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potential therapy strategy

Ruoxin Fang1, Ling Yan2* and Zhengkai Liao1*

1Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Hubei Key
Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Wuhan, Hubei, China,
2Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Metabolic
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Cancer-associated cachexia (CAC) is a major characteristic of advanced cancer,

associates with almost all types of cancer. Recent studies have found that

lipopenia is an important feature of CAC, and it even occurs earlier than

sarcopenia. Different types of adipose tissue are all important in the process of

CAC. In CAC patients, the catabolism of white adipose tissue (WAT) is increased,

leading to an increase in circulating free fatty acids (FFAs), resulting in “ lipotoxic”.

At the same time, WAT also is induced by a variety of mechanisms, browning into

brown adipose tissue (BAT). BAT is activated in CAC and greatly increases energy

expenditure in patients. In addition, the production of lipid is reduced in CAC, and

the cross-talk between adipose tissue and other systems, such as muscle tissue

and immune system, also aggravates the progression of CAC. The treatment of

CAC is still a vital clinical problem, and the abnormal lipid metabolism in CAC

provides a new way for the treatment of CAC. In this article, we will review the

mechanism of metabolic abnormalities of adipose tissue in CAC and its role

in treatment.

KEYWORDS

lipid metabolism, adipose tissue, cancer, cachexia, therapy strategy
1 Introduction

Cancer-associated cachexia (CAC) is a “multifactorial syndrome” characterized by

increased catabolism, weight loss, and decreased skeletal muscle mass and strength (with or

without adipose tissue loss) (1). CAC associates with almost all types of cancer and

accounts for a quarter of cancer-related deaths (2). Prevalence of cachexia ranges 50 to 80%

in advanced cancer (3). CAC is a continuum with three stages of clinical relevance:

precachexia, cachexia, and refractory cachexia. Patients who have more than 5% loss of

stable body weight over the past 6 months, or a body-mass index (BMI) less than 20 kg/m²

and ongoing weight loss of more than 2%, or sarcopenia and ongoing weight loss of more

than 2%, but have not entered the refractory stage, are classified as having cachexia (1).

Early CAC can also occur in patients with curable cancer and can be reversed by
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appropriate treatment (4). However, we often do not diagnose CAC

in cancer patients until weight loss has occurred, and there are still

few methods for early diagnosis of CAC.

CAC is due to the negative energy balance metabolic changes

caused by higher energy demand from the tumor and reduced

calorie intake of the host, including inflammation, increased

catabolism and excessive energy consumption (5–7). It can lead

to multi-organ functional disturbance, which is associated with

increased susceptibility to infection, higher incidence of metastasis,

decreased response of cancer cells to treatment, decreased quality of

life, and poor prognosis (1, 8–11). CAC is affected by endogenous

and environmental factors, such as complications, genetic risk

factors, gender, age, and anti-tumor treatment (12–14). It has

been pointed out that tumor or host derived cytokines can affect

the metabolism of CAC (15). Cachexia mainly damages skeletal

muscle, adipose tissue, liver, brain, intestine, pancreas, bone, and

heart (16). The metabolic disorders can further aggravate this

multifactorial syndrome (17).

There are many changes in adipose tissue metabolism in cancer

patients. Increasing evidence demonstrates that adipose wasting

occurs before muscle loss in the early stage of CAC (18). No matter

what the patient’s weight is, fat loss is an adverse prognostic factor

for terminal cancer (19). Studies have shown that the changes of

adipose tissue morphology and function in CAC patients have

important clinical significance, preserving adipose mass and

correcting abnormal lipid metabolism in CAC represents a

promising therapeutic strategy (20).

However, the knowledge about mechanisms of abnormal lipid

metabolism in CAC is still limited. In this review, we summarized

the classification and characteristics of adipose tissue and the

changes of them in patients with CAC. Finally, we described

existing therapeutic approaches and discussed potential new

strategies that arose by targeting the link between adipose tissue

and cachexia, with a view to providing directions for future clinical

treatment of CAC.
2 Adipose tissue

Adipose tissue is a large, interactive multi-chamber organ with

clear histological and anatomical structure (21). Mature adipocytes

account for only one-third of adipose tissue, and the remaining two-

thirds of adipose tissue are composed of nerves, blood vessels,

fibroblasts, and adipocyte precursor cells (22). It was found that

adipose tissue not only played multiple and complex roles in

mechanical buffering and energy storage, but also had paracrine

and endocrine functions as an important secretory organ (23, 24). It

can regulate energy balance and homeostasis in vivo from many

aspects, including appetite, inflammation, insulin sensitivity, and

lipid metabolism (25). Nowadays, increasing evidence shows that

there are changes in lipid metabolism in patients with CAC.

According to its distribution, adipose tissue can be divided into

subcutaneous adipose tissue (SCAT) and visceral adipose tissue

(VAT), which have different anatomical, metabolic and endocrine

characteristics. SCAT accounts for about 80% of total body fat in

healthy adults (26). SCAT can be further divided into superficial
Frontiers in Oncology 02
SCAT and deep SCAT (27). VAT is mainly distributed in the

abdominal cavity and retroperitoneum. The metabolic functions of

VAT and SCAT are quite different. For example, compared with

SCAT, visceral adipocytes have more active metabolism and greater

lipolysis activity. Adipocytes of VAT have stronger insulin

resistance than those of SCAT (28, 29). At the same time, SCAT

is the main source of leptin production (26). Excess energy

accumulates in adipocytes of SCAT, which acts as a metabolic

pool. Visceral fat accumulation occurs only when SCAT capacity is

insufficient or damaged.

According to functional characteristics, adipose tissue can be

divided into three types: white adipose tissue (WAT), brown

adipose tissue (BAT), or beige adipose tissue.

WAT is the most common type. White adipocytes are the main

storage space of triglyceride. The main function of white adipocytes

is to store fat and regulate free fatty acids (FFAs). It is mainly

composed of large spherical adipocytes, in which single lipid

droplets occupy the majority of the cell volume and mainly store

energy in the form of triglycerides (21). WAT exists in

subcutaneous and visceral tissues, and the increase of WAT

quality in viscera is associated with increased metabolic risk (27,

30). WAT has important endocrine and paracrine effects (21,

31, 32).

Unlike WAT, brown adipocytes in BAT contain a large number

of mitochondria and scattered lipid droplets. The main function of

BAT is energy dissipation, which provides non-shivering

thermogenesis to the body during energy-demanding conditions

such as exercise, fasting or cold stimulus (33). BAT is mainly located

in the interscapular region and perirenal regions of rodents and

infants (34, 35), but BAT is normal component of several

subcutaneous and visceral depots and is not exclusive to these

areas (21). The development and gene characteristics of WAT and

BAT are different (36–38). Classic brown adipocytes come from

myogenic factor 5 (Myf-5) cell lines, while white adipocytes come

from non Myf-5 cell lines (39). Thus, brown adipocytes are labeled

with Myf-5 (40) and paired box 7 (41), similar to myogenic

precursor cells. BAT contains rich vascular tree and dense

capillary network (25). BAT consumes energy in the form of heat

production (42–44), which is mainly due to the high level

expression of uncoupling protein 1 (UCP1) in mitochondria and

its proton leakage pathway (45–47), which is vital to lipid oxidation

and thermogenesis. BAT, as an endocrine organ, regulates energy

homeostasis by consuming fatty acids and glucose, and plays a key

role in carbohydrate and lipid metabolism (47, 48).

Thirdly, there is a type of adipocyte, defined as “Brite” (white

brown) (49) or “Beige” (50), which is derived from pre-existing

white adipocytes (21). Beige adipocytes have plasticity and can be

transformed from WAT by a variety of different pathways (21, 51,

52). The function of beige adipocytes is similar to that of brown

adipocytes (49). In patients with CAC, beige adipocytes can

develop, expand and activate under multiple environmental

stimulation, which is the target of endocrine and paracrine

stimulation (53, 54). The formation of beige adipocytes can be

triggered by inflammatory mediators (such as interleukin-6 [IL-6]

(55)) and tumor-derived compounds (such as parathyroid hormone

related protein [PTHrP] (56, 57)). In mouse models, the formation
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of most beige adipocytes is a strong response to environmental

factors, such as long-term low-temperature exposure (35).

The genetic characteristics of brown adipocytes and beige

adipocytes partially overlap, except for specific markers, such as

zinc finger (Zic1) in cerebellum (58). The common characteristics

of brown and beige adipocytes are a large number of lipid droplets

and dense accumulation of UCP1 positive mitochondria, although

brown adipocytes had higher UCP1 expression level (39). Although

brown and beige adipocytes are similar in morphology and

biochemistry, they also have some distinct characteristics (35),

because they come from different embryonic precursor cells (40).

For example, brown adipocytes are mainly located in the

interscapular and perirenal regions of rodents, while beige

adipocytes exist in various WAT pools, especially in inguinal

subcutaneous adipose tissue (59).

All three types of adipose tissue are important in the energy

balance disrupted by CAC. WAT and BAT usually have opposite

physiological functions. WAT is responsible for energy

accumulation of lipid droplets in cells, while BAT is responsible

for energy dissipation through heat production. Clinically,

browning of WAT and activation of BAT are effective methods to

combat obesity and metabolic syndrome, but in CAC we may need

to block these mechanisms in order to preserve more adipose tissue.

Changes in lipid metabolism under local or systemic stimulation

make it a potential cause of CAC. In the case of congenital or

acquired lipodystrophy, cachexia or any other severe malnutrition,

there is almost total lack of adipose tissue, even severe multiple

organ dysfunction results from the lack of leptin and

other adipokines.
3 Changes of lipid metabolism in
patients with CAC

Lipid metabolism and adipose tissue mass are regulated by two

pathways: lipolysis and lipogenesis. Lipolysis and lipogenesis

balance maintain the dynamic balance of adipocytes and regulate

the energy balance of CAC patients. Adipose tissue atrophy in

cancer patients is attributed to increased lipolysis and lipid

oxidation, decreased lipogenesis, impaired fat deposition and

lipogenesis, and browning of WAT (60). Compared with non-

cancer patients, the volume of adipocytes in cancer patients was

smaller, but the total number of adipocytes did not change.

Adipocytes isolated from patients with cachexia showed stronger

catecholamine and natriuretic peptide-induced lipolysis (61).

Weight loss patients also showed more sensitive characteristics to

catecholamine signal (62). In addition, compared with cancer

patients without cachexia, the expression of UCP1 in adipose

tissue of CAC patients is higher, which may lead to adipose tissue

atrophy and more heat production (55).

Patients with CAC often show systemic hypermetabolism with

reduced energy intake and increased energy consumption,

especially the abnormal increase of resting energy expenditure is
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considered to be the main cause of energy consumption. CAC,

which is characterized by adipose tissue loss (60), is the terminal

manifestation of metabolic changes in adipose tissue. The metabolic

changes of adipose tissue have been proved to play an important

role in CAC. In the context of CAC, changes in lipid metabolism

and energy consumption have been shown to be harmful (16). In

patients with terminal cancer, reduced adipose tissue is associated

with poor prognosis (18, 19). In cachexia, fat loss is faster and earlier

than lean tissue loss, especially in the period before death.

Adipose tissue contributes to weight loss in starvation, while

skeletal muscle and adipose tissue mass decrease significantly in

CAC patients. Lipolysis of adipocytes is the main cause of adipose

tissue loss in cancer patients, and plays an important role in the

course of CAC, and it is not related to malnutrition (63). The

mechanism of adipose tissue loss in CAC is believed to be due to

increased lipolytic activity and lipid utilization (64), while other

mechanisms, such as impaired lipogenesis, may also be one of the

reasons (Figure 1). In the experimental model of cachexia, the

decrease of adipose tissue appeared before the decrease of skeletal

muscle mass and food intake (65). Studies have also shown that the

decrease in adipose tissue is due to a significant decrease in

adipocyte size resulting from a decrease in fat reserve, rather than

a decrease in the number of cells (cell death) (64, 66). Some studies

have found that lipogenesis and lipoprotein lipase (LPL) expression

and activity have not been significantly down regulated in CAC

patients (67, 68). A study identified the marker components of

“cachectin” including Ataxin-10, which are sufficient to trigger

abnormal fatty acid metabolism and cardiac atrophy. The serum

level of Ataxin-10 is significantly increased in CAC patients (69).
3.1 Catabolism of WAT

The reduction of WAT in visceral and subcutaneous tissues

plays an important role in CAC (60). High lipolysis is an important

feature of cachexia in cancer patients and rodents (70, 71). Lipolysis

depends on three kinds of lipases: adipose triglyceride lipase

(ATGL), hormone-sensitive lipase (HSL) and monoglyceride

lipase (MGL). Increased expression and activity of these three

enzymes lead to the decrease of adipose tissue and the increase of

circulating FFAs and glycerol (68, 72).

In CAC patients, the high levels of circulating FFAs and glycerin

is caused by the involvement of ATGL and HSL in the catabolism of

triglyceride inWAT (73). Excess free lipid molecules are “lipotoxic”,

leading to cellular dysfunction and even death, insulin resistance in

animals and humans, and have side effects on many organs (16, 74,

75). Compared with cancer patients with stable weight, the

expression of HSL was increased in patients with CAC (61, 76). A

large amount of evidence shows that the overexpression of ATGL

and HSL in WAT of CAC patients is related to the decrease of BMI

(73). Inhibition of HSL or ATGL expression in mice not only

retained WAT, but also reduced the loss of skeletal muscle, which

indicated that mutual regulation between adipose tissue and muscle
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play an important role in CAC (71, 73). CGI-58 can bind and

activate ATGL (ATGL is the only lipase activated by CGI-58) (77).

G0S2 (G0/S2 switch gene 2) is considered to be the main selective

inhibitor of ATGL, which can weaken the effect of ATGL in vitro

and in vivo, and regulate triglyceride hydrolysis through this

mechanism (78).

In addition, patients with cachexia often have insulin resistance

or decreased insulin secretion (79), which may be due to the fact

that the body prevents insulin from playing its anti-lipolysis role in

CAC. Transcriptome analysis of adipose tissue from patients with

gastrointestinal cancer cachexia showed that the expression of

related pathways regulating energy conversion was up-regulated

(64). Both tumor cells and host immune cells (such as macrophages

and lymphocytes) release cytokines or hormones, such as IL-6,

tumor necrosis factor a (TNF-a), zinc-a 2-glycoprotein (ZAG, also

known as lipid mobilization factor), proliferin-1, catecholamines,

and natriuretic peptide, which can promote lipolysis and reduce

insulin sensitivity in CAC patients (6, 73, 80, 81). They are involved

in the regulation of proinflammatory state, stress response,

anorexia, disease behavior, hypermetabolism and accelerated

decomposition of protein, muscle and adipose tissue in CAC

patients (82). Systemic inflammation and changes in the human

immune system are important determinants of this state (83, 84),
Frontiers in Oncology 04
which suggest that inflammatory cytokines may be biomarkers for

the diagnosis of CAC (71).
3.2 Adipose tissue browning

In mammals, adaptive thermogenesis occurs mainly in brown

and beige adipocytes (35). The increase of energy consumption can

also be explained by the increased heat production and “browning”

of WAT (55, 56). WAT browning refers to the transformation from

WAT to BAT, and its name comes from the dark color associated

with mitochondria. The gradual transformation of adipose tissue

types is an interesting feature of CAC.

This process promotes mitochondrial respiration, leading to

thermogenesis rather than ATP synthesis, thus activating lipid

mobilization and increasing energy consumption (85). Beige

adipocytes, which are phenotypically different from those in

WAT and BAT, can appear under severe cold exposure (86),

adrenergic stimulation (87) and prostaglandin synthase

(cyclooxygenase 2, COX-2) (88). These cells can significantly

promote total energy consumption and lead to fat loss (89).

Obesity related studies have shown that the central nervous

system, especially the hypothalamus, is an important regulatory
FIGURE 1

The mechanism of adipose tissue loss in CAC. The mechanism of adipose tissue loss in CAC is complicated, and these mechanisms can be roughly
divided into increased lipolysis, browning of WAT, increased thermogenesis of BAT, and decreased lipogenesis. Cancer cells produce a variety of
cytokines to promote adipose tissue loss, such as IL-6, TNF-a, PTHrP, etc. These cytokines not only promote lipolysis, but also promote WAT
browning and upregulation of UCP1 in BAT, ultimately leading to an increase in thermogenesis and energy consumption. At the same time, the
crosstalk between adipocyte and immune cells and nervous system also plays an important role in abnormal lipid metabolism of CAC. The loss of
adipose tissue has a chain reaction that can produce hyperlipidemia and promote skeletal muscle atrophy, making CAC patients’ condition worse.
CAC, cancer-associated cachexia; WAT, white adipose tissue; BAT, brown adipose tissue; FFAs, free fat acids; ATGL, adipose triglyceride lipase; HSL,
hormone-sensitive lipase; MGL, monoglyceride lipase; LPL, lipoprotein lipase; FAS, fatty acid synthase; UCP1, uncoupling protein 1; b3-AR,
adrenoceptor beta 3; ADP, adenosine diphosphate; ATP, adenosine triphosphate; IL-6, interleukin-6; TNF-a, tumor necrosis factor a; PTHrP,
parathyroid hormone related protein; ZAG, zinc-a 2-glycoprotein; PLF-1, proliferin-1; GDF15, growth differentiation factor 15; CIDEA, DNA
fragmentation factor like effector A; AMPK, adenosine 5’-monophosphate (AMP)-dependent protein kinase; COX-2, cyclooxygenase 2; GLUT-4,
glucose transporter 4.
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organ for browning (87). Klaus Felix et al. found that the level of

glucagon-like peptide-1 (GLP-1) was increased in pancreatic cancer

cachexia patients (90), GLP-1 appears to trigger satiety and inhibit

food intake through molecular regulation in the hypothalamus (91).

At the molecular level, transcription factors such as peroxisome

proliferator activated receptor gamma (PPARg), PPARg coactivator
1a (PGC-1a), transcription factor PR domain-containing 16

(PDRM16) and CCAAT enhancer binding protein b (C/EBP-b)
regulate the transcription events of differentiation into brown

adipocytes (92, 93). This is related to upregulation of UCP1

expression, increased heat production (non-shivering), loss of

ATP production and increased energy catabolism (73). WAT

atrophy and adipose tissue browning occurred in the early stage

of CAC (94). The loss of brown adipocytes may lead to browning of

WAT, which indicates that there is a compensatory mechanism

between mature brown adipocytes and beige adipocytes (95).

In adipose tissue, proinflammatory factors promote the

browning of WAT. With the development of CAC, inflammatory

microenvironment and metabolic disorder caused by IL-6, TNF-a
and parathyroid related peptide secreted by tumors and host

immune system will promote browning of WAT (59, 94). IL-6

promotes systemic metabolism to a certain extent by regulating

BAT activation and adipose tissue browning (80). In addition,

tumor-derived IL-6 and adrenoceptor beta 3 (b3-AR) activation is

associated with CAC mediated adipose tissue browning.

Neutralization of IL-6 or b3-AR can significantly improve

cachexia (55). The introduction of IL-6 into the brain by

adenovirus vector can significantly increase the expression of

UCP1 in sympathetic innervated brown adipocytes, but not in

denervated brown adipocytes, indicating that IL-6 might activate

BAT through b3-AR signaling pathway (96). Although PTHrP

treatment did not change tumor size in Lewis mouse lung CAC

model, it resulted in CAC related weight loss and skeletal muscle

atrophy, and activated beige cells to produce heat. On the contrary,

blocking PTHrP with neutralizing antibody can prevent adipose

tissue and skeletal muscle atrophy. In addition, PTHrP shares the

G-protein coupled receptor signaling pathway with b 3-AR

agonists, and upregulates the protein expression level of UCP1 in

white and brown adipocytes (56). Therefore, tumor cell-derived IL-

6 and PTHrP may play an important role in CAC by activating BAT

and/or adipose tissue browning.

Two G-protein coupled receptors, called FFA receptor 1 (FFA1)

and FFA receptor 4 (FFA4), were identified as molecular targets for

w-3 polyunsaturated fatty acids (97, 98). When activated, these

receptors can promote a variety of effects, such as increasing insulin

sensitivity, inducing adipose tissue browning, promoting analgesia

by releasing b-endorphin, controlling energy homeostasis, and

reducing food intake (99, 100). Activation of FFA4 results in

browning of adipose tissue (99, 101). Lewis lung cancer mouse

models lacking the adipose tissue specific PRDM16 showed reduced

browning, thermogenesis and lipoatrophy (56). By neutralizing

browning promoting hormones , such as PTHrP, the

improvement of CAC and the reduction of adipose tissue loss

were observed in animal models (56). WAT showed heterogeneity

in browning efficiency. Some parts such as visceral adipose tissue is

resistant to browning. It has been reported that visceral adipose
Frontiers in Oncology 05
tissue browning may be a compensatory heat production

mechanism (102), but its conversion mechanism is still unclear.

Hongmei Yang et al. found that exosomes from Lewis lung

carcinoma cells can induce lipolysis in vitro and in vivo by

delivering PTHrP, and inhibition of exosome generation

prevented the fat loss of tumor bearing mice (103, 104).

Furthermore, there have been many studies in recent years

confirming that non-coding RNA plays an important role in the

browning of WAT. Wenjuan Di et al. found that miR-146b-5p was

enriched in cancer-related exosomes, which plays an essential role

in WAT browning. miR-146b-5p can directly repress the

downstream gene homeodomain‐containing gene C10

(HOXC10), thereby regulating lipolysis (105). Non-coding RNA

such as miR-155, miR-425-3p, and miR-182-5p have also been

shown to play a role in promoting WAT catabolism and browning

in several cancer species (106–108). Further study on the

mechanism of systemic metabolic and inflammatory changes

leading to the transformation of WAT into BAT can further

improve our understanding and treatment of cachexia.
3.3 Activation of BAT

There is a lot of evidence that BAT is activated under different

conditions of cachexia. The enhanced heat production of BAT is

considered to be one of the main reasons for the increase of resting

energy expenditure in cancer patients (72). The activity of BAT was

also positively correlated with the stage of cancer (109).

BAT is characterized by high mitochondrial content and

increased expression of UCP1. UCP1 regulates body temperature

through oxidative phosphorylation of uncoupling ATP, resulting in

increased energy consumption, increased heat production, and

lipolysis, leading to weight loss and progression of CAC (56, 59,

94). The activation of BAT is mediated by b3-AR, which is activated
by the sympathetic nervous system, leading to adipocyte

contraction (56). b3-AR was activated and UCP1 expression was

increased, which activated the delipidation in BAT (110).

Catecholamine signaling in BAT transduction was enhanced in

cachexia mice, but blocking the b3-AR by propranolol could

prevent the increase of body temperature (111). Catecholamine

levels are associated with BAT activity and BMI (112). Moreover,

FFAs released by lipolysis are direct activators of UCP1 (33),

indicating that enhanced WAT catabolism in CAC will promote

BAT activation.

Brown adipose precursor cells expressing early B-cell factor 2

and platelet-derived growth factor receptor a differentiated into

mature brown adipocytes (113). The regulation of BAT depends on

a variety of cytokines. b1-adrenergic receptor (ADRB1) mediates

norepinephrine induced BAT formation (114). The expression of

ADRB1 was correlated with the rate of lipolysis in patients with

CAC (76), Prep1 is a adipo-osteogenesis regulatory factor, which is

related to the increase of BAT density and osteogenesis reduction

(115). IL-6 also plays an important role in mediating BAT

activation by increasing the expression of UCP1 and activating

fatty acid b-oxidation related gene thermogenesis in gastric cancer

and colon cancer patients with cachexia (80). With Lewis lung
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cancer model, it has been proved that tumor-derived PTHrP

regulates the expression of genes involved in adipose tissue

thermogenesis, lipolytic enzymes and muscle atrophy. These

studies suggest that blocking BAT activation may be a way to

treat cachexia. However, due to the difficulty of BAT localization in

human body, the research progress on BAT is very slow at present.
3.4 Crosstalk between adipocyte
and non-adipocyte

In the context of CAC, there are communications between

adipocytes and a variety of non-adipocytes, which is the key to

control energy homeostasis and prevent metabolic diseases. DNA

fragmentation factor like effector A (CIDEA) is an important

metabolic regulator and apoptosis inducing factor. Adipocyte

dysfunction leads to the increase of CIDEA, followed by the

degradation of adenosine 5’-monophosphate (AMP)-dependent

protein kinase (AMPK) in cachexia adipose tissue (116). By

hypothalamic AMPK signal, the secretion of leptin, adiponectin

and insulin are controlled (117). When the effect of insulin is

enhanced, IL-6 secreted by skeletal muscle will increase. IL-6 acts on

muscle contraction also by activating AMPK (117). Meanwhile, IL-

6 induces Toll-like receptor-4 gene expression via activation of

STAT3, leading to insulin resistance in human skeletal muscle,

which further accelerates muscle wasting (118). Lipolysis results in

increased FFAs in circulation, and FFAs will eventually enter

skeletal muscle and cause muscle atrophy (91). Blocking fatty acid

oxidation not only rescued human myotubes, but also improved

muscle mass and body weight in CAC models in vivo, which

indicates that there may be interaction between adipose tissue

and skeletal muscle (119). Rowena Suriben’s study has indicated

that growth differentiation factor 15 (GDF15) elicits a lipolytic

response in adipose tissue and leads to reduced adipose and muscle

mass and function in tumor-bearing mice, inhibiting GDF15-driven

lipid mobilization and oxidation can be translated to preservation of

skeletal muscle mass (120). GDF15 regulates survival of motor and

chipmaker sensory neurons (121), so lipid and skeletal muscle may

interact through neurons.

During cachexia, systemic inflammation is one of the main

driving forces of fat consumption. Cancer cells secrete a variety of

mediators, such as TNF-a, IL-6, IFN-g, ZAG and PTHrP, which can

promote browning (55, 56, 122). TNF-a belongs to cachectin (123),

which can be released from adipose tissue and mediates CAC by

reducing the expression of glucose transporter 4 (GLUT4), which in

turn inhibits glucose transport and adipogenesis (124). In addition,

adipose tissue is closely related to inflammatory cells, the cross-talk

between immune response and adipose tissue biology has been

proved. Macrophages can infiltrate WAT and activate immune

responses in cachexia mice. A study has shown that macrophages

can regulate WAT browning through paracrine heat shock protein

A12A (125). Recently, Hao Xie et al. demonstrated that the

immune-sympathetic neutron communication axis is essential for

WAT browning in CAC. IL-6 and PTHrP can activate immune
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cells, including macrophages. Then, the type 2 macrophages will

produce neurotrophins and increase polyamine synthesis and

secretion. This increases neuronal activity, leading to enhanced

local catecholamine synthesis, b-adrenergic stimulation of WAT,

and WAT browning (126). Not only that, virus-specific CD8(+) T

cells caused morphologic and molecular changes in adipose tissue,

which may also lead to cachexia (127). Another study implicates

adipocytes as predominantly negative regulators of the surrounding

myeloid cells (128). At the same time, studies have shown that the

imbalance of the immune system affects the gut microbiota (129),

which also plays an important role in CAC. One clinical study has

shown that compared with non-cachexic people, Proteobacteria, an

unknown genus from the Enterobacteriaceae family, and Veillonella

were more abundant among CAC patients (130). Currently, the

crosstalk between adipose tissue and other tissues is attracting more

and more attention, and the study of these mechanisms may

provide us with a more holistic understanding of CAC, so as to

develop diagnosis and treatment strategies.
3.5 Reduced lipogenesis

The decrease of fat mass in cancer patients depends on the

decrease of lipid deposition and lipogenesis. In the process of

lipogenesis in adipose tissue, some fatty acids will be re-esterified

to triglycerides, forming a futile cycle, which is mediated by AMPK

pathway, and the activity of AMPK pathway in cachexia adipose

tissue is decreased (116). The activities of fatty acid synthase (FAS)

and LPL in adipose tissue of cancer patients were decreased (131). A

large number of animal studies have also shown that the activity of

LPL is reduced in cancer (132). LPL hydrolyses free circulating

triacylglycerol present in chylomicrons very-low-density

lipoproteins (VLDLs), whose decreased activity is associated with

increased IL-6 (133). Compared with cancer patients with stable

weight, patients with CAC have more adipose tissue oxidation

(134). Mice-bearing colon adenocarcinoma showed an increase in

LPL activity in the heart and adipose tissue increasing weight loss

but decreasing with further weight loss. It is suggested that the

initial rise in LPL activity provides more oxidation of fatty acids in

cachexia state (7, 135). These evidences suggest that the dysfunction

of LPL is related to the occurrence and development of CAC, and

testing the activity of LPL may be useful for the diagnosis of

cachexia. In the experimental model of CAC, the process of

lipogenesis was weakened and the expression of lipogenic

transcription factors was decreased, which was related to the

decrease of adipocyte size and the higher expression of TNF-a
(136–138). Besides, non-coding RNA also affects lipogenesis, Diya

Sun et al. found that the expression of miR-410-3p was higher in

subcutaneous adipose tissues and serum exosomes of CAC patients,

which significantly inhibited adipogenesis and lipid accumulation

(139). Additionally, due to anorexia associated with CAC or the

difficulty of eating due to cancer, the intake of lipids and other

nutrients will be reduced, which will also lead to the reduction

of lipogenesis.
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4 Therapy strategy

However, the research progress in the treatment of CAC and the

improvement of patients’ prognosis is relatively slow, there is also

no definite treatment plan for the abnormal lipid metabolism of

CAC patients. Studies have shown that CAC is often reversible if

intervention is carried out in pre-cachexia or cachexia stage (10,

140). The main treatment strategies used in these stages include

exercise and nutritional support, as well as the elimination of any

direct cause of cancer (such as reduced food intake or malnutrition

due to obstruction or compression) (140, 141). Unfortunately,

many cases have been diagnosed as refractory cachexia, when

CAC is usually irreversible (1, 140). At present, the main

researches focus on the treatment of CAC. Several treatment

options have been proposed, but have not been clinically

confirmed. The treatment combination mainly involves two

pathways: the anabolic pathway and the antimetabolic pathway

for muscle and fat catabolism (82). Neutralization of metabolic

changes is the first task to overcome cachexia, including the control

of skeletal muscle protein decomposition rate, as well as the control

of liver, lipid and carbohydrate protein metabolism abnormalities.

A retrospective study by Dingemans et al. included 12 phase II

clinical trials involving 11 compounds. These drugs fight CAC

through one of the following mechanisms: increase appetite,

improve digestion, reduce systemic inflammation, and increase

the ratio of muscle synthesis and degradation (142). Many other

drugs have entered phase III trials, but it is difficult to achieve

multiple clinical endpoints at the same time. Anamorelin, an auxin

receptor agonist, has demonstrated its ability to improve lean

weight in phase II clinical trials in patients with non-small cell

lung cancer and CAC (143). However, the results of this phase II

trial and subsequent phase III trial showed that although lean

weight was improved, grip strength did not improve (143, 144),

which was rejected by the European Drug Administration in 2017.

Enobosarm, a selective androgen receptor regulator, showed a

significant increase in total lean body weight in the phase II study

(145), but it did not produce consistent end-point results in the

phase III trial (146, 147). There are many influencing factors in

CAC. Current studies cannot fully elucidate the pathophysiological

mechanisms of CAC, so as to effectively reduce or reverse all clinical

factors of CAC. Therefore, even if the development of many drugs is

moving in the right direction, few of them can pass phase II and

III studies.

As we mentioned above, lipopenia is an important feature of

CAC, and several studies have suggested potential therapeutic

strategies for lipid metabolism in CAC, which are summarized in

Table 1. Our summary shows that although so many potential

strategies have been identified, they are still far from clinical

practice. Based on the available evidence, nutritional strategies

such as supplementing patients with unsaturated fatty acids and

marine phospholipids may be effective (7, 164). Some

chemotherapeutic agents, such as cytarabine, promote fat

depletion, and we can intervene early in the treatment of patients

using these chemotherapeutic agents (165). Exercise training may

also reduce inflammation and improve the condition of muscle and
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adipose tissue in CAC patients (166). What’s more, the application

of some new technologies may be helpful to this field. The

appearance of 3D bioprinted WAT model is helpful for us to

further study and understand the mechanism of adipose tissue

metabolism in cachexia (167). Portable biosensors can make it

easier for us to monitor lipolysis in patients (168). However, these

strategies still need more clinical data to support, the treatment of

CAC is still a major challenge for clinicians.
5 Conclusions

CAC is a chronic disease involving multiple organs and tissues,

which requires multi-mode treatment, including drug treatment,

nutritional support and physical exercise, so as to better adapt to the

complex mechanisms of body consumption. While enhancing the

balance of anabolism/catabolism, it can improve the physical

condition and improve the quality of life (169, 170). However, the

ideal drugs against CAC are still under development.

Studies have shown that adipose tissue is involved in the

formation of CAC, and abnormal lipid metabolism plays an

important role in the development of CAC (Figure 2). In adipose

tissue, WAT guides the system energy production through the

balance between lipogenesis and lipolysis. BAT has been found to

have important physiological and pathological functions in adults.

Browning stimulates the differentiation and thermogenesis of beige

adipocytes. These adipose tissues contribute differently to CAC. In

the development of CAC, adipose tissue interacts with other cells or

organs, showing therapeutic potential. Since abnormal lipid

metabolism occurs at the early stage of CAC, correcting abnormal

lipid metabolism and appropriately increasing adipose tissue may

delay or even prevent the further deterioration of CAC. Therefore, it

is also very important to explore related biomarkers to monitor lipid

metabolism in cancer patients. In this field, we need to continue to

pay attention to and think about the following questions: (1) At

present, there is a lack of clinical monitoring indicators of lipid

metabolism, and it is difficult for us to identify abnormal fat loss in

cancer patients at an early stage. At the same time, the specific

changes of each fat depot during fat loss are still not clear. (2) Some

studies have shown that appropriate diet control and exercise can

increase muscle strength and promote metabolic health in cancer

patients. However, there is still a lack of relevant research

conclusions on whether these measures are safe for patients with

CAC and whether these interventions should be implemented in

patients with CAC. (3) The related side effects of anti-tumor

therapy may also promote the development of CAC. The effects

of these therapies, including chemotherapy, radiotherapy,

immunotherapy and targeted therapy, on lipid metabolism

remain unclear. (4) Current animal models of CAC may not

adequately simulate the actual physiological changes of CAC,

many mechanistic details of abnormal lipid metabolism in CAC

need to be further explored, and the interaction between different

types of cancers and adipose tissue may also be different.

In this review, we systematically summarize the currently

known mechanisms related to abnormal lipid metabolism in
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CAC. Although we have summarized a number of potential

treatments for abnormal lipid metabolism in CAC in this review,

most of them still require further drug development and clinical

validation. CAC is still an unavoidable problem for oncologists.
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Through this review of abnormal lipid metabolism in CAC, we hope

that drugs targeting abnormal lipid metabolism in CAC can be

developed in the future, so as to effectively treat CAC and improve

the prognosis of patients with CAC.
TABLE 1 Potential therapeutic strategies for lipopenia in CAC.

Therapy
strategy

Object Evidence Reference

Exercise
training

Patients with
cancer

Aerobic and resistance exercise can improve patients’ muscle strength and decrease the levels of TNF-a and
CRP.

(148, 149)

NSAIDs Patients with CAC A pilot study shows patients who received celecoxib experienced statistically significant increases in weight and
BMI over controls, NSAIDs may improve weight in CAC patients.

(150, 151)

Unsaturated
fatty acid

Patients with
digestive system
neoplasm

The plasma levels of unsaturated fatty acids were decreased in patients with cachexia. Supplementation with
omega-3 fatty acids significantly increased skeletal muscle mass and decreased IL-6 and TNF-a in patients.

(152–154)

Enteral feeding Patients with CAC Enteral feeding is associated with improvement in decreasing body fat mass and inflammatory markers (CRP)
and increasing in lean body mass.

(155)

Ghrelin Cancer patients
with anorexia

Ghrelin increases the energy intake of cancer patients with anorexia. It’s found to have a predominantly
positive effect on growth hormone plasma levels, weight gain,
increases in lean mass, and reductions in loss of adipose tissue.

(156, 157)

Megestrol Patients with CAC High dose megestrol can significantly improve the appetite and body weight of some cancer patients with
cachexia, especially the body fat mass.

(158)

Gut
microbiome

Patients with CAC There are differences in gut microbiota between CAC patients and non-cachexic people, however, in one
prospective study, fecal microbiota transplantation is reported to be negative.

(130, 155)

Anti-diabetic
agents

In vitro model and
murine model

Metformin can deactivate HSL and counteract TNF-a induced lipolysis thereby increasing lipid synthesis and
decreasing WAT browning.
Rosiglitazone is able to rescue breast cell induced lipid accumulation.

(159, 160)

Lipid lowering
agents

Rat model of CAC Simvastatin attenuates loss of body weight as well as muscle mass and improves cardiac function. (161)

AMPK-
stabilizing
peptide (ACIP)

In vitro model and
tumor-bearing
murine model

ACIP is able to ameliorate WAT wasting in vitro and in vivo by shielding the Cidea-targeted interaction
surface on AMPK.

(116)

Carnosol In vitro model and
tumor-bearing
murine model

Carnosol and its analogues exhibits anti-cachexia effects mainly by inhibiting TNF-a/NF-kB pathway and
decreasing muscle and adipose tissue loss.

(162)

Piceatannol In vitro model and
tumor-bearing
murine model

Piceatannol can modulate the stability of lipolytic proteins, protect tumor-bearing mice against weight-loss in
early stage in CAC through preserving adipose tissue.

(20)

Farrerol In vitro model Farrerol attenuates TNF-a-induced lipolysis and increases adipogenic differentiation in 3T3-L1 cells. (163)

ESM Murine model ESM supplementation ameliorates anorexia, lean fat tissue mass, skeletal muscle wasting, reduced physical
function, lipid metabolism and microbial dysbiosis.

(129)

Anti-PTHrP
antibody

In vitro model and
tumor-bearing
murine model

Neutralization of PTHrP in tumor-bearing mice blocks adipose tissue browning and also loss of muscle mass
and strength. It also prevents the lipolytic effects of extracellular vesicles.

(56, 104)

Anti-IL-6
receptor
antibody

Murine model Anti-IL-6 receptor antibody can inhibit WAT lipolysis and browning in cachectic mice. (80)

Selective b3-
AR antagonist

Tumor-bearing
murine model

Treating mice with the selective b3-AR antagonist ameliorates cachexia and decreases UCP1 levels in
subcutaneous WAT.

(55)

Anti-GDF15-
GFRAL
antibody
(3P10)

Tumor-bearing
murine model

3P10 targets GFRAL and inhibits RET signaling by preventing the GDF15-driven interaction of RET with
GFRAL on the cell surface. Treatment with 3P10 reverses excessive lipid oxidation in tumor-bearing mice and
prevents CAC, even under calorie-restricted conditions.

(120)
f

TNF-a, tumor necrosis factor-a; NSAIDs, non-steroidal anti-inflammatory drugs; CAC, cancer-associated cachexia; IL-6, interleukin-6; CRP, C-reactive-protein; HSL, hormone-sensitive lipase;
WAT, white adipose tissue; AMPK, adenosine 5’-monophosphate (AMP)-dependent protein kinase; NF-kB, nuclear factor kappa-B; ESM, eggshell membrane; PTHrP, parathyroid hormone
related protein; b3-AR, adrenoceptor beta 3; UCP1, uncoupling protein 1; GDF15, growth differentiation factor 15; GFRAL, GDNF family receptor alpha like; RET, ret proto-oncogene.
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Abnormal lipid metabolism in CAC can be summarized as

increased catabolism and decreased synthesis of white adipose

tissue, increased browning of adipose tissue and abnormal

activation of brown adipose tissue, and crosstalk between adipose

tissue and non-adipose tissue further promotes adipose loss. There

are a number of treatments available to prevent lipopenia, such as

exercise, appetite promotion, caloric and nutrient supplementation

by oral or parenteral nutrition, and NSAIDs and other drugs that

may be beneficial to fat preservation, the specific items are listed in

Table 1. In clinical practice, these strategies are often used in

combination to prevent the progression of CAC, and drugs
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targeting the above abnormal lipid metabolism need to be

developed and explored in the future.
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