR: 8.7%-57.1% NCT03666143 Completed 2023
NSCLC, Non-Small Cell Lung Cancer; CCRCC, Clear Cell Renal Cell Carcinoma.
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with chemotherapy, targeted therapies, and especially

immunotherapy, and these advances have increased our

understanding of tumor biology, tumor progression, and the

tumor immune microenvironment, showing promising prospect.

However, the current analysis is still in the nascent stage and many

questions remain unaddressed. For example, the mechanisms

involved in the regulation of AXL in immunotherapy have not

been fully elucidated. Future research should focus on preclinical

determination of the optimal combination of cytotoxic and

immunomodulatory therapies, initiation of innovative trials to

assess the most promising combinations, and evaluation of the

efficacy and toxicity of these therapies. The combination of anti-

AXL therapies with chemotherapy and/or immunotherapy may

represent an excellent opportunity.
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