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Hepatocellular carcinoma associated with chronic hepatitis B virus infection

seriously affects human health. Present studies suggest that genetic susceptibility

plays an important role in themechanism of cancer development. Therefore, this

study focused on single nucleotide polymorphisms (SNPs) of MMR genes

associated with HBV-HCC. Five groups of participants were included in this

study, which were healthy control group (HC), spontaneous clearance (SC),

chronic hepatitis B group (CHB), HBV-related liver cirrhosis group (LC) and HBV-

related hepatocellular carcinoma group (HBV-HCC). A total of 3128 participants

met the inclusion and exclusion criteria for this study. 20 polymorphic loci on

MSH2, MSH3 and MSH6 were selected for genotyping. There were four case-

control studies, which were HC vs. HCC, SC vs. HCC, CHB vs. HCC and LC vs.

HCC. We used Hardy-Weinberg equilibrium test, unconditional logistic

regression, haplotype analysis, and gene-gene interaction for genetic analysis.

Ultimately, after excluding confounding factors such as age, gender, smoking

and drinking, 12 polymorphisms were found to be associated with genetic

susceptibility to HCC. Haplotype analysis showed the risk haplotype GTTT

(rs1805355_G, rs3776968_T, rs1428030_C, rs181747_C) was more frequent in

the HCC group compared with the HC group. The GMDR analysis showed that

the best interaction model was the three-factor model of MSH2-rs1981928,

MSH3-rs26779 and MSH6-rs2348244 in SC vs. HCC group (P=0.001). In

addition, we found multiplicative or additive interactions between genes in our

selected SNPs. These findings provide new ideas to further explore the etiology

and pathogenesis of HCC. We have attempted to explain the molecular

mechanisms by which certain SNPs (MSH2-rs4952887, MSH3-rs26779, MSH3-
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rs181747 and MSH3-rs32950) affect genetic susceptibility to HCC from the

perspectives of eQTL, TFBS, cell cycle and so on. We also explained the results

of haplotypes and gene-gene interactions. These findings provide new ideas to

further explore the etiology and pathogenesis of HCC.
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Introduction

Hepatocellular carcinoma (HCC), the fifth most common

malignancy among worldwide, is the second leading cause of

cancer-related death in China (1). Due to the insidious onset of

HCC, the difficulty of early diagnosis and the rapid development of

the disease, many patients have developed to advanced stage of the

tumor at the time of consultation, and even after surgery or

radiotherapy, the overall 5-year survival rate is less than 30%.

Therefore, it is a challenge for clinicians to find out the factors that

affect the susceptibility and clinical prognosis of HCC and conduct

early intervention (2, 3). Although studies have suggested that

different histological parameters should be used to predict the

susceptibility and prognosis of HCC, a new cancer classification

system (4) using molecular markers to explain the prognosis of

patients with HCC holds broad prospects. Exploring the factors

related to the susceptibility and prognosis of HCC can also

provide new clues for finding the markers for diagnosis of HCC

and the intervention targets for treatment, which has important

clinical significance.

With the completion of the Human Genome Project and

molecular biotechnology, gene polymorphism as an essential role of

clarifying tumor susceptibility is widely concerned (5).

Polymorphism is the result of mutations. Single nucleotide

polymorphism (SNP), the most frequent form of human genetic

variation, is a modification of a DNA sequence due to the change of a

single nucleotide (6). SNPs in different locations have different

functions. Missense mutation of SNPs in the exon directly alter the

amino acid sequence of the encoding protein. Intron polymorphisms

may have an impact on gene splicing and the degradation of

messenger RNA, whereas polymorphisms in the regulatory region

plays a part in regulating transcription and translation processes (7).

But these SNPs work together to influence gene expression and

function. Relevant studies show that SNPs in genes that regulate

immunity (8–10), DNA repair (11–13), metabolism (14) are

associated with genetic susceptibility to HCC. SNPs can not only

affect development of disease, it can also be used as molecular genetic

markers. SNPs have the obvious characteristics of high density, easy

to realize high-throughput detection and stability. Convenient

conditions are created for understanding the genome of individuals.

DNA repair genes are vital candidates that influences

susceptibility to cancer. Repair gene defects may cause genetic

instability leading to increased rates of somatic mutations. DNA
02
mismatch repair (MMR) genes, are key factors in response to base-

base mismatches and small insertion/deletions caused by

misincorporation errors during DNA replication (15). Studies

indicated that SNPs of specific MMR genes can affect the

expression of genes, activity of enzymes and individual repair

efficiency to DNA damages (16–18). As one of the most important

MMR genes, MSH2 plays a critical role in repairing mismatched

DNA base. The current research indicates that MHS2 gene

polymorphism be associated with the occurrence and development

of breast cancer (19), gastric cancer (20), esophageal cancer (21) and

base cell carcinoma (22). M Yano (23) showed that MSH2 closely

correlate with the survival of HCC patients. However, only a few

studies (24) have investigated the relationship between MSH2

polymorphism and HCC. MSH2 works together with MSH3 or

MSH6 as a heterodimer. Base–base mispairs are primarily

identified by MSH2-MSH3 and large insertion/deletions are

recognized by MSH2-MSH6. Both complexes perform in the repair

of small insertion/deletions (25, 26). The loss of MSH2-MSH3 and/or

MSH2-MSH6 expression is the most common form in MMR

deficiency tumors. An integrative pan-cancer analysis show that

MSH6 mutations are closely linked to the occurrence, progression

or metastasis of cancer. Moreover, MSH6’s high expression was

linked with poor prognosis of liver cancer patients (27). In Liu’s

study (28), the CT genotype ofMSH6 (rs1042821) reduced the risk of

primary hepatocellular carcinoma (PHC). A recent study showed that

MSH3 leaded to microsatellie instability and promoted the

occurrence and progression of HCC (29). Up to now, only a few

(30) domestic reports confirmed the relationship between MSH3/

MSH6 gene polymorphism and HCC susceptibility, but most of the

studies only stayed at the level of genetic detection.

SNPs in the same chromosomal region are not inherited

randomly, but as combinations of alleles, which form haplotype

blocks (31). Linkage disequilibrium (LD) defines the haplotypes of a

certain population and refers to the non-random linkage of alleles at

different loci (32). The genetic information provided by haplotype is

more accurate and more in line with the genetic characteristics of

polygenic diseases than a single allele. Besides, analysis of markers

on a haplotype can reduce the complexity of analyzing SNPs in a

gene or loci. Thus, haplotype is an effective tool to explore the

relationship between genome and disease.

Gene-gene interaction(GxG) plays an important role in the

occurrence of complex diseases. The occurrence of HCC is a

complex process involving multiple genes and factors. Further
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exploration of GxG will help us understand the causes of population

susceptibility differences and better understand the relationship

between genes and diseases (33). Since studies that lack interaction

and haplotype analysis lose a great deal of genetic information to better

explain the molecular mechanisms that lead to individual differences in

HCC susceptibility, therefore, we included the above two analyses in

our study.

In conclusion, 20 SNPs on MSH2, MSH3, MSH6 genes were

selected based on candidate gene strategy. We will study the

relationship between SNPs and susceptibility of HBV-related HCC

from three aspects: single site genotype, multi-site haplotype andmulti-

site interaction. The results will provide scientific basis for screening

and clinical prognosis of liver cancer susceptible population.
Materials and methods

Participants

Participants were collected from November 2009 to July 2016. All

participants were Han Chinese in northern China, who were recruited

from the First, Second and Fourth Hospitals of Hebei Medical

University and the Fifth Hospital of Shijiazhuang City. The

participants were divided into 5 groups: healthy control group (HC),

Spontaneous clearance (SC), chronic hepatitis B group (CHB), HBV-

related liver cirrhosis group (LC) and HBV-related hepatocellular

carcinoma group (HBV-HCC). Healthy volunteers and HBV natural

clearance patients were selected as control group in the physical

examination center of the above hospitals. All the healthy controls

had no history of hepatitis virus infection and liver-related diseases,

their blood routine was normal and all the HBV serological markers

were negative or only anti-HBs positive. SC group was defined as those

with normal blood routine, normal liver function and no history of

other liver diseases. Meanwhile, in their serological tests, anti-HBs and

anti-HBc were positive, HBsAg, HBeAg, anti-HBe and HBV DNA

were negative. CHB group: serumHBsAg or HBVDNApositive over 6

months, CHB diagnosis meets the diagnostic criteria of China’s 2019

edition of Guidelines for Prevention and Treatment of Chronic Hepatitis

B. LC group: serum HBsAg or HBV DNA positive over 6 months, the

LC diagnosis meets the China’s 2019 Guidelines for Diagnosis and

Treatment of Liver Cirrhosis. HBV-HCC group: serumHBsAg or HBV

DNA positive over 6 months, HCC diagnosis meets the China’s 2019

edition of Guidelines for Diagnosis and Treatment of Primary

Liver Cancer.

Exclusion criteria: (i) coinfection with other viruses such as HCV,

HDV and human immunodeficiency virus infection; (ii) patients with

liver diseases caused by autoimmunity, alcohol and drugs; (iii) patients

with acute hepatitis B and metastatic liver cancer; (iv) individuals who

could not or were unwilling to participate or sign the informed consent.

To control the effects of confounding factors such as HBV and

histopathological parameters and to increase the reliability of the

results, we conducted four case-control studies to investigate genetic

factors associated with HCC susceptibility (HC vs. HCC, SC vs.

HCC, CHB vs. HCC and LC vs. HCC). Up to 24 independent

variables including 20 loci and 4 other factors (age, gender, smoking

and drinking, the definition of smoking and drinking status was
Frontiers in Oncology 03
shown in Supplementary Table 2) were incorporated into the

Logistic Regression equation. Therefore, the sample size of each

group should be at least 240.

A total of 840 healthy controls, 496 HBV natural clearance

patients, 691 CHB patients, 680 LC patients and 421 HBV-HCC

patients who met the criteria were included in this study. The

complete personal information of the participants was collected

through questionnaire survey and medical record data. All

participants provided written informed consent. The procedures

followed in this study were in accordance with the ethics guidelines

of the 2000 Declaration of Helsinki and approved by the Ethics

Committee of Hebei Medical University.
The selection of candidate genes and SNPs

PubMed database (https://pubmed.ncbi.nlm.nih.gov/) was

searched for risk-SNP in MMR genes associated with cancer

development. SNPs located in specific regions of MMR genes were

searched through UCSC (https://genome.ucsc.edu/), HapMap (https://

www.genome.gov/) and Ensemble (https://asia.ensembl.org/

index.html) databases. The function prediction of these

candidate genes was performed by database GWAS4D (http://

www.mulinlab.org/gwas4d/), VARAdb (http://www.licpathway.net/

VARAdb/) and eQTLGen Consortium (https://eqtlgen.org/).

The selected SNPs met the following criteria: (i) The association

between SNPs and HBV-related HCC had not yet been explored or

needs further confirmation. (ii) The minor allele frequency (MAF)

of SNP was greater than 5% in the Han population of northern

China. (iii) We intended to select functional SNPs, such as

enhancer, Exonic Splicing Silencer (ESS), TFBS, Exonic Splicing

Enhancer (ESE) and eQTLs. Finally, a total of 20 loci were included

in the study, and the details are shown in Supplementary Table 1.
DNA extraction and SNP genotyping

2ml of venous blood was obtained from the participants and whole

blood DNA was extracted using Genomic DNA Purification Kits

(Promega, the US). NanoDrop 2000 was used to identify the

concentration and purity of DNA to ensure the quality of samples.

The method for SNP genotyping of all samples was based on the

Sequenom Massarray platform. Primer design was performed by

MassARRAY® AssayDesigner3.1 combined with relevant literature.

Initial multiplex PCR amplification was performed using the

Sequenom amplification kit. A total of 45 cycles were performed,

and the cycling conditions were set as follows: denaturation was started

at 94°C for 15min, denaturation at 94°C for 20 s, annealing at 56°C for

30 s, cooling at 72°C for 60 s, and then a final extension at 72°C for 3

minutes and cooling to 4°C. At the end of the PCR reaction, the

prepared SAP (shrimp alkaline phosphatase) mix solution was added

to the PCR reaction plate for the alkaline phosphatase treatment

reaction. Desalting was performed by reverse-phase absorption

elution andMassARRAY Typer 4.0.5 was used for genotyping analysis.

In quality control, in the reaction of 384-well plates, one

negative and one positive control were added in every reaction to
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check the reaction quality. 10% of the samples were randomly

selected to repeat the data analysis.
Statistical analysis

The SNPStats (http://bioinfo.iconcologia.net/SNPstats) was used

to test the Hardy-Weinberg (H-W) balance of genotype frequencies

at 20 loci. Pearson chi-square test was used to compare two or more

sample rates and constituent ratios. Unconditional Logistic regression

was used to analyze the association between SNPs and HCC

susceptibility (co-dominant, dominant, recessive), and calculated

the odds ratio (OR) at 95% CI. The above statistical analyses were

carried out in SPSS V26.0 software (IBM, Armonk, New York).

Haplovie4.2 was used to establish the structure of haplotype blocks

and perform haplotype analysis. The software GMDR (v9.0) was used

to determine the best interaction model of 20 SNPs in each case-

control group. The gene-gene multiplicative interaction was

evaluated using Logistic regression model in SPSS V26.0. The

additive interaction was performed using SPSS26.0 and Excel 2019

with written program. The following three indices: Synergy index (S),

Attributable Proportion of interaction (AP) and Relative Excess Risk

of Interaction (RERI), are used to evaluate the results of the additive

model. When S=1, there is no interaction between the factors and the

disease; when S>1, there is a positive interaction, which means that

the pathogenic effect is stronger when the two factors are present

together than the effect of the two factors alone; if S<1, there is a

negative interaction between the two factors. AP indicates the

proportion of the interaction effect in the combined effect of two

exposure factors.RERI was used to describe the magnitude of risk

attributable to interaction. The larger the absolute value of RERI, the

stronger the interaction between the factors. In the present study,

additive interaction was considered to exist when the confidence

intervals for RERI and AP did not contain “ 0 “ and the confidence

interval for S did not contain “1”.
Results

Participants characteristics

There were statistically significant differences in age, gender,

smoking and alcohol consumption among the four case-control

studies (P<0.001) (Supplementary Table 2). The Hardy-Weinberg

Equilibrium results showed that all 20 loci conformed to the H-W

equilibrium law (P>0.05), which indicated that the studied sample

was representative of the population. Details were shown in

Supplementary Table 3. Distribution of genotypes and minor

allele frequencies of the 20 SNPs among the five groups was

shown in Supplementary Table 4.
The results in HC vs. HCC

The HC group was used as the control group and the HCC

group as the case group to study the influence of genetic factors on
Frontiers in Oncology 04
the susceptibility to HCC. As shown in Supplementary Table 5,

univariate analysis revealed that MSH3-rs32950 (GG), MSH3-

rs181747 (CC), MSH3-rs863221 (GG), MSH3-rs1042821(GA) and

MSH3-rs1042821(GA/AA) were risk factors. MSH2-rs3776968 (T),

MSH2-rs3776968 (CT),MSH2-rs3776968 (CT/TT),MSH3-rs33002

(AT), MSH3-rs33008(GC) and MSH3-rs33008(GC/CC) were

protective factors.

Using multiple logistic regression analysis, we found that in the

co-dominant model, MSH6-rs1042821 (GA) was a protective

genotype compared with AA (P=0.014, OR=0.688). In the

dominant model, only one loci entered the equation, MSH6-

rs2348244 (TC+CC) was a risk factor compared with TT, which

was more likely to develop into HCC (P=0.037, OR=1.371). In

addition, rs33008 (CC) and rs863221 (GG) of MSH3 were

significantly associated with increased risk of HCC in recessive

model (P=0.023, OR=1.959 and P=0.003, OR=1.867). Details were

provided in Table 1.

Haplotype analysis for 13 SNPs inMSH3 gene between HC and

HCC groups was shown in Table 2 (Figure 1). Thirteen loci in

MSH3 formed four haplotype blocks. Block 1 consisted of

rs1805355_G, rs3776968_T, rs1428030_C, rs181747_C and the

four haplotypes accounted for 99.1% of the distribution. The

distribution of haploid GTTT was statistically significant in HC

vs. HCC (P=0.0187, OR=0.797), and it was a protective factor for

HCC. Block 2 was composed of rs32950_G and rs40139_G, and the

haplotype formed accounts for 100% of the population distribution.

However, haplotype GG and AA had no statistically significant

effect on HCC susceptibility. Block 3, including CGG, TTG, CGC

and TGG, accounted for 99.5%. Rs26779_T, rs12513549_T,

rs33008_C were in almost absolute LD. CGC significantly

decreased the risk of HCC (P=0.0410, OR=0.818). Furthermore,

Block 4 formed by rs33002_T-rs26279_A-rs2112416_A. The

number of individuals carrying the AAT haplotype (P=0.0268,

OR=0.352) was more in the HC group. Haplotype analysis of 7

SNPs in the MSH2 and MSH6 genes between the HC and HCC

groups was not statistically significant (Supplementary Table 6).

We used GMDR to analyze gene-gene interactions at 20 loci.

The results showed that the 2-factor model constituted by MSH3-

rs12513549 and MSH3-rs181747 was the best interaction model

related to HCC susceptibility. According to the 2-factor interaction

combination, the study subjects were redivided into the high-risk

group and the low-risk group (Table 3). The morbidity of high-risk

group was 1.931 times higher than that of low-risk group (Figure 2).

The results of multiplicative interaction analysis showed that

MSH6-rs2348244 (TC+CC) and MSH3-rs3776968 (CC) had

positive multiplicative interaction, and both of them jointly led to

the occurrence of the disease (P<0.001, OR=1.701) (Table 4). The

interaction based on additive model did not show significant

statistical significance (Supplementary Table 7).
The results in SC vs HCC

In this group of analysis to explore the susceptibility loci of

HCC, we used SC as the control group and HCC as the case group.

As shown in Supplementary Table 5, univariate analysis revealed
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MSH6-rs1042821 (AA) and MSH2-rs1981928 (TA) were risk

factors. MSH6-rs1042821(AA) was a protective factor.

Multiple logistic regression analysis showed that the individuals

carrying MSH2-rs1981928 (TA) genotype were more likely to have

increased risk of HCC in co-dominant (P=0.001, OR=2.182). In the

same way, MSH6-rs1981928 (TA+AA) was shown to be associated

with an increased risk of HCC occurrence in the dominant model

(P=0.012, OR=1.738). In the recessive model, four loci were

statistically significant. The MSH3-rs3776968 (TT) reduced the

risk of HCC (P=0.006, OR=0.347). MSH3-rs33002 (TT), MSH3-

rs26779 (TT), MSH3-rs32950 (GG) were more likely to increase

HCC risk (P=0.038, OR=1.746; P=0.045, OR=1.603 and P=0.001,

OR=1.943). Details were provided in Table 5.

Haplotype analysis showed that linkage disequilibrium existed

at 20 candidate loci on MSH2, MSH3 and MSH6, However, there

was no difference in the distribution of these haplotypes in the SC

and HCC groups (Supplementary Tables 6, 8). Table 3 summarized

the results obtained from GMDR analysis. The best interaction
Frontiers in Oncology 05
model was the three-factor model of MSH2-rs1981928, MSH3-

rs26779 and MSH6-rs2348244 (P=0.001). The cross-validation

consistency (CVC) was 8/10, and the balance accuracy was

61.40%. According to the model, the study subjects were

redivided into the high-risk group and the low-risk group. The

morbidity of high-risk group was 3.150 (2.059, 4.819) times higher

than that of low-risk group (Figure 3).

Table 4 showed the results of the multiplicative interaction

analysis. There were four groups with statistically significant results,

MSH3-rs40139 (GG) and MSH2-rs4952887 (CC) (P=0.010,

OR=1.593), MSH2-13019654 (GG+GT) and MSH6-2348244 (TC

+CC) (P=0.003, OR=1.657), MSH2-rs2303428 (TC+TT) and

MSH3-rs26779 (TT) (P=0.026, OR=1.699), MSH3-1042821 (AA)

and MSH3-33002 (AT+TT) (P=0.002, OR=4.948). All four groups

of loci with risk genotypes had synergistic effects in increasing

HCC susceptibility.

The results of the additive model suggested that only MSH2-

rs1981928 and MSH3-rs40139 existed additive interactions
TABLE 1 Multiple logistic regression analysis of predictive factors for hepatocellular carcinoma between HC and HCC in three models.

Variable B S.E Wald P OR(95%CI)

Codominant

age 1.025 0.113 82.013 1.35×10-19* 2.787(2.233,3.480)

gender (Male) 0.451 0.171 6.968 0.008* 1.569(1.123,2.192)

smoke (Yes) 1.341 0.183 53.543 2.53×10-13* 3.823(2.669,5.475)

drink (Yes) 0.475 0.184 6.676 0.010* 1.608(1.122,2.306)

MSH3-rs2112416 10.122 0.006*

MSH3-rs2112416(TA) -0.381 0.154 6.118 0.013* 0.683(0.505,0.924)

MSH3-rs2112416(AA) 0.203 0.212 0.916 0.338 1.226(0.808,1.858)

MSH6-rs1042821 8.170 0.017*

MSH6-rs1042821(GA) -0.374 0.152 6.066 0.014* 0.688(0.511,0.926)

MSH6-rs1042821(AA) 0.360 0.343 1.103 0.294 1.433(0.732,2.805)

Dominant

age 1.013 0.112 81.147 2.10×10-19* 2.753(2.209,3.431)

gender (Male) 0.438 0.170 6.657 0.010* 1.549(1.111,2.160)

smoke (Yes) 1.344 0.182 54.787 1.34×10-13* 3.834(2.686,5.473)

drink (Yes) 0.480 0.182 6.953 0.008* 1.617(1.131,2.311)

MSH6-rs2348244(TC+CC) 0.316 0.151 4.342 0.037* 1.371(1.019,1.845)

Recessive

age 1.031 0.113 82.504 1.05×10-19* 2.803(2.244,3.501)

gender (Male) 0.434 0.171 6.465 0.011* 1.543(1.105,2.156)

smoke (Yes) 1.366 0.184 55.119 1.13×10-13* 3.918(2.732,5.619)

drink (Yes) 0.462 0.184 6.296 0.012* 1.587(1.106,2.277)

MSH3-rs2112416(AA) 0.545 0.202 7.259 0.007* 1.725(1.160,2.564)

MSH3-rs33008(CC) 0.672 0.296 5.169 0.023* 1.959(1.097,3.498)

MSH3-rs863221(GG) 0.624 0.207 9.049 0.003* 1.867(1.243,2.803)
HC, health control; HCC, hepatocellular carcinoma; *:P<0.05.
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TABLE 2 Haplotype analysis for 13 SNPs in MSH3 gene between HC and HCC groups by Haploview 4.2.

Haplotype Freq. Case, Control Ratios P value OR (95%CI)

Block 1

ACCC 0.358 311.0: 527.0, 588.0: 1088.0 0.3172 1.092(0.919,1.297)

GCTT 0.324 288.9: 549.1, 526.2: 1149.8 0.1191 1.150(0.964,1.371)

GTTT 0.278 207.9: 630.1, 490.5: 1185.5 0.0187* 0.797(0.660,0.963)

GCTC 0.031 27.1: 810.9, 50.3: 1625.7 0.7537 1.083(0.673,1.742)

Block 2

GG 0.646 525.0: 313.0, 1092.0: 574.0 0.1526 0.882(0.742,1.048)

AA 0.354 313.0: 525.0, 574.0: 1092.0 0.1526 1.134(0.954,1.348)

Block 3

CGG 0.375 330.2: 509.8, 611.9: 1060.1 0.1858 1.121(0.945,1.329)

TTG 0.272 234.5: 605.5, 448.1: 1223.9 0.5520 1.059(0.880,1.275)

CGC 0.256 193.8: 646.2, 448.7: 1223.3 0.0410* 0.818(0.674,0.993)

TGG 0.092 77.6: 762.4, 154.4: 1517.6 0.9989 1.009(0.758,1.343)

Block 4

TAT 0.390 317.5: 522.5, 662.7: 1013.3 0.3987 0.929(0.784,1.102)

AAA 0.365 316.9: 523.1, 600.7: 1075.3 0.3560 1.084(0.913,1.287)

AGT 0.228 199.4: 640.6, 374.1: 1301.9 0.4257 1.081(0.888,1.315)

AAT 0.013 5.2: 834.8, 28.3: 1647.7 0.0268* 0.352(0.136,0.916)
F
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HC, healthy control; HCC, hepatocellular carcinoma; *: P<0.05.
Block1, including:rs1805355_G, rs3776968_T, rs1428030_C, rs181747_C, were in LD.
Block 2, including:rs32950_G, rs40139_G, were in LD.
Block 3, including: rs26779_T, rs12513549_T, rs33008_C, were in LD.
Block 4, including:rs33002_T, rs26279_A, rs2112416_A, were in LD.
FIGURE 1

Haplotype analysis for 13 SNPs between HC and HCC by Haploview 4.2.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1124459
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Ma et al. 10.3389/fonc.2023.1124459
(Table 6; Supplementary Table 9). The risk genotype TT/TA of

MSH2-rs1981928 and the risk genotype GG ofMSH3-rs40139 were

correlated with the occurrence of the HCC when exposed alone

(P=0.025, OR=1.726 and P=0.002, OR=2.355), and the two

genotypes were also correlated with the occurrence of the HCC

when exposed together (P=0.047, OR=1.744). Since the relative

excess risk of interaction was -1.339 [RERI=-1.339(-2.503, -0.174)],

there was a negative additive interaction. When the two factors

existed together, the risk of occurrence was 0.357 times of that when

the two factors existed alone [S=0.357(0.168, 0.758)].
The results in CHB vs. HCC

When we took the CHB group as the control group and the

HCC group as the case group, the results of the univariate analysis

(Supplementary Table 5) showed that MSH6-rs1042821 (AA),

MSH3-rs1428030 (CC), MSH3-rs1805355 (AA), MSH3-rs181747
Frontiers in Oncology 07
(CC) and MSH6-rs1042821(AA) were risk factors. MSH2-

rs4952887 (CT), MSH3-rs863221 (GT) and MSH3-rs26779 (CT)

were protective factors.

Multiple logistic regression analysis showed that in the co-

dominant model, individuals carrying MSH3-rs26779 (CT) had a

lower risk of the development of HCC than those carrying CC

(P=0.007, OR=0.650). In the dominant model, the genotypeMSH3-

rs26779 (CT+TT) was protective factors for cancerization (P=0.008,

OR=0.655). Details were provided in Table 7.

The linkage disequilibrium existed at 20 candidate loci onMSH2,

MSH3 andMSH6, which was shown by Haplotype analysis. But there

was no difference in the distribution of these haplotypes in the CHB

and HCC groups (Supplementary Tables 6, 8). GMDR analysis did

not reveal the best interaction model (Table 3). The multiplication

interaction showed that there was a positive multiplication

interaction between MSH2-rs1981928 (TA+TT) and MSH3-

rs26779 (CC) (P=0.006, OR=1.641). There was a positive

multiplication interaction between MSH6-rs1042821 (GA+AA) and
TABLE 3 GMDR analysis of 20 loci in HC vs. HCC, SC vs. HCC, CHB vs. HCC, and LC vs HCC groups.

Group Model TBA Sign Test(P) CVC

HC vs. HCC

rs2112416 0.4886 0.6230 3/10

rs12513549 rs181747# 0.5696 0.0010* 9/10

rs2303428 rs33002 rs2348244 0.5129 0.3770 4/10

rs2303428 rs26779 rs1042821 rs2348244 0.5390 0.1719 3/10

rs2303428 rs26779 rs181747 rs1042821 rs2348244 0.5472 0.1719 4/10

SC vs. HCC

rs1981928 0.5419 0.3770 9/10

rs13019654 rs26279 0.5613 0.0107* 7/10

rs1981928 rs26779 rs2348244# 0.6140 0.0010* 8/10

rs1981928 rs26779 rs33008 rs2348244 0.5938 0.0547 4/10

rs13019654 rs2303428 rs33002 rs32950 rs2348244 0.5633 0.0107 3/10

CHB vs. HCC

rs863221 0.5567 0.0010* 10/10

rs26779 rs1042821 0.5434 0.0547 6/10

rs13019654 rs26779 rs1042821 0.5431 0.1719 6/10

rs13019654 rs26779 rs33002 rs1042821 0.5295 0.3770 6/10

rs13019654 rs2303428 rs26779 rs33002 rs2348244 0.5227 0.1719 6/10

LC vs. HCC

rs2112416 0.5360 0.0547 9/10

rs26779 rs1042821 0.5020 0.3770 3/10

rs1981928 rs863221 rs2348244 0.4857 0.6230 4/10

rs1981928 rs33002 rs863221 rs2348244 0.4755 0.8281 5/10

rs1981928 rs13019654 rs33002 rs863221 rs2348244 0.4764 0.9453 3/10
frontier
TBA, testing balanced accuracy; CVC, cross-validation consistency; The limit dimension was set to 5; #, the best model;Confounding factors such as gender, age and the history of drinking and
smoking were controlled in the operation. *: P<0.05.
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MSH3-rs32950 (AA) (P=0.032, OR=1.981). There was a negative

multiplicative interaction between MSH6-rs1042821 (GA+AA) and

MSH2-rs1981928 (TA+TT) (P=0.001, OR=0.558) (Table 4). No

statistical significance was found in the additive interaction

analysis. (Supplementary Table 10).
The results in LC vs. HCC

With the LC group as the control group and the HCC group as

the case group, the results of the univariate analysis (Supplementary

Table 5) showed that MSH3-rs181747 (TT) and MSH3-rs181747

(CC) were risk factors. MSH2-rs4952887 (T), MSH2-rs4952887

(CT) and MSH2-rs4952887(CT/TT) were protective factors.

Table 8 showed the results of the multiple logistic regression

analysis. In the co-dominant models, MSH3-rs181747 (CC) can

increase the risk of HCC (P=0.005, OR=3.759). In the recessive

model, MSH3-rs1428030 (CC) was a protective factor (P=0.046,

OR=0.326). Both MSH3-rs26779 (TT) and MSH3-rs181747 (CC)

were risk factors for the development of HCC (P=0.035, OR=1.485,

and P=0.004, OR=4.686).
FIGURE 2

Epistatic interaction for HBV chronic hepatic diseases involving
rs12513549 and rs181747 between HCC and HC group. rs12513549
(0, 1, 2)=rs12513549(GG, GT, TT);rs181747(0, 1, 2)=rs181747(TT, TC,
CC). The scores of HCC group (left black bar in boxes) and HC (right
black bar in boxes) are shown for each genotype combination.
TABLE 4 Multiplicative interaction analysis of SNPs in HC vs. HCC, SC vs. HCC, CHB vs. HCC, LC vs. HCC groups by logistic regression.

Group Variable B S.E Wald P OR (95%CI)

HC vs. HCC

age 1.054 0.113 87.647 7.83×10-21* 2.87(2.301,3.578)

gender (Male) 0.448 0.168 7.100 0.008* 1.565(1.126,2.176)

drink (Yes) 0.458 0.183 6.276 0.012* 1.581(1.105,2.263)

smoke (Yes) 1.322 0.182 52.791 3.71×10-13* 3.752(2.626,5.360)

rs2348244* rs3776968 0.531 0.146 13.259 2.71×10-4* 1.701(1.278,2.264)

SC vs. HCC

age 0.903 0.123 53.617 2.44×10-13* 2.467(1.937,3.142)

gender (Male) 0.404 0.183 4.855 0.028* 1.498(1.046,2.147)

drink (Yes) 0.882 0.223 15.617 7.80×10-5* 2.415(1.56,3.740)

smoke (Yes) 0.730 0.222 10.817 0.001* 2.075(1.343,3.205)

rs40139* rs4952887 0.466 0.180 6.674 0.010* 1.593(1.119,2.267)

rs13019654* rs2348244 0.505 0.168 9.026 0.003* 1.657(1.192,2.303)

rs2303428* rs26779 0.530 0.238 4.947 0.026* 1.699(1.065,2.710)

rs1042821* rs33002 1.599 0.515 9.623 0.002* 4.948(1.802,13.587)

CHB vs. HCC

age 1.437 0.120 143.212 5.28×10-33* 4.208(3.325,5.324)

gender (Male) 0.424 0.184 5.319 0.021* 1.528(1.066,2.189)

smoke (Yes) 0.664 0.158 17.624 2.70×10-5* 1.942(1.425,2.648)

rs1981928 * rs26779 0.495 0.179 7.667 0.006* 1.641(1.156,2.331)

rs1042821* rs1981928 -0.584 0.183 10.151 0.001* 0.558(0.389,0.799)

rs1042821*rs32950 0.684 0.318 4.617 0.032* 1.981(1.062,3.696)

(Continued)
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TABLE 4 Continued

Group Variable B S.E Wald P OR (95%CI)

LC vs. HCC

age 0.752 0.120 39.164 3.90×10-10* 2.122(1.676,2.685)

drink(Yes) 0.476 0.177 7.251 0.007* 1.61(1.138,2.277)

smoke (Yes) 0.369 0.175 4.435 0.035* 1.446(1.026,2.038)

rs181747* rs4952887 0.573 0.214 7.166 0.007* 1.773(1.166,2.697)

rs2303428* rs26779 0.590 0.242 5.932 0.015* 1.804(1.122,2.900)
F
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HC, healthy control; SC, spontaneous clearance; CHB, chronic hepatitis B; LC, liver cirrhosis; HCC, hepatocellular carcinoma; Genotype assignment based on the optimum risk association
results of genetic models: HC vs. HCC: rs2348244: TT (0), TC+CC (1); rs3776968: CT+TT (0), CC (1); SC vs. HCC: rs40139: AA+AG (0), GG (1); rs4952887: CT+TT (0), CC (1); rs13019654: TT
(0), GG+GT (1); rs2348244: TT (0), TC+CC (1); rs2303428: CC (0), TC+TT (1); rs26779: TT (1), CT+CC (0); rs1042821: GG+GA (0), AA(1); rs33002: AA (0), AT+TT (1); CHB vs. HCC:
rs1981928: AA (0), TA+TT (1); rs26779: CT+TT (0), CC (1); rs1042821: GG (0), GA+AA (1); rs32950: AG+GG (0), AA (1); LC vs. HCC: rs181747: TC+TT (0), CC (1); rs4952887: CT+TT (0),
CC (1); rs2303428: TT (0), TC+CC (1); rs26779: CT+CC (0), TT (1). *: P<0.05.
TABLE 5 Multiple logistic regression analysis of predictive factors for hepatocellular carcinoma between SC and HCC in three models.

Variable B S.E Wald P OR (95%CI)

Codominant

age 0.958 0.128 55.687 8.50×10-14* 2.608(2.027,3.354)

gender (Male) 0.528 0.186 8.072 0.004* 1.696(1.178,2.443)

smoke (Yes) 0.724 0.226 10.247 0.001* 2.062(1.324,3.211)

drink (Yes) 0.923 0.227 16.596 4.60×10-5* 2.517(1.615,3.925)

MSH2-rs1981928 11.814 0.003*

MSH2-rs1981928(TA) 0.780 0.238 10.778 0.001* 2.182(1.370,3.478)

MSH2-rs1981928(AA) 0.409 0.240 2.914 0.088 1.505(0.941,2.407)

MSH3-rs32950 7.461 0.024*

MSH3-rs32950(AG) -0.387 0.235 2.710 0.100 0.679(0.428,1.077)

MSH3-rs32950(GG) 0.073 0.239 0.092 0.762 1.075(0.673,1.718)

Dominant

age 0.948 0.127 55.513 9.28×10-14* 2.580(2.011,3.311)

gender (Male) 0.495 0.183 7.305 0.007* 1.641(1.146,2.349)

smoke (Yes) 0.666 0.223 8.913 0.003* 1.947(1.257,3.016)

drink (Yes) 0.933 0.225 17.215 3.30×10-5* 2.542(1.636,3.950)

MSH6-rs1981928(TA+AA) 0.553 0.220 6.318 0.012* 1.738(1.129,2.674)

Recessive

age 0.961 0.129 55.86 7.78×10-14* 2.614(2.032,3.364)

gender (Male) 0.544 0.187 8.473 0.004* 1.722(1.194,2.483)

smoke (Yes) 0.763 0.227 11.258 0.001* 2.145(1.373,3.350)

drink (Yes) 0.880 0.227 14.991 1.08×10-4* 2.411(1.544,3.765)

MSH2-rs13019654(TT) -0.615 0.323 3.625 0.057 0.541(0.287,1.018)

MSH3-rs26779(TT) 0.472 0.235 4.036 0.045* 1.603(1.012,2.540)

MSH3-rs33002(TT) 0.557 0.268 4.309 0.038* 1.746(1.032,2.954)

MSH3-rs32950(GG) 0.664 0.191 12.092 0.001* 1.943(1.336,2.826)

MSH3-rs3776968(TT) -1.059 0.384 7.592 0.006* 0.347(0.163,0.737)
SC, spontaneous clearance; HCC, hepatocellular carcinoma; *: P<0.05.
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Haplotype analysis revealed the linkage disequilibrium at 20

candidate loci on MSH2, MSH3 and MSH6, nevertheless, the

distribution of these haplotypes did not differ between the LC and

HCC groups. (Supplementary Tables 6, 8). GMDR analysis did not

reveal the best interaction model of multi-genes between LC and

HCC (Table 3). The result of the multiplicative interaction analysis

was shown in Table 4, and the risk of HCC attributable to the
Frontiers in Oncology 10
interaction of MSH3-rs181747 (CC) and MSH2-rs4952887 (CC)

was 1.773 (P=0.007, OR=1.773). The risk of HCC attributable to the

interaction ofMSH2-rs2303428 (TC+CC) andMSH3-rs26779 (TT)

was 1.804 (P=0.015, OR=1.804). The risk genotypes of the two pairs

of loci mentioned above acted synergistically in causing the

development of HCC, resulting in an additional increase in the

likelihood of HCC development. There were no statistically
FIGURE 3

Epistatic interaction for HCC involving rs1981928, rs26779, rs2348244 between HCC and SC group.Rs1981928(0,1,2)=rs1981928 (TT, TA, AA);
rs26779(0,1,2)=rs26779 (CC, CT, TT); rs2348244(0,1,2)=rs2348244 (TT,TC,CC).The scores of HCC group (left black bar in boxes) and SC group (right
black bar in boxes) are shown for each genotype combination.
TABLE 6 The positive results of additive interaction analysis of SNPs and four other factors in SC vs. HCC group.

SNP1 SNP2 SC HCC B P OR (95%CI) RERI/AP/S

rs1981928 rs40139

AA AA+AG 140 95 1

AA GG 68 68 0.794 0.006 2.212(1.257,3.894) RERI:-1.249(-2.355,-0.143)

TT+TA AA+AG 160 151 0.519 0.034 1.680(1.040,2.713) AP:-0.760(-1.462,-0.057)

TT+TA GG 116 104 0.497 0.081 1.644(0.940,2.874) S:0.340(0.151,0.766)
SC, spontaneous clearance; HCC, hepatocellular carcinoma; RERI, Relative Excess Risk of Interaction; AP, Attributable Proportion of interaction; S, Synergy index. When calculating covariance
matrix, take SNPs other than the analysis SNPs, together with gender, age, the history of drinking and smoking as control variables.The bold font shows statistical significance.
TABLE 7 Multiple logistic regression analysis of predictive factors for hepatocellular carcinoma between CHB and HCC in three models.

Variable B S.E Wald P OR (95%CI)

Codominant

age 1.417 0.120 139.017 4.37×10-32* 4.125(3.259,5.220)

gender (Male) 0.459 0.185 6.118 0.013* 1.582(1.100,2.275)

smoke (Yes) 0.687 0.159 18.739 1.50×10-5* 1.988(1.457,2.714)

MSH3-rs26779 8.609 0.014*

MSH3-rs26779(CT) -0.431 0.161 7.193 0.007* 0.650(0.474,0.890)

MSH3-rs26779(TT) 0.006 0.211 0.001 0.979 1.006(0.664,1.522)

(Continued)
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TABLE 7 Continued

Variable B S.E Wald P OR (95%CI)

Dominant

age 1.412 0.120 138.04 7.14×10-32* 4.104(3.243,5.194)

gender (Male) 0.462 0.185 6.223 0.013* 1.588(1.104,2.283)

smoke (Yes) 0.700 0.159 19.474 1.00×10-5* 2.014(1.476,2.748)

MSH3-rs2112416(TA+AA) -0.341 0.157 4.707 0.030* 0.711(0.523,0.968)

MSH3-rs26779(CT+TT) -0.423 0.158 7.116 0.008* 0.655(0.480,0.894)

Recessive

age 1.403 0.120 137.832 7.93×10-32* 4.068(3.219,5.142)

gender (Male) 0.475 0.184 6.650 0.010* 1.608(1.121,2.307)

smoke (Yes) 0.681 0.158 18.623 1.60×10-5* 1.976(1.450,2.693)
F
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CHB, chronic hepatitis B; HCC, hepatocellular carcinoma; *:P <0.05.
TABLE 8 Multiple logistic regression analysis of predictive factors for hepatocellular carcinoma between LC and HCC in three models.

Variable B S.E Wald P OR (95%CI)

Codominant

age 0.806 0.125 41.703 1.06×10-10* 2.239(1.753,2.860)

gender (Male) 0.349 0.175 3.969 0.046* 1.418(1.006,2.000)

smoke (Yes) 0.368 0.179 4.236 0.040* 1.444(1.018,2.049)

drink (Yes) 0.396 0.184 4.643 0.031* 1.486(1.036,2.130)

MSH3-rs2112416 8.659 0.013*

MSH3-rs2112416(TA) -0.879 0.303 8.433 0.004* 0.415(0.229,0.751)

MSH3-rs2112416(AA) -1.030 0.478 4.641 0.031* 0.357(0.140,0.911)

MSH3-rs181747 7.772 0.021*

MSH3-rs181747(TC) 0.568 0.303 3.511 0.061 1.765(0.974,3.197)

MSH3-rs181747(CC) 1.324 0.476 7.741 0.005* 3.759(1.479,9.552)

Dominant

age 0.742 0.121 37.563 8.85×10-10* 2.100(1.657,2.663)

smoke (Yes) 0.407 0.175 5.373 0.020* 1.502(1.065,2.118)

drink (Yes) 0.496 0.177 7.822 0.005* 1.641(1.160,2.323)

Recessive

age 0.768 0.122 39.295 3.64×10-10* 2.155(1.695,2.740)

smoke (Yes) 0.410 0.177 5.365 0.021* 1.506(1.065,2.131)

drink (Yes) 0.454 0.179 6.444 0.011* 1.575(1.109,2.236)

MSH3-rs1428030(CC) -1.122 0.562 3.981 0.046* 0.326(0.108,0.980)

MSH3-rs26779(TT) 0.395 0.187 4.449 0.035* 1.485(1.028,2.143)

MSH3-rs181747(CC) 1.545 0.544 8.075 0.004* 4.686(1.615,13.598)
LC, liver cirrhosis; HCC, hepatocellular carcinoma; *:P<0.05.
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significant results found in the additive interaction analysis of SNPs

between LC and HCC (Supplementary Table 11).
Discussion

For MSH2-rs4952887, univariate analysis showed that CHB

patients carrying CT genotype were less likely to develop HCC and

that T served as a protective base to reduce the risk of HCC

development in LC group. The eQTLGen Consortium (https://

eqtlgen.org/) showed that rs4952887 as a cis-eQTL affected the

expression of MSH2. The MSH2 protein, protects DNA from AID-

induced somatic mutations (34). Activation-induced cytidine

deaminase (AID) is a well-defined molecule capable of inducing

mutations in human DNA sequences (35). Experimental data from

Tadayuki Kou et al. confirmed that AID may promote the

production of TP53 mutations as well as other possible somatic

mutations, leading to the development of HCC in the context of

chronic liver disease (36). When MSH2 expression was defective,

the incidence of tumor increased in mice with AID expression. Our

results showed that the rs4952887 T base was much less distributed

in the HCC group, and also that this locus acted as an eQTL

affecting MSH2 expression. Therefore, we speculate that the

rs4952887 T base upregulates MSH2 expression, leading to a

reduced rate of AID-induced somatic mutations and hence

reducing the risk of HCC development.

MSH3-rs26779 TT was a risk factor for HCC in SC vs. HCC and

CHB vs. HCC. Both VARAdb (http://www.licpathway.net/

VARAdb/) and 3DSNP (http://www.omic.tech/3dsnpv2/) show

that rs26779 affects the binding of MYC transcription factor. The

transcription factor MYC is encoded by the proto-oncogene MYC

(37). It is one of the most common oncogenic transcriptional

regulators, affecting almost all cellular processes (38), and is

important for the control of cell growth and viability (39). Xia P

and Zhang H et al. demonstrated that the transcription factor MYC

promoted WDR4 transcription by binding to the WDR4 promoter

region in hepatocellular carcinoma cells (40). WDR4 has a wide

range of effects on the cell cycle and the immune infiltration of

hepatocellular carcinoma cells (41, 42). Existing studies had shown

that WDR4 enhanced the translation of CCNB1 by promoting the

binding of CCNB1 mRNA to EIF2A, and CCNB1 is a key molecule

regulating G2/M phase progression. This pathway can affect tumor

growth and metastasis by affecting the cell cycle (40). In addition,

CCNB1 can also affect the stability of P53 by promoting the

ubiquitination of P53, thereby promoting the occurrence of HCC

(40). This is consistent with the results of our study. Because the

mutant genotype TT has a high distribution frequency in HCC

patients. Therefore, we hypothesized that MSH3-rs26779 T may be

related to the development of HCC by affecting the affinity of MYC

transcription factor.

MSH3-rs181747 CC was a risk factor for HCC susceptibility

according to the results of our study. According to the database

SNP2TFBS (https://ccg.epfl.ch/snp2tfbs/), MSH3-rs181747 may

affect the binding of PRRX2 transcription factor. PRRX2

transcription factor was confirmed to regulate IL-6 transcription
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in HCC cells (43). IL-6, as a tumor promoting cytokine, triggers the

Janus kinase (JAK) associated with the receptor, stimulating STAT3

phosphorylation and activation. It participates in the processes of

anti-apoptosis, angiogenesis, proliferation, invasion of cancer cells,

and is related to the occurrence of cervical cancer, prostate cancer

and colorectal cancer (44–47). In addition, IL-6 secretion

accelerates the migration of macrophages and neutrophils in the

liver, which amplifies the inflammatory response and the

development of tumours (48, 49). In consequence, we hypothesize

that the rs181747 CC genotype affects the binding of PRRX2 to IL-6

and that the generated IL-6 contributes to cancer development and

progression via p-STAT3 and facilitates chemotactic movement of

immune cells.

Our results show that MSH3-rs32950 GG is a risk factor for

HCC susceptibility. From the “motif change” of VARAdb (http://

www. l i cpathway .ne t /VARAdb/) , MSH3 - r s32950 A>G

polymorphism affects the motif sequence of FOXP1 transcription

factor, resulting in changes in affinity between FOXP1 and

transcription factor binding sites. Forkhead box P1 (FOXP1) is a

member of a family of wing-helix transcription factors (50). FOXP1

is expressed in a variety of human cancer tissues (51–53). It has

been demonstrated that silencing FOXP1 significantly inhibits the

proliferation of hepatocellular carcinoma cells in vitro and in vivo.

Further studies demonstrated that the mechanism by which

downregulation of FOXP1 inhibits HCC cell proliferation is the

induction of G1/S phase cell cycle arrest. This process may be

related to the dysregulation of retinoblastoma protein (Rb) (54). Rb

is a tumor suppressor and is essential for the cell cycle and the

negative regulation of tumor progression. Dephosphorylated Rb is

associated with cell cycle G1/S phase arrest and thus plays an anti-

oncogenic role (55). FOXP1 has been experimentally shown to be a

transcriptional repressor of Rb (56). FOXP1 interferes with cell

cycle G1/S phase arrest by downregulating dephosphorylated Rb,

thereby dysregulating the cell cycle and contributing to cancer

development. In addition, it has been shown that FOXP1 can

affect the activation of the TGF-b pathway by binding to the

transcription factors Smad2 and Smad3, thereby causing CD8+ T

cells de-lymphotoxicity in hepatocellular carcinoma tissues. T cells

unresponsiveness causes T cells anti-tumor failure, which may also

contributes to the development of HCC (57, 58). In summary, we

suggest that rs32950 GG may influence HCC development by

regulating the transcription factor FOXP1.

Haplotypes are combinations of alleles on multiple locus that

are co-inherited on the same chromosome. For multigene or

multilocus diseases, certain associations may have to be

represented by a haplotype of multiple loci rather than a single

locus. Certain haplotypes are presented in clusters in the population

at a higher frequency, which is called linkage disequilibrium. In this

study, we found that the risk haplotype GTTT (rs1805355_G,

rs3776968_T, rs1428030_C, rs181747_C) was more frequent in

the HCC group compared with the HC group. In the database

Ensembl (https://asia.ensembl.org/index.html), we found that there

was linkage disequilibrium among MSH3-rs1805355, MSH3-

rs3776968, MSH3-rs1428030 and MSH3-rs181747. Although the

results of the haplotype analysis currently lack a biological
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mechanism to explain them, this finding strongly supports the

credibility of our findings.

Gene-gene interactions are characterized by the combined effects

of two or more genes on the phenotype that differ from their

independent effects (59). It is considered to be one of the

fundamental inheritance patterns of complex diseases. Therefore,

our study used three interaction analyses to further explore the

association between gene-gene interaction and genetic susceptibility

to HCC. For example, rs181747 not only formed the best interaction

model with rs12513549 in GMDR analysis, but also had a

multiplicative interaction with rs4952887. In addition, rs26779 not

only formed the best three-factor interaction model with rs2348244

and rs1981928 in GMDR analysis, but also had multiplication

interaction with rs2303428 and rs1981928, respectively. Besides,

rs1981928 also had multiplication interaction with rs1042821 and

additive interaction with rs40139. We have statistically demonstrated

that there were interactions between these loci, and these factors work

together to influence people’s risk of developing HCC. This provides

clues to the mechanistic study of genetic susceptibility to HCC.

Our study has some advantages. For most of the candidate SNPs,

this was the first time to study their relationship with HCC. Second,

our sample size was large enough to increase the power of the test.

Then, we used multi-angle statistical methods to confirm the warning

effect of candidate SNPs on HCC susceptibility, which may provide

new clues for the establishment of HCC susceptibility or prognosis

model and even exploring HCC diagnostic markers. Finally, as

candidate SNPs influence the tumour immune microenvironment,

they may be expected to provide targets for intervention in

immunotherapy. And exploring the potential of new therapies that

target the tumour microenvironment and induce immune activation

in the treatment of HCC will be an interesting avenue for future

research in this field (48). However, our study has several limitations.

Firstly, all samples included in this study were from Hebei Province,

China. Future studies with a larger sample size and multiple centers

are needed to confirm the results of this study. Besides, we were not

able to integrate the potential effect of the HBV vaccination history in

our study, as such, our results may be biased and should be

interpreted with caution. Then, our research design is a

retrospective case-control study and the findings may provide clues

to predict HCC susceptibility and prognosis but cannot verify the

causal relationship. The next step is a follow-up study, that is, to

collect more risk factors affecting the susceptibility and prognosis of

HCC for the sample population (including environmental factors and

genetic factors), and follow up the prognosis of HCC patients to

establish a clinical prediction model for HCC susceptibility and

prognosis.The pathogenic mechanism of SNPs located in the gene

regulatory region can be studied by designing molecular biology

experiments from the perspectives of eQTL, TFBS or promoter.
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