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There is increasing evidence that obesity is associated with the occurrence and

development of malignant tumors. When studying the relationship between

obesity and malignant tumors, it is very important to choose an appropriate

animal model. However, BALB/c nude mice and other animals commonly used

to study tumor xenograft (human-derived tumor cell lines) transplantation

models are difficult to induce obesity, while C57BL/6 mice and other model

animals commonly used for obesity research are not suitable for tumor xenograft

transplantation. Therefore, it is difficult to replicate both obesity and malignancy

in animal models at the same time. This review summarizes several experimental

animal models and protocols that can simultaneously induce obesity and

tumor xenografts.
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Introduction

Over the past few decades, obesity has become a growing global health problem. From

1975 to 2016, the global prevalence of obesity nearly tripled, affecting 13% of the world’s

adult population (1). A large body of epidemiologic evidence shows that obesity is

associated with the incidence and progress of several cancers. According to the World

Cancer Research Fund’s Third Expert Report, obesity is an important risk factor for many

types of cancer (2). The mechanisms linking obesity and cancer development remain

unclear. The impact of obesity on human health may take decades to become apparent.

Therefore, the use of experimental animals to study the effects of obesity on cancer is of

great importance for the discovery of the phenomenon and the study of the mechanism.

Researchers often use preclinical animal models to study the relationship between

obesity and disease. Because gene knockout and transgenic technology cannot fully reflect

the pathogenesis and pathogenic factors of obesity, the current modeling method is still

based on food inducing. Immunodeficient mice are widely used in cancer research. Because

xenografts can be performed, they provide researchers with insight into the growth,

invasion, and metastasis of human tumor cells. In addition, researchers have also created
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several types of genetically engineered mouse models (GEMMs)

that can spontaneously develop cancer.

However, replicating both obesity and malignancy in laboratory

animals is extremely difficult. Animals commonly used in obesity

models cannot engraft heterolytic tumors. On the other hand, it is

difficult to induce obesity in animals commonly used in cancer

models. This situation leaves researchers with limited options. In

this review, we discuss the mouse model and related experimental

strategies for obesity and cancer research.
Obesity model

Animal models of obesity are diverse and include both

mammalian and nonmammalian species. Non-mammals have

certain limitations due to major anatomical and physiological

differences from humans (3). Therefore, mammals are usually

considered the ideal animal model for obesity research. Among

mammals, mice are most used. This is because of their small body

size, high reproductive capacity, relatively short life cycle, and

relatively easy genome editing (4, 5).
Diet-induced obesity

Diet-induced obesity (DIO) is an important model of obesity and

results from excessive consumption of a high-fat diet (HFD), which

usually contains 45-60% fat (6). DIO can simulate the development of

human obesity better than genetic models (7, 8) and commonly use

the mouse as the model (9). Consumption of HFD can lead to central

obesity and insulin resistance in mice and is a good research

alternative to mimic diet-induced obesity in humans.

Mouse species
Among inbred mice, C57BL/6J, BALB/c, KM, and ICR mice are

commonly used to reproduce DIO models (10). Other inbred

strains, such as SWR/J and A/J mice, are less sensitive to high-fat

diets and related complications (11). The C57BL/6J has the

advantage of short modeling time and stable metrics, so it is the

most widely used. The C57BL/6J is more susceptible to fat

accumulation, weight gain, and glucose metabolism disorders

when fed a high-fat diet, as manifested by significant changes in

abdominal fat weight, Lee’s index, and adipocyte volume.

Age and sex of the mice
The weight of C57BL/6J mice gradually increased with age,

reaching the peak at approximately 9 months (12). Compared with

the younger mice, the older ones (22 months old or older) had less

muscle and more fat (13). Male mice are often used in experimental

studies to induce obesity because they are more sensitive to high-fat

diets and are prone to diet-induced insulin resistance and abnormal

glucose tolerance (14, 15). Compared with male mice, female mice

gain weight slowly, have a low obesity rate, and are generally

resistant to high-fat diet-induced obesity (16, 17). However,

because brown adipose tissue is easier to observe in female mice,
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female C57BL/6J mice are generally used to study the role of brown

adipose tissue in energy metabolism (18).
Monogenic obesity model

Two types of spontaneously obese mice based on C57BL/6J

were identified at the Jackson Laboratory, ob/ob mice in 1950 and

db/db mice in 1965. The ob/ob mice lack functional leptin, whereas

the db/db mice lack functional leptin receptors. Both types of mice

exhibit overeating and are the primary mouse models for studies of

monogenic obesity (4, 7). The ob/ob mice have a single base pair

mutation in the ob gene, resulting in the absence of functional

leptin, increased body weight, hyperphagia, and a low resting

metabolic rate. On the other hand, due to a defect in the leptin

receptor, leptin signaling is impaired in the db/db mice, resulting in

significantly higher serum leptin levels. Therefore, the treatment of

reorganization is sufficient to make ob/ob mice normal (19), but it is

not effective for db/db mice (20). In addition, the two types of mice

are the same in obesity, hypogonadism, and growth hormone (GH)

deficiency (4, 6).

Monogenic obesity models have become important research

tools in modern drug discovery. The ob/ob mouse is commonly

used to evaluate the efficacy of new obesity drugs in overcoming the

obesity phenotype caused by overeating (21), and db/db mice are

commonly used to study the efficacy of antidiabetic drugs (22).

These models require only short-term rather than long-term

feeding to induce obesity. However, monogenic models generally

do not represent the full pathogenesis of human obesity. Monogenic

obesity in humans accounts for only a small proportion of obesity,

and a few of human obesity can be explained by mutations in leptin

or leptin receptors alone.
Polygenic obesity model

Compared to the monogenic model, the polygenic model can

better simulate the pathogenesis of human obesity. The C57BL/6J

mouse is the most used obese mouse model, which is susceptible to

obesity induced by overeating. However, only 60% of C57BL/6J

mice gain weight under high-fat diet conditions. The susceptibility

of C57BL/6J mice to diet-induced obesity is typically characterized

by changes in plasma insulin and leptin levels and insulin sensitivity

at 6 weeks of age (23). New Zealand obese (NZO) mice are

polygenic inbred mice predisposed to obesity and type 2 diabetes.

Unlike C57BL/6J mice, NZO mice can gain weight on a standard

diet (24).
Tumor mouse model

Mice have similar biological, physiological and pathological

characteristics to humans and exhibit a high degree of genetic

similarity, making them an ideal animal model for the study of

tumors. Much of the current understanding of human cancer
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characteristics are based on long-term in vitro culture of tumor cell

lines and their inoculation into mice.
Tumor implantation model

Currently, most tumor implantation models used in basic or

translational oncology research are based on established cell lines

(25). They usually function as allografts of primary mouse tumors

or xenografts of human tumors. In both types of models, cancer

cells can be injected orthotopically or ectopically (mainly

subcutaneously) and subsequently monitored for growth or

metastasis (intraperitoneally, intravenously, or intracardially).

Since 1950, allografts have been used primarily as a preclinical

model for drug development and cancer therapy (26). For example,

researchers established the leukemia model using male DBA/2 mice

and found that AZD2014, an mTORC1/2 inhibitor, inhibited the
Frontiers in Oncology 03
growth and proliferation of L1210 leukemia cells (27). The

toxicology of some cytotoxic drugs has also been successfully

studied in allograft models. However, allograft tumor models are

of limited value for the study of human tumors. Therefore,

xenograft tumor models have replaced allograft tumor models as

the primary tool for preclinical drug testing since 1990.

Tumor ectopic transplantation model
The discovery of the thymus-free nude mouse was a major

breakthrough in cancer research, allowing human tumors to be

replicated in xenogeneic experimental animals. Immunodeficient

mice have remarkable xenograft success rates and are able to

preserve the original tissue structure and function of human

cancers. Representative immunodeficient mice include nude mice,

severe combined immunodeficiency (SCID) mice, non-obese

diabetic/SCID (NOD/SCID) mice, and NOD-SCID-IL2Rg-/-

(NSG) mice (Table 1). SCID mice have been shown to be more
TABLE 1 Characteristics and application of common immunodeficient mice.

Mouse
strains

Background Characteristic Application Notes

Nude BALB/c Mutations in the Foxn1 gene result
in thymic aplasia, lack of T cells,
and no immunological rejection.

It plays an important role in tumor, immunity, drug
safety evaluation and preclinical screening of drugs.

It is not suitable as a host for
leukemia or lymphoma because
human hematopoietic stem cells are
not transplantable into nude mice.

CBA/N CBA/H Btk gene mutations, defective B
lymphocyte function, absent
humoral response.

It can be used in the bone marrow transplantation
model and is an ideal tool for studying the production,
function and heterogeneity of B lymphocytes.

The incidence of spontaneous
tumors is low and rarely used in
oncology studies.

Beige C57BL/6 Beige gene mutations, defective NK
cell development and function and
impaired humoral response.

It is widely used in immunology research. It is more sensitive to various
pathogenic factors and needs a good
SPF environment.

SCID CB-17 Mutations in the Prkdcscid gene
result in V(D)J recombination in
vivo and defects in the generation
of T and B-cell.

It is a good candidate for the xenograft tumor, especially
blood-derived tumor cells and initially used as recipients
of human hematopoietic stem cell and peripheral blood
mononuclear cell transplantation.

SCID mice are more prone to die
from infections.
Among a small number of SCID
mice, a certain degree of immune
recovery may occur in young
adulthood.

NOD/
SCID

NOD Prkdcscid gene mutation in NOD
background.
In innate and adaptive immune
deficiency, various tumor cells can
be implanted, with less rejection
and graft-versus-host disease.

NOD-SCID mice accept allogeneic and xenogeneic
grafts, making them a suitable model for cell transfer
experiments.
A high degree of immunodeficiency but low immune
infiltration.

Spontaneous thymic lymphoma
occurs, resulting in a shorter
lifespan, which makes it unsuitable
for long-term transplantation.

NRG NOD NOD background carrying Rag1null

and IL2rgnull gene mutations.
Deficient in B, T and NK T cells.

Human hematopoietic stem cells containing CD34+ and
PDX can be efficiently transplanted to establish
transplanted humanized mice models.

More resistant to irradiation and
genotoxic agents than Prkdcscid
mice.

NSG NOD NOD background carrying
Prkdcscid and IL2rgnull gene
mutations.
Deficient in B, T and NK T cells.

It is widely used in humanized mouse models of
immunology, drugs, viruses and tumors.

An internationally recognized animal
model with the highest degree of
immunodeficiency and most suitable
for xenotransplantation.
Low incidence of lymphoma, low
immune infiltration, sensitivity to
radiation.

BRG BALB/c BALB/c background carrying
Rag1null and IL2rgnull gene
mutations. Deficient in B, T and
NK T cells.

It is a super immunodeficient mouse that is useful for
research on humanization, infectious diseases,
autoimmune diseases and in xenograft assays.

May be an ideal animal model to
replace SCID mice in the future.
Nude, Nude mice; PDX, Patient-Derived Xenograft; NK cell, Natural Killer cell; NOD, Non-Obese Diabetes; SCID, Severe Combined Immunodeficiency; NRG, NOD-Rag1-/--IL2rg-/-; NSG,
NOD-SCID-IL2rg-/-; BRG, BALB/c-Rag1-/--IL2rg-/-.
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suitable for human cancer cell xenografts than nude mice and have

advantages for studying the biology of human tumors in vivo and

their response to therapy (28).

Ectopic transplantation typically inoculates human cancer cell

lines or pieces of tumor tissue under the skin in the axilla, back and

hind legs of mice. After subcutaneous inoculation, the tumor tissue

is surrounded by a thick fibrous capsule and rarely metastasizes to

adjacent tissues. Tumor growth can be easily observed and the

treatment efficacy can be evaluated.

Tumor orthotopic transplantation model
The microenvironment of in situ implanted tumors is different

from that of ectopically implanted tumors, and therefore their

growth rates are different. Because growing in an optimal

microenvironment, in situ implanted tumors generally exhibit

more active proliferation, metastasis, and invasion, which better

mimics the growth of tumors in the human body (29). Fu XY et al.

orthotopically implanted human colon cancer cells in the colon of

nude mice. The transplanted tumors almost exactly replicated the

characteristics of the corresponding human cancer, which included

local tumor growth, abdominal metastasis with peritoneal seeding,

liver metastasis, lymph node metastasis, and intestinal obstruction

(30). Carmelo Nucera et al. established an orthotopic model of

human thyroid cancer using the anaplastic thyroid carcinoma cell

line 8305C and observed tumor growth and metastasis (31).

However, because the volume and number of tumors in the

visceral organs are not easily measured, there are cases where

tumor ectopic transplantation is more appropriate.
Tumor intravenous transplantation model
The above ectopic and orthotopic transplantation models, also

called spontaneous tumor metastasis model. The method of

injecting cancer cells directly into the blood to study their spread

and metastasis is called experimental tumor metastasis model. The

experimental metastasis model is used to study the growth of

malignant tumors in distant organs. Intravenous injection can

shorten the time of tumor formation in target organs. Inoculation

via the tail vein is one of the most used methods in the experimental

metastasis model. For example, Nan Huo et al. established a lung

metastasis model for thyroid cancer by injecting TPC-1 cells into

BALB/c nude mice via the tail vein (32).
Genetically engineered mouse model

In the 1980s, the development of transgenic and gene-

targeting technologies in mouse embryonic stem cells facilitated

the generation of GEMM. The most common ways to generate

GEMM are to activate oncogenes or inactivate tumor-suppressor

genes in vivo through the use of transgenic and gene targeting

methods, such as knock-outs and knock-ins. Gordon et al.
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established the first transgenic mice in 1980, harboring

randomly integrated oncogenes under the control of a tissue-

specific promoter (33). The initial set of genetic engineering tools

was set against the background of the emergence of genome-

editing technologies such as restriction endonucleases, DNA

cloning and sequencing, and then developed lentiviral vector,

electrotransfection and microinjection techniques. In 2016, the

single-base gene editing technology developed from CRISPR-

Cas9 avoided DNA double-strand breaks and further expanded

the scope of base editing. The innovation of gene editing

technologies has significantly reduced the time needed to

establish a GEMM (34). GEMM has been used in the study of

colorectal cancer (35), renal cell carcinoma (36) and breast cancer

(37). In addition, it can be used in preclinical trials for hormonal

and targeted therapies as well as immunotherapy. PD-1 KO and

PD-L1 KO mice have been exploited to develop drugs for cancer

treatment (38).
Obesity-associated cancer model

In vivo animal models are important research tools to study the

underlying mechanisms of the association between obesity and

cancers. Among genetic models of obesity, mice deficient in leptin

signaling are the most used. When mice were fed standard chow,

the genetic model showed early-onset obesity and comorbid

diseases such as insulin resistance and hepatic steatosis. Their

main disadvantage is the exclusion of the factors other than leptin

that may affect cancer cells and tumor microenvironment. For

example, obesity accelerates the progress of Kras-driven

pancreatic ductal adenocarcinoma, but not lung cancer (39).

The DIO mouse model is believed to mimic human obesity well

and to explain the potential biological link between obesity and

cancer. The DIO model was established by feeding mice a diet high

in sugar, fat or both. While several feeding regimens have been

developed, the most commonly used diets contain 30% to 60% kcal

from fat, which is fed to the mice for 10 to 12 weeks prior to

tumor formation.

Most obesity-related complications are due to inflammation

(40). Chronic inflammation in adipose tissue, especially white

adipose tissue (WAT), stimulates cancer progression through

mechanisms such as altered levels of adipokines and

inflammatory mediators, and insulin resistance (41–43). Short-

term HFD feeding is difficult to obtain an ideal model sufficient

to study the relationship between obesity and cancer (44).

Therefore, long-term obesity models need to be established to

simulate the relationship between human obesity and tumors.

The feeding time of the HFD-induced obesity mouse model

ranged from 4 weeks to 56 weeks, and 10 weeks to 12 weeks were

usually selected (Table 2). DIO mice gain weight, increase fasting

blood glucose levels, and develop obesity-related phenotypes such

as hyperinsulinemia, insulin resistance, hepatic steatosis,
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hypertension, and dyslipidemia (59). Whether reversal of the

obesity phenotype affects tumor prognosis is a key question in

this field. Dietary pattern switching experiments have shown that

once DIO is established, a low-fat diet (LFD) for a prolonged period,

such as 5 weeks, is sufficient to reverse obesity-induced chronic

inflammation and tumor progression (44, 52).
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Nude mice used to establish tumor xenograft models, such as

BALB/c, are generally difficult to induce obesity. Stemmer K et al.

found that Foxn1 nude mice (B6. Cg-Foxn1nu/J) on a C57BL/6

background fed a high-fat diet under thermoneutral (33°C)

conditions significantly increased their body weight (60), making

them an excellent model for studying obesity and tumors.
TABLE 2 Overview of obesity-associated cancer model.

Obesity
model

Mouse
strains Diet Duration Cancer model Obese tumor phenotype/proposed mechanism Ref

DIO Nude HFD (35%
kcal from

fat)

4 weeks T (TE-1, 2.0×106 cells,
subcutaneous)

Obesity Potentiates Esophageal Squamous Cell Carcinoma Growth
and Invasion by AMPK-YAP Pathway

(45)

HFD (40%
kcal from

fat)

16 weeks T (SKOV3i.p-RPF, 5×106 cells
in 2ml PBS, orthotopic)

Obesity Contributes to Ovarian Cancer Metastatic Success
Through Increased Lipogenesis, Enhanced Vascularity, and
Decreased Infiltration of M1 Macrophages

(46)

HFD 16 weeks T (PC3.pGIPZ/PC3.shCtBP1,
4.8 × 106 cells, subcutaneous)

Prostate Tumor Growth Is Impaired by CtBP1 Depletion in High-
Fat Diet–Fed Mice

(47)

C57BL/6 HFD (42%
kcal from

fat)

4 months – High fat diet promotes prostatic basal-to-luminal differentiation
and accelerates initiation of prostate epithelial hyperplasia
originated from basal cells

(48)

HFD (42%
kcal from

fat)

40 weeks GEMM (Alb-Cre; Ptpn2fl/fl) Obesity Drives STAT-1-Dependent NASH and STAT-3-Dependent
HCC

(49)

HFD (60%
kcal from

fat)

Until
endpoint

GEMM (MUP-uPA) Endoplasmic reticulum stress cooperates with hypernutrition to
trigger TNF-dependent spontaneous HCC development

(50)

8 weeks T (AsPC-1,
1×105 cells, orthotopic)
GEMM (KPC mice)

Critical role for arginase 2 in obesity-associated pancreatic cancer (51)

9-14
months

T (Apc-null Lgr5-GFPhi ISCs/
Lgr5-GFPlow progenitors cells,

orthotopic)

High fat diet enhances stemness and tumorigenicity of intestinal
progenitors

(52)

NSG
HFD (60%
kcal from

fat)

7days T (SCC-25, FaDu, Detroit-562,
JHU-029, orthotopic)

Targeting metastasis-initiating cells through the fatty acid receptor
CD36

(53)

- HFD (60%
kcal from

fat)

From 8
weeks until
endpoint

GEMM (ThrbPV/+Pten+/−) Inhibition of STAT3 activity delays obesity-induced thyroid
carcinogenesis in a mouse model

(54)

From 6
weeks until
endpoint

GEMM (ThrbPV/+Pten+/−) Diet-induced obesity increases tumor growth and promotes
anaplastic change in thyroid cancer in a mouse model

(55)

BALB/c
HFD (60%
kcal from

fat)
20 weeks

T (CRL-2947-Luc, orthotopic)

Elevated Leptin during Diet-Induced Obesity Reduces the Efficacy
of Tumor Immunotherapy.

(56)

MOM ob/ob – –

DIO C57BL/6
HFD (60%
kcal from

fat)

10 weeks T (Pan02, AK4.4, orthotopic) Obesity-induced inflammation and desmoplasia promote
pancreatic cancer progression and resistance to chemotherapy

(57)

MOM

ob/ob – –

ob/ob
db/db

– –
T (Pan02, 2.5×105,
subcutaneous)

Obesity potentiates the growth and dissemination of pancreatic
cancer

(58)

ob/ob
db/db

– –
GEMM (KC crossed with

ob/ob)
Endocrine-Exocrine Signaling Drives Obesity-Associated Pancreatic
Ductal Adenocarcinoma.

(39)
frontiers
Nude, nude mice; HFD, high fat diet; T, transplant model; GEMM, genetically engineered mouse model; ISCs, intestinal stem cells; MOM, monogenic obesity model (unless otherwise listed,
duration of feeding indicates feeding pattern before transplantation or induction of cancer).
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Discussion

Obesity is an important risk factor for cancer. Significant

attention has been paid to the underlying mechanism between the

two diseases. Appropriate animal models replicating both obesity

and cancer are highly needed to study their association. A brief

review shows that there is currently no single ideal model for this

type of research (Table 2). The models listed are good for studying

tumor progression and metastasis, but there are also some

shortcomings. They cannot determine how diet and obesity

contribute to cancer initiation and be used to study

cancer survivorship.

The mouse models utilize high-fat diets to achieve obese

condition but the typical western diet that is most closely

associated with obesity and cancer is composed of a dietary

pattern comprised of high protein and fat but most importantly

very high in refined sugars (61, 62). This particular dietary pattern is

not similar to mouse models and although it would be difficult to

replicate in models the shortcomings should be noted (63). Humans

who are exposed to high carbohydrate diets will not only lead to

weight gain and obesity, but exacerbate glucose/insulin homeostasis

which could be an important underlying mechanism associated

with the progression of cancer independent of obesity or perhaps in

synergy (64). Furthermore, a western dietary pattern has been

associated with inflammation (65–67) and this is another

important exposure that is missing in most animal models

of cancer.

When selecting an appropriate mouse model, factors such as

obese phenotype, environmental stimuli, mouse strain and sex

should be considered more fully. With the development of

different mouse models, the combined application of multiple

models makes cancer research more convenient and accurate.

Recently, the emergence of a revolutionary CRISPR/Cas9 system

has greatly enhanced the efficiency of precise gene editing in various

GEMMs. However, the potential risk of off-target effects is a notable

concern. An ideal cancer + obesity mouse model should be

technically simple, quick in operation, easily reproducible,

affordable and short in modeling. Further improvement of

obesity-prone mice that can be implanted with human tumor
Frontiers in Oncology 06
cells will help decipher the mechanism by which obesity affects

tumor initiation and progression.
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