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A novel immune-related model
to predict prognosis and
responsiveness to checkpoint
and angiogenesis blockade
therapy in advanced renal cancer

Peng Chen, Feng Bi, Weili Tan, Lian Jian and Xiaoping Yu*

Department of Diagnostic Radiology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of
Xiangya School of Medicine, Central South University, Changsha, Hunan, China
Background: Immune checkpoint blockade (ICB) and anti-angiogenic drug

combination has prolonged the survival of patients with advanced renal cell

carcinoma (RCC). However, not all patients receive clinical benefits from this

intervention. In this study, we aimed to establish a promising immune-related

prognostic model to stratify the patients responding to ICB and anti-angiogenic

drug combination and facilitate the development of personalized therapies for

patients with RCC.

Materials and methods: Based on clinical annotations and RNA-sequencing

(RNA-seq) data of 407 patients with advanced RCC from the IMmotion151

cohort, nine immune-associated differentially expressed genes (DEGs)

between responders and non-responders to atezolizumab (anti-programmed

death-ligand 1 antibody) plus bevacizumab (anti-vascular endothelial growth

factor antibody) treatment were identified via weighted gene co-expression

network analysis. We also conducted single-sample gene set enrichment

analysis to develop a novel immune-related risk score (IRS) model and further

estimate the prognosis of patients with RCC by predicting their sensitivity to

chemotherapy and responsiveness to immunotherapy. IRS model was further

validated using the JAVELIN Renal 101 cohort, the E-MTAB-3218 cohort, the

IMvigor210 and GSE78220 cohort. Predictive significance of the IRS model for

advanced RCC was assessed using receiver operating characteristic curves.

Results: The IRS model was constructed using nine immune-associated DEGs:

SPINK5, SEMA3E, ROBO2, BMP5, ORM1, CRP, CTSE, PMCH and CCL3L1.

Advanced RCC patients with high IRS had a high risk of undesirable clinical

outcomes (hazard ratio = 1.91; 95% confidence interval = 1.43–2.55; P < 0.0001).

Transcriptome analysis revealed that the IRS-low group exhibited significantly

high expression levels of CD8+ T effectors, antigen-processing machinery, and

immune checkpoints, whereas the epithelial–mesenchymal transition pathway

was enriched in the IRS-high group. IRS model effectively differentiated the

responders from non-responders to ICB combined with angiogenesis blockade

therapy or immunotherapy alone, with area under the curve values of 0.822 in

the IMmotion151 cohort, 0.751 in the JAVELIN Renal 101 cohort, and 0.776 in the

E-MTAB-3218 cohort.
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Conclusion: IRS model is a reliable and robust immune signature that can be

used for patient selection to optimize the efficacy of ICB plus anti-angiogenic

drug therapies in patients with advanced RCC.
KEYWORDS

renal cell carcinoma, IMmotion151, checkpoint blockade, antiangiogenesis,
responsiveness, prognosis
1 Introduction

RCC is the 12th most common solid tumor that accounted for >

400,000 new diagnoses and approximately 175,000 cancer-

associated deaths worldwide in 2018 (1). Approximately 25% of

RCC cases are diagnosed at an advanced stage (2). Clear cell RCC

(ccRCC) is the most frequent histological subtype, accounting for

approximately 75% of all renal tumors (3). Approximately 20% of

patients with metastatic RCC (mRCC) have sarcomatoid elements.

Sarcomatoid RCC (sRCC) is a rare subtype of RCC characterized by

aggressive biology with rapid metastasis, unsatisfactory clinical

outcomes, and limited efficacy of anti-angiogenic therapies (4–6).

Loss or mutation of the von Hippel-Lindau (VHL) gene is one of

the primary characteristics of ccRCC that leads to the constitutive

activation of the hypoxia-inducible factor, which further activates the

vascular endothelial growth factor (VEGF) and increases angiogenesis

in the ccRCC tumor microenvironment (7–12). Targeting the VEGF

pathway with receptor tyrosine kinase inhibitors (TKIs), such as

sunitinib, or anti-VEGF monoclonal antibodies, such as

bevacizumab, is the first-line treatment for locally advanced or

metastatic RCC (13, 14). However, almost all patients develop drug

resistance over time, and particular patient subgroups, including those

with sRCC and/or those expressing the programmed death-ligand 1

(PD-L1), hardly benefit from VEGF pathway blockade (15–17).

Therefore, it is necessary to explore novel therapeutic targets and

drug combinations for patients with mRCC (18, 19).

Intervention with immune checkpoint inhibitors (ICIs), such as

anti-PD-L1 antibody atezolizumab, has induced durable responses

and improved the survival of patients with mRCC (16, 20). T cell-

mediated tumor cytotoxicity of atezolizumab can be strengthened by

counteracting the VEGF-mediated immunosuppressive effect via the
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addition of bevacizumab (21). Owing to variable hypervascularity,

immune cell infiltration, and PD-L1 expression in ccRCC, blocking

the VEGF pathway and PD-L1 axis as a combination therapy has

significantly prolonged the overall survival (OS) of patients with

mRCC. A phase 2 study revealed that in a subset of patients with

mRCC with PD-L1 expression, compared to sunitinib as a single

drug, atezolizumab combined with bevacizumab significantly

increased progression-free survival (PFS) and percentage of

patients achieving an objective response, indicating the

complementary activity of bevacizumab and atezolizumab in

patients with mRCC (20). To reduce the financial burden and side

effects of tumor therapy, it is necessary to develop effective strategies

to select a subgroup of patients who can achieve optimal

improvement with a specific combination therapy for mRCC.

In this study, we aimed to correlate the clinical annotation with

molecular mechanisms by comprehensively analyzing the multi-

omics information of 407 patients with advanced RCC from a

randomized global phase III trial (IMmotion151). We also

established a novel and promising prognostic model composed of

nine immunotherapy-associated genes to accurately stratify a subset

of patients with advanced RCC who can benefit from anti-

angiogenic combined with ICB (atezolizumab plus bevacizumab)

therapy. Moreover, our model can be used to develop personalized

treatment strategies for patients with advanced RCC.
2 Materials and methods

2.1 Collection and processing of data

To determine the correlation between the immune-related risk

score (IRS) and efficacy of cancer therapy, five immunotherapeutic

cohorts with available RNA-seq data and clinicopathological

parameters were included in this study: (1) IMmotion151 cohort,

advanced patients with RCC treated with atezolizumab plus

bevacizumab (22), (2) JAVELIN Renal 101 trial, advanced

patients with RCC treated with the combination of avelumab

(anti-PD-L1) + axitinib (TKI targeting VEGF receptors) vs.

sunitinib (multitarget TKI) (23), (3) E-MTAB-3218 dataset,

patients with mRCC treated with nivolumab (anti-PD-1 ICI) (24),

(4) IMvigor210 cohort, patients with advanced urothelial cancer

treated with atezolizumab (25), and (5) GSE78220 cohort, patients

with metastatic melanoma treated with pembrolizumab (anti-PD-1

antibody) (26).
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All data from the IMmotion151 cohort is deposited in the

European Genome-Phenome Archive under the accession number

EGAS00001004353, and we obtained it according to Hoffmann-La

Roche policy. Clinical response information and normalized RNA-seq

data were acquired from the supplementary material of Choueiri et al.

(23). Original data of E-MTAB-3218 dataset were downloaded from

https://www.ebi.ac.uk/biostudies/arrayexpress/studies/E-MTAB-3218?

accession=E-MTAB-3218# (24). Additionally, RNA-seq and clinical

data for the IMvigor210 cohort were obtained from http://research-

pub.gene.com/IMvigor210CoreBiologies. Raw data were normalized

using the “DEseq2” R package and further transformed into TPM

values. RNA-seq data (FPKM-normalized) and the clinical phenotypes

of 28 melanoma patients in the GSE78220 cohort were downloaded

from https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE78220.

Additionally, well-recognized immune-related genes were downloaded

from http://www.gsea-msigdb.org/gsea/msigdb/index.jsp (27).

Above datasets merely contain anonymized and de-identified

patient information. Secondary analysis of de-identified data was

confirmed exempt from review by the medical ethics committee of

Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya

School of Medicine as it was classified as negligible risk research. Thus,

our study was exempt from the ethical review or the patient consent.
2.2 Establishment of a weighted gene
co-expression network (WGCNA)

WGCNA is a widespread systematic algorithm used to generate

gene modules with similar expression patterns and determine the

correlations between modules and clinical traits (28). In this study,

we screened the immune-related gene expression profiles in the

IMmotion151 cohort and further identified a correlation network

including significant clinical characteristics and genes using the

“WGCNA” R package. We also developed an adjacency matrix to

characterize the correlation strength between the nodes, which was

further changed to a topological overlapmatrix. Subsequently, modules

containing more than 30 genes were identified via hierarchical

clustering. To compare the co-expression levels, modules were

clustered based on their correlation with module eigengenes (MEs).

When the correlation of MEs > 0.80, module merging was performed,

indicating that the expression profiles of the modules were similar (29).

Pearson’s correlation coefficient was used to assess the correlations

between the modules and various clinicopathological parameters.

Finally, gene significance (GS) and module membership (MM) were

used to quantify the relationships between the genes and the

clinicopathological characteristics in the module. Hub genes were

considered as those with MM > 0.8 and GS > 0.2 (29).
2.3 Identification of significant immune-
related differentially expressed genes (DEGs)
between responders and non-responders

Based on the results of WGCNA analysis, 269 immunotherapy-

associated genes in the turquoise module were selected for further

analysis. Meanwhile, DEGs between the patients with complete
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response (CR) and those with progressive disease (PD) in the

IMmotion151 cohort were identified using the “ggplot2” R

package (29). Nine immune-related genes significantly affecting

the patient responsiveness to immunotherapy were ultimately

identified using the intersection of the above two kinds of genes

and used to construct an IRS model.
2.4 Functional and pathway
enrichment analyses

Gene ontology (GO) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) analyses were conducted using the

“clusterProfiler” R package to identify the DEG-associated

signaling pathways and biological processes (30, 31). Pathways

with a nominal P < 0.05 and false-discovery rate (FDR) < 0.05

were considered to be statistically significant.
2.5 Establishment and validation of an
IRS model

Given the individual heterogeneity and intricacy of the clinical

outcomes of advanced RCC cases treated with ICB combined with

anti-angiogenic drugs, we formulated a scoring system, termed as

the IRS model, using the ssGSEA algorithm on the basis of the

mRNA expression levels of the identified nine immunotherapy-

related genes in a single sample to quantify the prognostic level of

each patients with mRCC for in-depth analysis.

Optimal cut-off point identified by the “surv-cutpoint” function

of the “survminer” R package stratified all advanced RCC cases in

the IMmotion151 cohort into high- or low-risk subgroups. In this

approach, different values are grouped as cut-off values for statistical

testing, and the result with the lowest P value is considered as the

optimal cut-off point that corresponds to the most significant

association with the clinical outcome.

A heat map was constructed to visualize the IRS distribution and

clinicopathological parameters. Survival analysis between high- and

low-risk group were conducted using Kaplan–Meier curves with log-

rank test and the “survival” R package (32). Hazard ratios (HRs) and

the corresponding 95% confidence intervals (CIs) were estimated.

Area under the curve (AUC) values of the receiver operating

characteristic (ROC) curves established using the “survival ROC” R

package were used to evaluate the predictive efficiency of the IRS model

(33). In addition, to test the robustness of our IRS model, we verified its

predictive capabilityusingother external independentdatasets: JAVELIN

Renal 101, E-MTAB-3218, IMvigor210, and GSE78220 cohorts.

An identical median value based on the IMmotion151 cohort

was also applied to the validation groups, effectively categorizing all

patients into high- and low-risk groups.
2.6 Correlations between IRS and common
biological processes

We further determined the correlations between IRS and

subsequent biological processes. Mariathasan et al. (25) curated
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multiple gene sets associated with specific biological pathways,

including (1) CD8+ T-effector signature (34), (2) antigen

processing machinery (35), (3) epithelial–mesenchymal transition

(EMT) biomarkers (26, 36, 37), (4) immune checkpoints (25).
2.7 Correlation between IRS and
drug sensitivity

RNA-seq data of approximately 1000 tumor cell lines, AUC

values for evaluating the efficacy of antineoplastic drugs in tumor

cell lines, and targets or pathways of drugs were downloaded from

the Genomics of Drug Sensitivity in Cancer (GDSC; https://

www.cancerrxgene.org/) (38). Spearman correlation coefficient

was used to evaluate the correlation between drug sensitivity and

the IRS model, and |Rs| > 0.2 and P-value < 0.05 were considered to

be significant.
3 Results

3.1 Use of WGCNA to screen
immunotherapy-related genes

All immune-related genes from GSEA are listed in

Supplementary Table 1. After we intersected the above immune-

related genes with the RNA-seq data of 407 patients with advanced

RCC from the IMmotion151 cohort, 942 immune-related genes

were identified and further subjected to WGCNA analysis

(Supplementary Table 2). In line with the standard scale-free

network distribution, the soft threshold power value was

determined to be three (Supplementary Figure 1). Based on this

dissimilarity, a dendrogram of all the gene clusters was formulated,

which displayed 10 different modules (Figure 1A). Correlations

among all clinical modules are illustrated in Figures 1B, C. We

further assessed the correlations between MEs and clinical traits,

including PD-L1 IHC, MSKCC risk score, PFS, objective response,

metastatic status, and sarcomatoid histology. Turquoise module

was most significantly associated with the objective response of

patients with mRCC to atezolizumab plus bevacizumab (r = 0.45, P

< 0.0001) (Figure 1D), indicating that genes in the turquoise module

potentially exert a crucial effect on the clinical outcome of

atezolizumab plus bevacizumab interventions. This turquoise

module was further analyzed, and the genes in this module were

found to be significantly correlated to the efficacy of atezolizumab

plus bevacizumab therapy (r = 0.76, P < 0.0001) (Figure 1E).

We analyzed the gene expression profiles of 23 responders

(patients with CR) and 75 non-responders (patients PD) in the

IMmotion151 cohort, and identified 72 DEGs associated with the

effects of atezolizumab plus bevacizumab (│log2FC│ > 1, P < 0.05,

FDR < 0.05) (Supplementary Table 3). Moreover, we cross-

referenced the above 72 DEGs and all genes in the turquoise

module to select a total of nine DEGs, including seven

downregulated DEGs in responders (serine protease inhibitor

Kazal type 5 [SPINK5], semaphorin 3E [SEMA3E], roundabout

guidance receptor 2 [ROBO2], bone morphogenetic protein 5
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[BMP5], orosomucoid 1 [ORM1], C-reactive protein [CRP], and

cathepsin E [CTSE]; log2FC < 1; P < 0.05) and two up-regulated

DEGs in responders (promelanin-concentrating hormone (PMCH)

and C-C motif chemokine ligand 3-like 1 [CCL3L1]; log2FC > 1; P <

0.05) (Figures 1F, G).
3.2 Biological functions of DEGs associated
with the efficacy of atezolizumab plus
bevacizumab therapy

We further identified the mRNA expression profiles of the

above nine genes in mRCC and found that, compared with the

responders to atezolizumab plus bevacizumab therapy in the

IMmotion151 cohort, the expression levels of seven genes

(SPINK5, SEMA3E, ROBO2, BMP5, ORM1, CRP, and CTSE) were

significantly increased and those of two genes (PMCH and CCL3L1)

were decreased in the non-responders (P < 0.05) (Figure 2A). GO

analysis of the nine DEGs linked them to neutrophil-mediated

immunity, leukocyte migration, acute inflammatory response,

humoral immune response, and cell chemotaxis (Figure 2B;

Supplementary Table 4), most of which were associated with the

modulation of immunity and immunotherapy. Similarly, KEGG

pathway analysis revealed that these DEGs were correlated with

cytokine–cytokine receptor interactions, complement and

coagulation cascades, antigen processing and presentation, and

neutrophi l extrace l lu lar t rap format ion (Figure 2C ;

Supplementary Table 5), indicating their significance and

conferring the basis to investigate a potential association between

these genes and immunophenotypes.
3.3 Differences in the biological roles
and clinical outcomes of IRS-high
and -low groups

Based on the strength of the optimal cut-off point (–0.46), 407

individuals with mRCC were stratified into high- and low-risk

groups (high: IRS > –0.46 and low: IRS < –0.46) (Supplementary

Table 6). To investigate the potential mechanism of the impact of

IRS on atezolizumab plus bevacizumab therapy for mRCC, a

combined heat map was constructed to visually demonstrate the

correlations between IRS and multiple clinicopathological

parameters, including PD-L1 IHC, MSKCC risk score, objective

response, metastatic status, and sarcomatoid histology, in the high

and low IRS groups. We compared the high and low IRS groups in

the IMmotion151 cohort and found that more patients in the IRS-

low group had positive PD-L1 IHC results than those in the IRS-

high group. Metastatic tumors were primarily distributed in the

IRS-high cluster, whereas the proportion of sarcomatoid

histological subtypes in the IRS-low group was greater than that

in the IRS-high group. Additionally, patients with low IRS were

primarily characterized by a higher expression of CD8+ T-effectors,

antigen-processing machinery, and immune checkpoint signatures

in the IRS-low group than in the IRS-high group. Conversely,

patients in the IRS-high group showed relatively high expression
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levels of EMT-associated genes (Figure 3A). We further assessed the

clinical outcomes of patients treated with atezolizumab plus

bevacizumab in the IRS-high and -low groups. Survival analysis

revealed that short PFS in patients with high IRS (HR = 1.91; 95%

CI = 1.43–2.55; P < 0.0001) (Figure 3B).

Furthermore, IRS was significantly higher in the SD/PD group

than in the CR/PR group (Figure 4A), indicating that IRS was

negatively associated with the magnitude of response to

atezolizumab plus bevacizumab in mRCC. Compared to tumors

that were negative for PD-L1 IHC, tumors that were positive for

PD-L1 IHC exhibited lower IRS (Figure 4B). We also observed

enrichment of metastatic tumors (Figure 4C) and sarcomatoid

histological subtypes (Figure 4D) in the IRS-high group. These

findings suggest that the IRS can predict the efficacy of atezolizumab

plus bevacizumab.
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3.4 Validation of the IRS model with
multiple immunotherapy datasets

ROC curve was used to determine the ability of the IRS model to

distinguish between immunotherapy responders and non-responders.

The IRS model displayed a satisfactory performance to differentiate

responders from non-responders, with an AUC of 0.822 (95% CI =

0.782–0.863) in the IMmotion151 cohort (Figure 5A). We also selected

two external independent datasets: the JAVELIN Renal 101 cohort

(patients with mRCC treated with a combination of avelumab and

axitinib) and the E-MTAB-3218 cohort (patients with mRCC treated

with nivolumab).When assessing survival prediction, we found that the

AUCofourIRSmodelwas0.751(95%CI=0.699–0.803) intheJAVELIN

Renal 101 cohort (Figure 5B) and 0.776 (95%CI= 0.684–0.868) in the E-

MTAB-3218 cohort (Figure 5C).Additionally,wevalidatedourmodel in
A B

D E F

G

C

FIGURE 1

The immunotherapy-related genes are identified by WGCNA analysis. (A) Cluster dendrogram representing immune-related genes clustering based
on different metrics. (B, C) Heatmap depicting the correlation coefficient in the modules. (D) Heatmap displaying the correlation between the
module eigengenes and multiple clinical parameters in RCC. (E) Scatter plot exhibiting the correlation coefficient in the turquoise module. (F) Venn
diagram illustrating the intersection of immune-related genes and immunotherapy-related DEGs in IMmotion150 cohort. (G) Volcano plot depicting
immunotherapy-related DEGs between responders and non-responders.
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the IMvigor210 cohort (patients with advanced urothelial cancer who

received atezolizumab therapy) and GSE78220 (patients withmetastatic

melanoma who received pembrolizumab therapy), with AUC of 0.902

(95%CI=0.868–0.936) (SupplementaryFigure 2A) and0.879 (95%CI=

0.7437–1) (SupplementaryFigure2B), respectively.Therefore, our results

highlight that IRS has a favorable capability to stratify a subset of patients

who will benefit from immunotherapy.

Patients with high IRS exhibited an inferior prognosis

compared to those with low IRS in the JAVELIN Renal 101

cohort (HR = 1.77; 95% CI = 1.24–2.54; P = 0.002) (Figure 5D)

and E-MTAB-3218 cohort (HR = 4.74; 95% CI = 1.31–17.2; P =

0.018) (Figure 5E). Similarly, patients in IRS-high group were

characterized with a shorter OS than those in IRS-low group in

the IMvigor210 cohort (HR = 2.59; 95% CI = 1.87–3.58; P < 0.001)

(Supplementary Figure 2C) and GSE78220 cohort (HR = 4.22; 95%

CI = 1.11–16.0; P = 0.034) (Supplementary Figure 2D).
3.5 Correlation between IRS and anti-
tumor chemotherapy efficacy

A total of 26 correlated pairs between the IRS model and drug

sensitivity in the GDSC database were analyzed using Spearman’s
Frontiers in Oncology 06
correlation analysis (38). There was significant correlation between

drug sensitivity and IRS in 11 pairs, including CGP-082996, CGP-

60474, and bicalutamide (Rs < –0.2, P < 0.05). In contrast, 15 pairs,

including sunitinib, sorafenib, and temsirolimus (Rs > 0.2, P < 0.05),

were characterized by significant correlation between drug

resistance and the IRS model (Figure 6A). In addition, drugs

whose sensitivity correlated with low IRS primarily targeted

chromatin histone acetylation, p53 pathway, phosphoinositide 3-

kinase (PI3K)/mammalian target of rapamycin (MTOR) signaling

and protein stability, and degradation signaling pathways. However,

drugs whose sensitivity was linked to high IRS mostly targeted the

AKT2, IKK2, CDK2, and chromatin histone methylation signaling

pathways (Figure 6B). Collectively, these results indicate that our

IRS model is also associated with chemotherapy response in RCC.
4 Discussion

In our study, specific promising gene biomarkers were

determined by invest igat ing RNA-Seq data from the

IMmotion151 cohort. Currently, The Cancer Genome Atlas

(TCGA) and Gene Expression Omnibus (GEO) databases are

considered as data sources for developing RCC prognosis
A

B C

FIGURE 2

The potential biological processes associated with immunotherapy-related DEGs are determined by functional analysis. (A) Bar charts representing
the expression levels of immunotherapy-related DEGs between responders and non-responders. Circular plot representing the potential biological
pathways related to immunotherapy-related DEGs based on (B) GO analysis and (C) KEGG analysis. * p<0.05, ** p<0.01, *** p<0.001.
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prediction models in the majority of publications, which fails to

effectively promote the prediction accuracy of immunotherapy in

RCC. Thus, we extracted mRCC cases from the IMmotion151

cohort to conduct this study, which avoided the potential effect of

non-locally advanced RCC on risk prediction models and

scoring systems.

We established an immune-related risk score model to evaluate

the efficacy of atezolizumab plus bevacizumab in patients with

mRCC and further verified our model based on multiple cohorts.

Our report demonstrated that in the IMmotion151 cohort, mRCC

cases with low IRS were associated with a favorable prognosis and

effective responsiveness to atezolizumab plus bevacizumab. Hub
Frontiers in Oncology 07
genes significantly associated with the efficacy of atezolizumab plus

bevacizumab in the turquoise module were initially identified using

WGCNA. Nine immunotherapy-related DEGs were confirmed

following the overlap of hub genes and DEGs between patients

with PD and CR.

Among the nine immunotherapy-related DEGs (SPINK5,

SEMA3E, ROBO2, BMP5, ORM1, CRP, CTSE, PMCH, and

CCL3L1), differential analysis showed that SPINK5 was

significantly overexpressed in head and neck squamous cell

carcinoma (HNSCC) samples compared to that in normal tissues,

and SPINK5 expression levels were positively associated with Treg

cells in the tumor microenvironment (39). SEMA3E triggered
A B

FIGURE 3

Association between transcriptional signatures, clinical outcome to atezolizumab plus bevacizumab and the IRS model. (A) Heatmap displaying the IRS
distribution grouped by transcriptional signatures. (B) Kaplan-Meier curves of PFS in mRCC patients with high or low IRS in the IMmotion151 cohort.
A B

DC

FIGURE 4

Association between clinicopathological parameters and the IRS model. Violin plot and bar chart howing the correlation between the IRS and (A) response to
Atezolizumab + Bevacizumab, (B) PD-L1 expression, (C)metastatic status and (D) histological subtype. * p<0.05, *** p<0.001, **** p<0.0001.
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macrophages-mediated inflammation (40). Inflammation

contributes greatly to tumorigenesis and tumor development (41),

indicating that SEMA3E potentially accelerates tumor progression

by regulating chronic inflammation, which is a hallmark of various

malignancies (42). ROBO2 belongs to the ROBO family and is a

conserved transmembrane receptor protein that is primarily located

in the nervous system, vascular endothelial cells, and muscle cells

(43). SLIT2/ROBO2-mediated PI3K-g activation accelerated

microglia/macrophage chemotaxis and tumor-supportive

polarization, thus enhancing macrophage invasion and

diminishing efficacy of chemotherapy and immunotherapy in

gliomas (44). BMP5 is recognized as a secreted growth factor and

a member of the transforming growth factor-beta superfamily,

which exerts crucial effects on the pathogenesis of inflammatory

and autoimmune disorders, including Keshan disease (45) and

autoimmune encephalomyelitis (46), BMP5 triggered keratin

expression in adherent bone marrow cells, thereby contributing to

the progression of chronic cutaneous neoplasms (47). ORM1 is

linked to tumor immunity, including antigen processing and

presentation, T-cell receptor signaling, and cytokine-cytokine

receptor interactions. Specifically, ORM1 potentially acts as an

inhibitory factor to protect tumor cells from attack by the

immune system, thereby leading to the immune escape of tumors

(48). CRP is a biomarker of systemic inflammation and can be

generated by RCC cells (49). Increased CRP levels are linked to the

infiltration of immunosuppressive cells, including regulatory T
Frontiers in Oncology 08
(Treg) cells and tumor-associated macrophages, and thus predict

undesirable outcomes in patients (50–52). CTSE is associated with

lipid metabolism. CTSE participates in antigen processing and

modulates the processing of antigenic peptides during MHC class

II-mediated antigen presentation (53). Some studies have

demonstrated that CTSE is overexpressed in tumor tissues than in

normal tissues in various types of cancer, such as bladder cancer

(53), pancreatic cancer (54), and hepatocellular carcinoma (55).

PMCH functions as a neuromodulator of neuronal function that

regulates goal-directed behavior (56). Downregulation of PMCH in

ccRCC is significantly associated with advanced TNM stage, distant

metastasis, and undesirable outcomes (57). CCL3L1 belongs to the

CC chemokine family, which exerts an anti-tumor effect by

inducing multiple immune cells, including CD8+ T cells and

immature dendritic cells (58). However, CCL3L1 overexpression

is also involved in the progression of glioblastoma (59). Therefore,

the characteristics of CCL3L1 in RCC should be further explored.

Thus, the correlation between certain immunotherapy-related

DEGs and immunotherapy may provide promising targets for

immune checkpoint inhibitors in RCC treatment.

Notably, these genes were primarily associated with

inflammation and immune responses. Inflammation is a well-

known hallmark of tumor progression. Various inflammatory

signaling cascades are closely related to tumorigenesis and the

development of RCC, particularly the VHL (60), mTOR, tumor

necrosis factor (TNF), and signal transducer and activator of
A B

D E
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FIGURE 5

Validation of the IRS in multiple immunotherapy datasets. ROC curve displaying the predictive power of the IRS in (A) IMmotion151 cohort,
(B) JAVELIN Renal 101 cohort and (C) E-MTAB-3218 cohort. Kaplan-Meier curves of PFS in tumor patients with high or low IRS in (D) JAVELIN Renal
101 cohort and (E) E-MTAB-3218 cohort.
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transcription pathways (60–63). Additionally, inflammation-

associated factors, TNF-a, CXCR4 and CCR3, are significantly

correlated with the prognosis and staging of RCC cases (64).

Inhibition of pro-inflammatory pathways may be an effective

strategy to retard the development of RCC. For example,

LY294002, which targets the PI3K/AKT pathway, is potentially

conducive to the prognosis of patients with RCC (65).

Immunotherapy with nivolumab combined with ipilimumab has

great potential for the treatment of RCC (66).

It has been demonstrated that kidney stone disease (KSD) is

linked to RCC and RCC is more frequent among individuals with

kidney stones (67–70). KSD is primarily composed of monohydrate

(COM) crystals (71). COM crystals triggers renal cell injury through

inducing reactive oxygen species overproduction and accelerating

oxidative DNA damage (71, 72). Oxidative DNA damage exerts

crucial effects on inflammation and the initiation and development

of RCC (73, 74).

A recent study demonstrated that COM crystals accelerate the

process of EMT, strengthen the invasion ability, cell-aggregate

formation, chemoresistance to cisplatin, and secretion of VEGF,

and trigger the overexpression of oncogene TPX2 and the

downregulation of tumor suppressor genes, including PTEN,

VHL, and ARID1A, which are conventional inflammation-

associated factors, ultimately exhibiting several carcinogenic

characteristics in non-cancerous renal cells (70). Thus, there is a

potential and sophisticated crosstalk between KSD, RCC,

and inflammation.
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The validation in additional four dependent cohorts

demonstrated that the risk model exhibited satisfactory and

robust prediction efficiency. The diagnosis and treatment of

individuals with tumors will benefit from the validity and

rationality of constructing a model based on big data algorithms.

A risk model incorporating nine genes has generally been studied

for multiple tumors; however, there are no reports on

immunotherapy-related risk models for RCC. Patients with

mRCC with low-risk scores showed improved PFS and could

benefit from the dual combination of nivolumab plus ipilimumab,

as evaluated by the IRS model, whereas cases in the high-risk group

displayed numerically inferior results for PFS with nivolumab +

ipilimumab. In this study, patients with mRCC with low risk scores

were enriched in the CD8+ T effector, antigen processing

machinery, and immune checkpoint pathways. In contrast,

patients with high-risk scores displayed greater expression of

EMT-related genes. These results provide a molecular explanation

for the better prognosis of favorable-risk cases with therapeutic

regimens comprising nivolumab + ipilimumab. Previous studies

have shown that ICIs block inhibitory immune receptors and

activate dysfunctional T cells, including CD8+ T cells. CD8+ T

effectors in the adaptive immune system exert a potent anti-tumor

immune response and form the cornerstone of tumor

immunotherapy (75). The antigen-processing machinery exerts a

vital impact on the synthesis and expression of HLA class I tumor

antigen-derived peptide complexes that trigger the identification

and elimination of malignant cells mediated via cognate T cells (76).
A

B

FIGURE 6

The potential relationship between the IRS model and efficacy of antitumor chemotherapy. (A) Box diagram displaying the correlation between the
IRS and drug sensitivity. Rs > 0 or Rs < 0 indicated drug resistance or drug sensitivity, respectively. (B) Dot plot summarizing the signal pathways
related to drugs that were resistant or sensitive to the IRS.
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We performed a thorough molecular analysis of 407 samples from

patients with advanced RCC who underwent atezolizumab plus

bevacizumab therapy and further established the first prognostic

model to accurately distinguish responders from non-responders

based on a randomized global Phase III clinical trial IMmotion151

cohort. Specifically, patient-reported outcomes (PROs) in

IMmotion151 suggest a lower overall treatment burden with

atezolizumab plus bevacizumab than with sunitinib in patients with

treatment-naïve mRCC and provide further evidence for the clinical

benefit of this regimen. A report evaluated PROs in the phase III

IMmotion151 trial and demonstrated that compared with sunitinib in

patients with mRCC, those receiving atezolizumab plus bevacizumab

therapywere characterized by a lower overall therapy burden, including

longitudinal and time to deterioration for core andRCC symptoms and

their interference with daily life, therapy side effects, and health-related

quality of life (77). Another study indicated that although a clinical

benefit was revealed in atezolizumab plus bevacizumab based on PFS

analysis, the final analysis exhibited a similar median OS in patients

treated with atezolizumab plus bevacizumab and sunitinib. Biomarker

analysis demonstrated that sunitinib improved the median OS in

patients whose tumors were characterized by a higher prevalence of

angiogenesis; conversely, atezolizumab plus bevacizumab displayed a

trend of improvedOS in tumors with poor angiogenesis, but T-effector/

proliferative, proliferative, or small nucleolar RNA transcriptomic

profiles. These results potentially provide guidance for the

individualized treatment of patients with mRCC (78).

This study has some limitations. Owing to the limited number of

patients receiving immunotherapy and the complexity and difficulty in

collecting clinical tissues from patients with advanced RCC treated

with immunotherapy, we failed to conduct external verification based

on our own dataset. Nevertheless, we validated our IRS model using

four additional public immunotherapy cohorts to overcome this

disadvantage. Moreover, our IRS model comprised nine

immunotherapy-related DEGs. The biological properties and

potential molecular mechanisms of these genes in mRCC need to be

explored to facilitate the widespread clinical application of IRSmodels.
5 Conclusion

In conclusion, we identified the most s ignificant

immunotherapy-associated genes in patients with advanced RCC

from the IMmotion151 cohort and developed a novel and

promising immunotherapy prediction model and scoring system

to estimate the responsiveness of patients with advanced RCC to

atezolizumab plus bevacizumab therapy. Our model can further aid

in patient stratification and development of personalized therapies

for patients with untreated advanced RCC.
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35. Şenbabaoğlu Y, Gejman RS, Winer AG, Liu M, Van Allen EM, de Velasco G,
et al. Tumor immune microenvironment characterization in clear cell renal cell
carcinoma identifies prognostic and immunotherapeutically relevant messenger RNA
signatures. Genome Biol (2016) 17(1):231. doi: 10.1186/s13059-016-1092-z

36. Damrauer JS, Hoadley KA, Chism DD, Fan C, Tiganelli CJ, Wobker SE, et al.
Intrinsic subtypes of high-grade bladder cancer reflect the hallmarks of breast cancer
biology. Proc Natl Acad Sci U.S.A. (2014) 111(8):3110–5. doi: 10.1073/pnas.1318376111

37. Hedegaard J, Lamy P, Nordentoft I, Algaba F, Høyer S, Ulhøi BP, et al.
Comprehensive transcriptional analysis of early-stage urothelial carcinoma. Cancer
Cell (2016) 30(1):27–42. doi: 10.1016/j.ccell.2016.05.004

38. Yang W, Soares J, Greninger P, Edelman EJ, Lightfoot H, Forbes S, et al.
Genomics of drug sensitivity in cancer (GDSC): A resource for therapeutic biomarker
discovery in cancer cells. Nucleic Acids Res (2013) 41(Database issue):D955–61.
doi: 10.1093/nar/gks1111

39. Liu D, Zhou LQ, Cheng Q, Wang J, Kong WJ, Zhang SL. Developing a
pyroptosis-related gene signature to better predict the prognosis and immune status
of patients with head and neck squamous cell carcinoma. Front Genet (2022)
13:988606. doi: 10.3389/fgene.2022.988606

40. Schmidt AM, Moore KJ. The semaphorin 3E/PlexinD1 axis regulates
macrophage inflammation in obesity. Cell Metab (2013) 18(4):461–2. doi: 10.1016/
j.cmet.2013.09.011

41. Pikarsky E, Porat RM, Stein I, Abramovitch R, Amit S, Kasem S, et al. NF-
kappaB functions as a tumour promoter in inflammation-associated cancer. Nature
(2004) 431(7007):461–6. doi: 10.1038/nature02924

42. Toledano S, Nir-Zvi I, Engelman R, Kessler O, Neufeld G. Class-3 semaphorins
and their receptors: Potent multifunctional modulators of tumor progression. Int J Mol
Sci (2019) 20(3):556. doi: 10.3390/ijms20030556

43. Jiang Z, Liang G, Xiao Y, Qin T, Chen X, Wu E, et al. Targeting the SLIT/ROBO
pathway in tumor progression: Molecular mechanisms and therapeutic perspectives.
Ther Adv Med Oncol (2019) 11:1758835919855238. doi: 10.1177/1758835919855238

44. Geraldo LH, Xu Y, Jacob L, Pibouin-Fragner L, Rao R, Maissa N, et al. SLIT2/
ROBO signaling in tumor-associated microglia and macrophages drives glioblastoma
immunosuppression and vascular dysmorphia. J Clin Invest (2021) 131(16):e141083.
doi: 10.1172/jci141083

45. He S, Tan W, Wang S, Wu C, Wang P, Wang B, et al. Genome-wide study
reveals an important role of spontaneous autoimmunity, cardiomyocyte differentiation
defect and anti-angiogenic activities in gender-specific gene expression in keshan
disease. Chin Med J (Engl) (2014) 127(1):72–8.
frontiersin.org

https://doi.org/10.3322/caac.21492
https://doi.org/10.3322/caac.21492
https://doi.org/10.1007/s00345-016-1773-y
https://doi.org/10.1007/s00345-016-1773-y
https://doi.org/10.1038/s41585-019-0211-5
https://doi.org/10.1038/s41585-019-0211-5
https://doi.org/10.1007/s00345-018-2355-y
https://doi.org/10.1016/j.urolonc.2017.12.012
https://doi.org/10.1016/j.urolonc.2017.12.012
https://doi.org/10.1016/j.ejca.2020.06.008
https://doi.org/10.1038/ng0594-85
https://doi.org/10.1001/jama.1995.03520310062031
https://doi.org/10.1001/jama.1995.03520310062031
https://doi.org/10.1126/science.8493574
https://doi.org/10.1038/s41591-020-1093-z
https://doi.org/10.1038/s41388-020-1234-3
https://doi.org/10.1038/nrdp.2017.9
https://doi.org/10.1200/jco.2012.47.4940
https://doi.org/10.1016/j.clgc.2016.10.008
https://doi.org/10.1158/1078-0432.Ccr-14-1993
https://doi.org/10.1158/1078-0432.Ccr-14-1993
https://doi.org/10.1056/NEJMoa1510665
https://doi.org/10.1056/NEJMoa1712126
https://doi.org/10.1016/j.cell.2014.12.033
https://doi.org/10.1016/j.ccell.2020.10.011
https://doi.org/10.1038/s41591-018-0053-3
https://doi.org/10.1016/j.immuni.2013.07.012
https://doi.org/10.1016/s0140-6736(19)30723-8
https://doi.org/10.1016/s0140-6736(19)30723-8
https://doi.org/10.1038/s41591-020-1044-8
https://doi.org/10.1158/1078-0432.Ccr-15-2839
https://doi.org/10.1038/nature25501
https://doi.org/10.1016/j.cell.2016.02.065
https://doi.org/10.1186/1471-2105-14-7
https://doi.org/10.1186/1471-2105-9-559
https://doi.org/10.3389/fonc.2021.654185
https://doi.org/10.1093/nar/gkw1108
https://doi.org/10.1093/nar/27.1.29
https://doi.org/10.1093/nar/27.1.29
https://doi.org/10.1093/bioinformatics/bty920
https://doi.org/10.1111/j.0006-341X.2005.030814.x
https://doi.org/10.1016/s0140-6736(16)00561-4
https://doi.org/10.1186/s13059-016-1092-z
https://doi.org/10.1073/pnas.1318376111
https://doi.org/10.1016/j.ccell.2016.05.004
https://doi.org/10.1093/nar/gks1111
https://doi.org/10.3389/fgene.2022.988606
https://doi.org/10.1016/j.cmet.2013.09.011
https://doi.org/10.1016/j.cmet.2013.09.011
https://doi.org/10.1038/nature02924
https://doi.org/10.3390/ijms20030556
https://doi.org/10.1177/1758835919855238
https://doi.org/10.1172/jci141083
https://doi.org/10.3389/fonc.2023.1127448
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Chen et al. 10.3389/fonc.2023.1127448
46. Eixarch H, Calvo-Barreiro L, Costa C, Reverter-Vives G, Castillo M, Gil V, et al.
Inhibition of the BMP signaling pathway ameliorated established clinical symptoms of
experimental autoimmune encephalomyelitis. Neurotherapeutics (2020) 17(4):1988–
2003. doi: 10.1007/s13311-020-00885-8

47. Park H, Lad S, Boland K, Johnson K, Readio N, Jin G, et al. Bone marrow-
derived epithelial cells and hair follicle stem cells contribute to development of
chronic cutaneous neoplasms. Nat Commun (2018) 9(1):5293. doi: 10.1038/s41467-
018-07688-8

48. Wu X, Lv D, Cai C, Zhao Z,WangM, ChenW, et al. A TP53-associated immune
prognostic signature for the prediction of overall survival and therapeutic responses in
muscle-invasive bladder cancer. Front Immunol (2020) 11:590618. doi: 10.3389/
fimmu.2020.590618

49. Jabs WJ, Busse M, Krüger S, Jocham D, Steinhoff J, Doehn C. Expression of c-
reactive protein by renal cell carcinomas and unaffected surrounding renal tissue.
Kidney Int (2005) 68(5):2103–10. doi: 10.1111/j.1523-1755.2005.00666.x

50. Sim SH, Messenger MP, Gregory WM,Wind TC, Vasudev NS, Cartledge J, et al.
Prognostic utility of pre-operative circulating osteopontin, carbonic anhydrase IX and
CRP in renal cell carcinoma. Br J Cancer (2012) 107(7):1131–7. doi: 10.1038/
bjc.2012.360

51. Abuhelwa AY, Bellmunt J, Kichenadasse G, McKinnon RA, Rowland A, Sorich
MJ, et al. C-reactive protein provides superior prognostic accuracy than the IMDC risk
model in renal cell carcinoma treated with Atezolizumab/Bevacizumab. Front Oncol
(2022) 12:918993. doi: 10.3389/fonc.2022.918993

52. Hu H, Yao X, Xie X, Wu X, Zheng C, Xia W, et al. Prognostic value of
preoperative NLR, dNLR, PLR and CRP in surgical renal cell carcinoma patients.
World J Urol (2017) 35(2):261–70. doi: 10.1007/s00345-016-1864-9

53. Elbadawy M, Usui T, Mori T, Tsunedomi R, Hazama S, Nabeta R, et al.
Establishment of a novel experimental model for muscle-invasive bladder cancer
using a dog bladder cancer organoid culture. Cancer Sci (2019) 110(9):2806–21.
doi: 10.1111/cas.14118

54. Ye H, Li T, Wang H, Wu J, Yi C, Shi J, et al. TSPAN1, TMPRSS4, SDR16C5, and
CTSE as novel panel for pancreatic cancer: A bioinformatics analysis and experiments
validation. Front Immunol (2021) 12:649551. doi: 10.3389/fimmu.2021.649551

55. Xue F, Yang L, Dai B, Xue H, Zhang L, Ge R, et al. Bioinformatics profiling
identifies seven immune-related risk signatures for hepatocellular carcinoma. PeerJ
(2020) 8:e8301. doi: 10.7717/peerj.8301

56. Yang T, Kasagi S, Takahashi A, Mizusawa K. Effects of background color and
feeding status on the expression of genes associated with body color regulation in the
goldfish carassius auratus. Gen Comp Endocrinol (2021) 312:113860. doi: 10.1016/
j.ygcen.2021.113860

57. Wang Y, Yang J, Zhang Q, Xia J, Wang Z. Extent and characteristics of immune
infiltration in clear cell renal cell carcinoma and the prognostic value. Transl Androl
Urol (2019) 8(6):609–18. doi: 10.21037/tau.2019.10.19

58. van Deventer HW, Serody JS, McKinnon KP, Clements C, Brickey WJ, Ting JP.
Transfection of macrophage inflammatory protein 1 alpha into B16 F10 melanoma
cells inhibits growth of pulmonary metastases but not subcutaneous tumors. J Immunol
(2002) 169(3):1634–9. doi: 10.4049/jimmunol.169.3.1634

59. Kouno J, Nagai H, Nagahata T, Onda M, Yamaguchi H, Adachi K, et al. Up-
regulation of CC chemokine, CCL3L1, and receptors, CCR3, CCR5 in human
glioblastoma that promotes cell growth. J Neurooncol (2004) 70(3):301–7.
doi: 10.1007/s11060-004-9165-3

60. Wang SS, Gu YF, Wolff N, Stefanius K, Christie A, Dey A, et al. Bap1 is essential
for kidney function and cooperates with vhl in renal tumorigenesis. Proc Natl Acad Sci
U.S.A. (2014) 111(46):16538–43. doi: 10.1073/pnas.1414789111

61. Liu W, Yan B, Yu H, Ren J, Peng M, Zhu L, et al. OTUD1 stabilizes PTEN to
inhibit the PI3K/AKT and TNF-alpha/NF-kappaB signaling pathways and sensitize
ccRCC to TKIs. Int J Biol Sci (2022) 18(4):1401–14. doi: 10.7150/ijbs.68980
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