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Glioblastoma survival is
associated with distinct
proteomic alteration signatures
post chemoirradiation in a large-
scale proteomic panel

Andra Valentina Krauze1*, Michael Sierk2, Trinh Nguyen2,
Qingrong Chen2, Chunhua Yan2, Ying Hu2, William Jiang1,
Erdal Tasci1, Theresa Cooley Zgela1, Mary Sproull1,
Megan Mackey1, Uma Shankavaram1, Daoud Meerzaman2

and Kevin Camphausen1

1Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda,
MD, United States, 2Computational Genomics and Bioinformatics Branch, Center for Biomedical
Informatics and Information Technology, National Cancer Institute, NIH, Rockville, MD, United States
Background: Glioblastomas (GBM) are rapidly progressive, nearly uniformly fatal

brain tumors. Proteomic analysis represents an opportunity for noninvasive GBM

classification and biological understanding of treatment response.

Purpose: We analyzed differential proteomic expression pre vs. post completion

of concurrent chemoirradiation (CRT) in patient serum samples to explore

proteomic alterations and classify GBM by integrating clinical and proteomic

parameters.

Materials and methods: 82 patients with GBM were clinically annotated and

serum samples obtained pre- and post-CRT. Serum samples were then screened

using the aptamer-based SOMAScan® proteomic assay. Significant traits from

uni- and multivariate Cox models for overall survival (OS) were designated

independent prognostic factors and principal component analysis (PCA) was

carried out. Differential expression of protein signals was calculated using paired

t-tests, with KOBAS used to identify associated KEGG pathways. GSEA pre-

ranked analysis was employed on the overall list of differentially expressed

proteins (DEPs) against the MSigDB Hallmark, GO Biological Process, and

Reactome databases with weighted gene correlation network analysis

(WGCNA) and Enrichr used to validate pathway hits internally.

Results: 3 clinical clusters of patients with differential survival were identified. 458

significantly DEPs pre- vs. post-treatment, 316 upregulated, 142 downregulated

emerged including several pathways relevant to cancer metabolism and

progression. The worst survival group (median OS 13.2 months) was associated

with DEPs affiliated with proliferative pathways and distinct oppositional
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response (including RT) as compared to better-performing groups (intermediate,

median OS 22.4 months; highest, median OS 28.7 months). Opposite signaling

patterns across multiple analyses in several pathways (notably fatty acid

metabolism, TNFa via NF-kB, Myc target V1 signaling, UV response, unfolded

protein response, peroxisome, and interferon response) were distinct between

clinical survival groups and supported by WGCNA. 9 proteins were statistically

signficant for OS with 1 (CEACAM16) supported by KM.

Conclusion: Distinct proteomic alterations with hallmarks of cancer, including

progression, resistance, stemness, and invasion, were identified in serum samples

obtained from GBM patients pre vs. post CRT and corresponded with clinical

survival. The proteome can potentially be employed for glioma classification and

biological interrogation of cancer pathways.
KEYWORDS

glioma, radiation, proteomic, genomic, classification
Introduction

Gliomas are rapidly progressive, neurologically devastating, nearly

uniformly fatal brain tumors. In glioblastoma (GBM) (WHO grade

IV), the current standard of care involves maximal surgical resection

followed by concurrent (CRT) radiation therapy (RT) and

temozolomide (TMZ) followed by adjuvant TMZ, resulting in poor

prognosis with overall survival (OS) of less than 30% at two years (1, 2).

Glioma is currently classified based on morphologic appearance and

molecular features while disease progression is evaluated based on

clinical deterioration and imaging changes. Analysis of the proteome

pre vs. post completion of standard-of-care managementmay allow for

superior identification of outcomes and biological processes that

underpin response and progression to improve personalized

management and outcomes. Previous attempts at genomic and

transcriptomic glioma classification have various limitations

addressed by this study, including: transcriptomic analysis did not

necessarily align with either proteomic analysis or clinical features (3–
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6), survival was not analysed in conjunction with omic data (7–9),

specimen collection involved invasive approaches (e.g. tissue, CSF) and

samples were not compared before and after treatment for which there

is currently no data describing clinical and survival clustering with

proteomic characterisation. The fact that prior proteogenomic studies

have not proven effective at either prediction or prognostication and

have yet to be implemented in the clinic highlights the importance of

new approaches such as the one described in this study (10). Outcome

based tumor stratification in glioma remains controversial as the field

in general struggles to identify the optimal stratification as novel data

types and findings emerge (11–13), particularly as pertaining to novel

molecular markers (14) and serum proteomic approaches (15). Several

studies have attempted to risk stratify GBMs based on the

transcriptome (10) and/or proteome (3–7, 16); however, many

studies lack sufficient clinical features to adequately stratify patient

cohorts and identify confounding factors (17). A recent meta-analysis

comparing GBM to normal brain (18) and a systematic review

examining clinical validation results from preclinical GBM (17)

identified several relevant biological pathways. Most of the molecular

data is derived from the transcriptome, with a variable correlation

between RNA and protein (3, 7). This is a consequence of the

multifactorial sources of variability inherent in disease heterogeneity,

sample acquisition and selection, approaches to data analysis, and

intrinsic loose coupling between transcription, translation, and post-

translational modification. The goal of this study was to generate links

between proteomic alteration and clinical outcomes by uniquely

analysing serum biospecimens pre vs. post therapy with the additive

benefit of linkage to 10 clinical features including radiation therapy

volumes with samples spanning nearly a decade 2005-2013. This study

illustrates the feasibility of this approach to characterize large-scale

proteomes in relationship to survival and biological signaling. We

identified survival cluster specific proteomic signatures and individual

protein signals that open up the possibility of treatment optimization

and corresponding improvement in outcomes for GBM patients using

noninvasive blood sampling.
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Materials and methods

Patients

82 pts with pathology-proven GBM (2005-2013) enrolled on NCI

NIH IRB approved protocol 04-C-0020 and treated with CRT with

blood biospecimens obtained before and upon completion of CRT

were included in the study. 29 patients in this cohort also received

concurrent valproic acid (VPA) on NCI NIH IRB approved protocol

subject to separate analysis. Serum samples were screened using the

multiplexed, aptamer-based approach (SomaScan® assay) in the

SomaLogic® research facility with the process carried out by the

Somalogic® group using samples provided by the authors to measure

the relative concentrations of 7596 protein targets (7289 human) for

changes in expression using approximately 150 ul of serum (19, 20).

Clinical data (age, gender), tumor characteristics (location, MGMT

methylation status), management-related factors (extent of resection),

RT volumes (GTV T1, GTV T2), recursive partitioning analysis score

(RPA) (21), and outcomes (PFS, OS) were obtained or derived (RPA)

from the electronic health record with GTV T1, GTV T2, generated

per ICRU report 83 (22) obtained from the RT treatment planning

(contoured on the T1 gadolinium and T2 FLAIR (Fluid attenuated

inversion recovery) sequences respectively of the MRI scan employed

for RT planning per standard guidelines). The clinical and proteomic

dataset query and storing operations were provided by NIDAP (23).
SomaLogic® SomaScan assays

Serum samples were obtained before initiation (average 7 days,

range (0 to 23)) and following completion of CRT (average 7 days,

range (-1 to 30)), with the time between pre and post sample

acquisition averaging 49 days (range 27- 83 days). Following

acquisition, samples were frozen at -80° for an average of 3442

days (range 800 -5788 days or 2.2 – 15.9 years) and then defrosted

and screened using the aptamer-based SomaScan® proteomic assay

technology from SomaLogic® for changes in expression of 7596

protein analytes (19, 20). SomaScan® data was filtered to any

aptamer-based SomaScan® proteomic assay targets representing

non-human organisms and non-human proteins or controls (i.e.,

Non-Human, Spuriomer, Hybridization Control Elution, Non-

Biotin, Non-Cleavable, Spurimer) from 7596 protein analytes. Total

7289 unique Somalogic® proteomic assay aptamers targeting 6,386

unique gene symbols were retained for analysis. Normalized RFU

values reported by SomaScan® were log2 transformed.

Statistical Analysis
Cox proportional hazards regression
models for survival

Univariate Cox overall survival (OS) models were generated

using the coxph function from the R survival package (24) for each

available clinical trait. Traits with p-value < 0.05 (age, MGMT

methylation status, GTV T1, RPA score, and VPA administration
Frontiers in Oncology 03
status) were selected to be used in a multivariate Cox regression

analysis. The variables with a final p-value < 0.05 (age, given a

binary classification into < or >= 50 years old, MGMT status, and

GTV T1) were designated as independent prognostic factors.

To identify subgroups among the cases, we used following three

steps of analysis. First, we performed principal component analysis

using the significant independent prognostic factors. Second, we

selected the principal components that are associated the most with

overall survival time. Finally, we used the selected principal

components to cluster the patients using the partitioning around

medoids (pam) function (25) in the R cluster package with

parameters metric = “euclidean” and k=3”.

We used the R modules Survfit and coxph to perform OS

analysis based on the three resulting subgroups from the clustering

analysis and MGMT status (whole cohort and within the resulting

subgroups) (24, 26).
Proteomic pathway signatures

We performed a paired t-test using post- vs. pre-CRT SomaScan®

RFU (Relative Fluorescent Units) values and calculated false discovery

rate (FDR) values using the Benjamini-Hochbergmethod. Significantly

upregulated (Log2FC >= 0.2, FDR < 0.05) and down-regulated

(Log2FC <= -0.2, FDR < 0.05) proteins were entered into the

KOBAS server 2.0 (27) to identify associated KEGG pathways and

visualize them via bubble plot. GSEA version 4.2.3 from the Broad

Institute (28, 29) was used to carry out pre-ranked analysis on the

overall list of differentially expressed proteins, with the ranking based

on the t statistic from the paired t-test, against the MSigDB Hallmark

(h.all .v2022.1.Hs.symbols.gmt), GO Biological Process

(c5.go.bp.v2022.1.Hs.symbols.gmt), and Canonical Pathways

(c2.cp.v2022.1.Hs.symbols.gmt) gene sets. (Supplementary File).

Pathways were considered significant if the FDR for the Normalized

Enrichment Score was < 0.25.
Association with clinical traits via
survival subgroups

To combine the protein measurements post- vs. pre-CRT

within the subgroup into a single readout as input for ssGSEA2.0

(30), a paired t-test using t.test function in R with parameter

paired=TRUE was employed, and the resulting vector of t values

was used as input for ssGSEA2.0. The t values were first rank-

normalized (sample.norm.type = “rank”). The rank-normalized

profiles were further Z-scored (correl.type = “z.score”). The

weight parameter was set to 1 (weight =1) to incorporate the t

values into the calculation of enrichment scores and p values for

each signature across the three subgroups individually against the

MSigDB Hallmark gene sets by downloading the gmt files of

MsSigDB collections hallmark (28) and KEGG signatures version

V2022.1, from http://www.gsea-msigdb.org/gsea/msigdb/

collections.jsp. Lastly, gene sets with Benjamini-Hochberg FDR <

0.05 in at least one patient subgroup were selected to visualize
frontiersin.org
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normalized enrichment scores (NES) in a heatmap to show the

overall pathway enrichment.
Survival associated protein signal analysis

Univariate Cox modeling using the post-pre log2-transformed

RFU values was performed to identify proteins associated with OS.

ANOVA was performed to identify differentially expressed proteins

(DEPs) between the three clinical subgroups with 9 significant

proteins (p < 0.05) in both tests. KM analysis on these 9 proteins

was performed using the survminer package by separating patients

into two groups with log2FC greater than or less than zero.
Functionally related proteins and
clinical associations

Using the matrix of difference between post-pre CRT log2

transformed RFU values as an input, we applied WGCNA (31),

an R package for weighted gene correlation network analysis, to

detect the modules associated with the three resulting subgroups,

the overall clinical variables, and survival data. We generated a

signed network with corType = ‘bicor’ and softthreshold=16. Genes

associated with modules significantly associated with clinical traits

(p ≤<= 0.05) were used to do pathway enrichment analysis using

Enrichr (32).
Results

Patient cohort and captured
clinical features

Eighty-two patients, with a mean age of 56 (range 29-79), 73%

male, 66% with cortical disease, a reported resection, and tumor

methylation status, with pre and post CRT serum samples, were

included in the analysis (Table 1). Twenty-nine of the patients also

received concurrent valproic acid (VPA) in addition to concurrent

temozolomide and radiotherapy (RT) on protocol (the effect of

VPA is analyzed and reported on separately). RT volumes in the

form of gross tumor volume (GTV T1) and GTV T2 were captured

from the RT treatment planning system (Table 1), with the majority

of patients treated with an intensity modulated technique (71%).
Clustering of patients using clinical factors
results in survival groups based on age,
MGMT methylation status and GTV T1

On univariate and multivariate Cox analysis for clinical

independent prognostic factors (Table 2), age group (> vs. <= 50

years old) (p < 0.006), MGMT methylation status (p = 0.009), and

GTV T1 (p = 0.007) were associated with OS (Table 2). These

clinical features were included in the clinical clustering of patients
Frontiers in Oncology 04
(Figure 1) with three clusters of patients with differential survival

(Kaplan-Meier log-ranked p-value = 4.66x10-6) identified with the

lowest (subgroup 1 (cyan), n=24), intermediate (subgroup 2

(maroon), n=30) and highest survival (subgroup 3 (magenta),

n=28) exhibiting median survival of 13.2, 22.4, and 28.7m,

respectively (Figure 1). The subgroups were clinically distinct.

When comparing the GTV T1 variable the highest survival group

was made up exclusively of patients with smaller GTV T1 volumes

(< 40 cc, with all the patients with volumes of <20 cc present in this

group). Age also proved a factor for survival with the poorest

survival group solely comprised of patients over the age of 50.

MGMT methylation status was mixed across the groups, with the

lowest survival group having a more significant proportion of

MGMT unmethylated patients (75% unmethylated), the

intermediate group having the most significant proportion of

unknown MGMT status (77%), and the highest surviving group

having equal numbers of unmethylated and unknown status

patients. (Figure 2). Consistent with the Cox model, MGMT

status was statistically significant in the KM analysis (p=0.0135)

with unmethylated, unknown, and methylated patients having

median OS of 15, 22.4, and 30.8 months (Figure 3A). However,

within the survival groups, MGMT status was not statistically

significant (Figures 3B–D).
Differential protein expression in serum
following CRT reveals pathways relevant to
cancer both up and downregulated

6,386 human proteins were analyzed pre- vs. post-CRT using the

7k SomaScan® proteomic panel. The time the samples were stored in

the freezer from collection to analysis did not reveal any systematic

impact on protein measurements, as shown in (Supplemental

Figure 1). We performed a paired t-test on the post- vs. pre-CRT

log2-transformed SomaScan® RFU values to identify significantly

differentially expressed proteins between pre-and post-treatment.

The log2-fold change values ranged from 1.04 to -0.75, with 2298

proteins having an FDR less than 0.05 with 458 proteins having an |

Log2FC| >= 0.2 (316 upregulated, 142 downregulated, Figure 4). The

significantly up- and downregulated genes were entered into the

KOBAS server, which performs gene set enrichment analysis using

the hypergeometric test and generates plots (27). Figure 5 shows that

pathways relevant to cancer, such as the Ras, MAP kinase, and

NOTCH signaling pathways and various metabolic pathways, are

upregulated post CRT according to KOBAS. Overall various

metabolic pathways are upregulated, and immune-related

pathways are downregulated. The colors in Figure 5 are clusters

of pathways with overlapping genes. The fact that multiple related

pathways are up or downregulated together suggests that the

differential expression measures a meaningful biological signal and

is not artifactual. Some pathways such as PI3K-Akt and Toll-like

receptor signaling pathways are both up and downregulated

reflecting heterogeneous cell composition and differential response

to CRT. These results were confirmed using the pre-ranked GSEA

method with the t-statistic for all proteins from the paired t-test
frontiersin.org
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against the MSigDB Hallmark, Canonical Pathways, GO Biological

Process gene sets, and many of the same pathways were determined

to be significant (Supplemental File). The pathways upregulated,

such as Ras/MAPK/PI3K/AKT, metabolism, Notch signaling, and

axon guidance, are consistent with previous proteomic markers of

GBM, ie. active tumor including the presence of stem cells. The

pathways that were downregulated after therapy, including TNFa
or TGF-beta, are consistent with response to radiation and

chemotherapy representing protein release from dying cells and

residual/proliferating tumor cells. This demonstrates that the serum

proteome is altered after CRT in GBM patients.
Frontiers in Oncology 05
GBM survival groups are associated with
differential signaling pathways and serum
protein expression

We then performed gene set enrichment analysis on the patient

subgroups using ssGSEA2.0 with rankings based on the t-statistic

from paired t-tests carried out within each subgroup. Figure 6 shows

the identified MSigDB Hallmark pathways with an FDR < 0.05

(Figure 6A), including Apical Junction, IL-6/JAK/STAT3 Signaling,

Epithelial Mesenchymal Transition, Xenobiotic Metabolism, Fatty

acid metabolism, TNFa signaling via NF-kB, Interferon alpha and
TABLE 1 Demographic and clinical variables for the patient cohort (n = 82).

Clinical Variables

Age (years)

mean median range

56.04 56.50 29-79

Gender, (%)

Male Female

60 (73.2%) 22 (26.8%)

Location, (%)

cortical periventricular

54 (65.9%) 28 (34.1%)

Extent of resection, n (%)

GTR STR Biopsy

30 (36.6%) 45 (54.9%) 7 (8.5%)

MGMT, n (%)

methylated unmethylated unknown

21 (25.6%) 31 (37.8%) 30 (36.6%)

RPA, n (%) 3 4 5 Unknown

14 (17.0%) 46 (56.0%) 19 (23.0%) 3 (4.0%)

Radiation therapy volumes

GTV T2 (cm3) (%)

<10 10-50 50-100 >100

8 (9.8%) 21 (25.6%) 23 (28.0%) 30 (36.6%)

GTV T1 (cm3) (%)

<20 20-40 >40

24 (29.0%) 28 (34.0%) 30 (37.0%)

Radiation technique, n (%)

Arc IMRT 30

20 (24.4%) 38 (46.3%) 24 (29.3%)

VPA (Valproic acid) n(%) Male Female

No 39 (48%) 14 (17%)

Yes 21 (26.0%) 8 (10.0%)
fro
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TABLE 2 Univariate and multivariate Cox analyses for overall survival for clinical independent prognostic factors.

Univariate and multivariate Cox proportional hazards regression analysis

Characteristics

Univariate Multivariate

HR lower 95 upper 95 p value HR lower 95 upper 95 p value

Age group

Older (>50 yro) Reference

Younger Group 0.446 0.25 0.794 0.006 0.236 0.068 0.814 0.022

Gender

Female Reference

male 1.539 0.911 2,601 0.107

Location

Cortical Reference

Periventricular 1.53 0.951 2,463 0.08

Extent of Resection

Biopsy Reference

GTR 1.391 0.63 3,074 0.414

STR 1,647 0.768 3.531 0.2

MGMT methylation status

methylated Reference Reference

unmethylated 2.184 1.215 3,925 0.009 2.375 1.264 4,465 0.007

unknown 1.198 0.667 2.151 0.546 0.907 0.482 1.707 0.762

RPA

3 Reference Reference

4 2.166 1.11 4.227 0.023 0.521 0.133 2,033 0.348

5 1.745 0.832 3.66 0.141 0.25 0.054 1.146 0.074

Unknown 9.791 2.553 37.546 0.001 1.742 0.259 11.734 0.569

Radiation therapy volumes

GTV T2 (cc)

Coded <10cc Reference

Coded 10-50cc 0.523 0.219 1.251 0.145

Coded 50-100 0.528 0.221 1.263 0.151

Coded >100 cc 0.814 0.355 1.864 0.626

GTV T1 (cc)

Coded <20 cc Reference Reference

Coded 20-40cc 1.47 0.828 2.61 0.188 1.393 0.772 2.513 0.271

Coded >40 2.183 1.241 3,841 0.007 2.904 1.572 5.366 0.001

Radiation technique

3D Reference

Arc 1.079 0.579 2.01 0.811

IMRT 0.951 0.562 1.61 0.852

VPA

No Reference Reference

Yes 0.584 0.362 0.941 0.027 0.664 0.386 1.143 0.139
F
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IMRT (Intensity Modulated Radiation Therapy), MGMT (O6-methylguanine-DNA methyltransferase), GTR (Gross Total Resection), STR (Subtotal Resection), GTV (Gross Tumor Volume),
RPA (Recursive Partitioning Analysis), VPA (Valproic Acid).
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gamma response, UV response down. Some signal alterations are

shared amongst the groups, specifically epithelial-mesenchymal

transition (EMT)(elevated), oxidative phosphorylation (elevated),

and TGFbeta via NF-kB (decreased). The patient subgroups have

distinct pathways that are up or downregulated, indicating the

potential to characterize patient subgroups based on their serum

protein expression. The lowest survival group lacks associations with

metabolic pathways that distinguish intermediate and higher survival

groups (Figure 6A). By contrast, the highest survival group exhibits a

reduction in TNFa signaling and an increase in Peroxisome and Myc

targets V1. The intermediate survival group shares similarities in the
Frontiers in Oncology 07
direction of expression, with the highest survival subgroup significant

for xenobiotic metabolism, apical surface and apical junction,

adipogenesis, and fatty acid metabolism. The intermediate

subgroup is distinctly significantly associated with interferon-alpha

and gamma response, glycolysis, and UV response UP. Similar

associations with pathways in cancer were noted when examining

enriched KEGG pathways (Supplemental Table 1). Statistically

significant oppositional signaling was identified in fatty acid

metabolism, glycolysis gluconeogenesis, and propanoate/butanoate/

xenobiotic metabolism (elevated in the best survival group and

decreased in the lowest survival group). Focal adhesion, PPAR
A B

FIGURE 1

Clinical clustering. Patient clustering based on clinical features associated with overall survival. (A) Principal component analysis cluster plot based on
PC3 and PC2 correlated with overall survival time based on age, MGMT methylation status, and GTV T1 with Cox proportional hazard p-values <
0.05. Circles represent clusters of patients (n=82). A point with a number indicates the patient study ID. (B) Overall survival by clinical cluster.
Cyan = lowest survival. Purple =intermediate survival. Pink = highest survival.
A B

FIGURE 2

(A) Heat map of clinical clustering and proteomic signal following overall survival analysis based on GTV T1, MGMT methylation status, and age
group with Cox proportional hazard p-values < 0.05. The dendrogram represents 221 significantly expressed proteins pre- vs. post-treatment.
Unknown methylation status is represented by the color light grey. (B) Frequencies of clinical factors in whole cohort and clinical survival group
(GTV T1, MGMT methylation status and age group) broken down by survival group n (expressed as % of total cohort n =82).
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signaling, and lysine degradation were notably reduced in the lowest

survival group. Interestingly some pathway directionality was distinct

in KEGG vs. Hallmark (e.g. e.g., ECM for the intermediate group was

up in Hallmark and down in KEGG), indicating that pathway

directionality needs to be interpreted with caution (Supplemental

Table 1). Overall superior-performing groups shared considerable

similarities in both ssGSEA and KEGG following the administration

of CRT, particularly concerning metabolic pathways (elevated) and

DNA repair (decreased).

We identified 9 proteins that were statistically significant across

the three subgroups via ANOVA (p-value < 0.05) and also

associated with OS in a univariate Cox model (p < 0.05)

(Figure 6B). Five of these were also statistically significant upon

Kaplan-Meier analysis (NPS, NETO2, SEMA6D, CBLN4, CST7)

(Figure 6B). One was also statistically significant upon Kaplan-

Meier analysis (CEACAM16). These nine proteins all have plausible

connections to relevant pathways; however, box plots of their

expression demonstrate the significant overlap between patient

subgroups, indicating they are unlikely to be effective as

prognostic indicators. (Figure 7). Paired t-tests within the clinical

subgroups (top 10 proteins emerging show in Table 3) reveal

distinct proteins between the survival groups with respect to fold

change and p values with proteins present in all groups (KRT5,

KRT1, SFN, GDF15) and others (MGMT in lowest survival group).
Frontiers in Oncology 08
Overall most of the proteins are elevated post treatment as

compared to prior to treatment and while p values are statistically

significant, FDRs are only significant for the top 2 proteins in the

lowest survival subgroup while highly significant in the

intermediate and high survival subgroups (Table 3).
Association of clinical characteristics and
survival groups with differential protein
expression in serum reveals module clinical
trait relationships correlating with
progression free and overall survival

WGCNA was performed to identify groups of similarly-

expressed genes (referred to as modules) significantly correlated

with clinical traits (31). The most significant associations with OS

and PFS were with modules M3 (Grey60) and M14 (Magenta)

(Figure 8A). The GO biological processes associated with the M3

and M14 modules, are shown in Figure 8B. The grey60 (M3) and

magenta (M14) modules contain genes associated with angiogenesis

and cell proliferation via KRAS signaling down. The dark turquoise

(M6) module contains genes associated with angiogenesis and cell

proliferation via KRAS signaling down. Several of the same

biological pathways (e.g., IL6/JAK/STAT signaling, KRAS
A

B D

C

FIGURE 3

Overall survival by MGMT methylations status for the entire cohort (A), the highest (B), intermediate (C) and lowest (D) survival groups.
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signaling, EMT) were identified using both the differential

expression between subgroups and WGCNA approaches,

suggesting that we are observing genuine signals and not an

artifact of any particular method. However, it is important to

note that the correlation coefficients between the modules and

clinical features are relatively low, with the absolute value ranging

from 0.20 to 0.33. This is to be expected looking for signals from

brain tumors in the blood, but it does caution against

overinterpretation of the results and may reflect proteome
Frontiers in Oncology 09
functionality in a separate dimension with a loose connection to

clinical factors.

Given that the survival groups represent aggregates of clinical

factors, we wanted to determine if their interaction with the

WGCNA modules is more robust compared to individual clinical

characteristics and compare this to pathways identified in the

previous analyses. To determine if the subgroup and WGCNA

methods were detecting the same signals, we created dummy

variables for the subgroups, collectively as group “Pt subgroup” in
A B

FIGURE 5

KOBAS bubble plot of KEGG pathways enriched in the set of significantly differentially expressed proteins between pre- and post-treatment based
on a paired t-test. (A) Upregulated genes (FDR < 0.05).. (B) Downregulated genes (FDR < 0.05).. The bubble size reflects the KOBAS hypergeometric
test p-value broken into the following ranges (smallest to largest): [0.05,1], [0.01,0.05), [0.001,0.01), [0.0001,0.001), [1e-10,0.0001), [0,1e-10). Colors
reflect clusters of related pathways. Clusters of pathways are determined by creating edges if the Jaccard Index between pathways is larger than
0.35 and then clustering using the Infomap algorithm.
A B

FIGURE 4

(A) Volcano plot of differentially expressed proteins pre vs. post treatment. Red dots represent the significant proteins that passed cut-off (|Log2FC| >
0.2 & FDR < 0.05) (458 proteins). Orange dots represent the poteins with |Log2FC| > 0.2 but not FDR < 0.05. Blue dots represent proteins that are
not significant (i.e., did not pass either threshold). 316 proteins were up regulated, and 142 proteins were downregulated. The top 15 proteins that
decreased in value (left aspect of plot) and those that increased in value (right aspect of plot) based on |FC| were labeled with the identified proteins’
names. (B) Heat map representation of the expression levels of selected, differential expressed proteins (N=458) pre vs. post treatment.
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Figure 8A, and individually with patients in the “Lowest”,

“Intermediate”, and “Highest” in Figure 8A being associated with

the dummy variables 1, 2 and 3, respectively. Consistent with

Figure 6A, both “Pt subgroup” and “Highest” are significantly
Frontiers in Oncology 10
correlated with modules M5 (Dark green) and M13 (Dark Red)

while the “Highest” subgroup is associated with module M14

(Magenta) which is enriched for TNF-alpha Signaling via NFkB,

Epithelial Mesenchymal Transition, IL-6/JAK/STAT3 Signaling,
A B

FIGURE 6

(A) ssGSEA2.0 associations with Hallmark pathways for proteins differentially expressed within patient subgroups. Paired t-tests were run within each of the
patient subgroups from Figure 1. These results were fed into ssGSEA2.0 and significant pathways (FDR < 0.05) in at least one of the three subgroups were
selected. The heatmap shows the GSEA normalized enrichment score. (B) The 9 proteins statistically significant across the three subgroups (p value (ANOVA)
< 0.05) and associated with OS in Cox analysis (p < 0.05). Kaplan Meier analysis for statistically significant proteins is shown in Supplemental Figure 1.
FIGURE 7

Overall survival analysis for 9 proteins statistically significant across the three subgroups (p value (ANOVA) < 0.05) and associated with OS in Cox
analysis (p < 0.05) with associated protein signal box plots.
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Complement, Apical Junction, Xenobiotic Metabolism, Apoptosis,

Unfolded Protein Response, KRAS Signaling Up and UV Response

Up. The opposite sign of the correlation is due to the lowest survival

group having the smallest number in “Pt subgroup”, but the higher

number (1 vs 0) in the “Lowest” variable. The highest survival

subgroup has an inverse relationship with module M8 (tan), which

is associated with TNFa signaling via NF-kB (again similar to

Figure 6A), and a similar relationship is seen with VPA

administration. The highest survival subgroup is enriched in the

proportion of VPA treated patients (14/28) (50%) vs. subgroup 1 (5/
Frontiers in Oncology 11
24) (21%) and subgroup 2 (10/30) (33%). Modules 11 (PI3K/AKT/

mTOR signaling) and 12 (DNA repair) are negatively associated

with MGMT status (with a low correlation coefficient of -0.26 and

-0.32 respectively) and positively associated with M7 (Brown -

which is associated with MGMT status and GTVT1), with a

correlation coefficient of 0.25. The Grey60, Magenta and Brown

modules and their Enrichr results are available as Supplemental

files. As mentioned above MGMT status only imperfectly predicts

survival, and thus identifying proteins weakly associated with

MGMT status is unlikely to generate a prognostic signal. By
TABLE 3 The top ten proteins based on p-value identified in a paired t-test comparing pre- and post-CRT expression for each patient subgroup.

Lowest Survival Subgroup
(n=24)

Intermediate Survival Subgroup
(n=30)

Highest Survival Subgroup
(n=28)

Symbol p-value Log2FC Symbol p-value Log2FC Symbol p-value Log2FC

MGMT 7.29E-06 -0.627 SFN 2.74E-11 0.808 KRT5 9.83E-10 1.128

KRT5 1.04E-05 0.986 KRT5 8.01E-10 0.993 KRT1 4.70E-08 0.996

GDF15 3.03E-05 0.638 KRT1 1.80E-09 0.827 SFN 2.40E-07 0.775

EDA2R 3.34E-05 0.176 GDF15 4.59E-09 0.980 GDF15 3.26E-07 0.944

GFAP 3.56E-05 -0.681 FAS 7.64E-09 0.339 SERPIND1 2.73E-06 -0.264

KRT1 1.14E-04 0.749 CPB1 3.14E-08 0.781 ACP7 4.27E-06 -0.213

ILR1 1.21E-04 0.375 PRSS1 3.53E-08 0.516 HMX2 4.94E-06 -0.085

TAGLN 1.60E-04 0.318 CTRB2 8.42E-08 0.689 GUCA1B 5.45E-06 -0.171

PRSS1 1.93E-04 0.302 CBR3 9.27E-08 0.313 PRSS27 6.00E-06 -0.264

PRSS2 3.02E-04 0.518 BOC 1.23E-07 0.587 RAB26 6.19E-06 -0.171
Gene symbols appearing in all three subgroups are shown in bold, those appearing in two subgroups are shown in italics. Genes symbols whose expression dropped post treatment are underlined.
FC, fold change.
A B

FIGURE 8

(A) WGCNA Protein module-clinical trait relationships heatmap for post-pre data with clinical features. The WGCNA protein modules are labeled
with the MSigDB Hallmark pathways with the lowest adjusted p-value according to Enrichr. The M3 (Grey60) and M14 (Magenta) modules
significantly correlate to overall survival and progression free survival. M7 (Brown) significantly correlated with MGMT methylation status and GTVT1.
The top numbers indicate correlation coefficients, numbers in brackets indicate p-values. Bold indicate cells with p ≤ 0.05. (B) GO Biological
Processes that are associated with the M3 and M14 modules according to Enrichr. MGMT methylation status (1= methylated, 2= unmethylated).
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including the patient subgroups in the WGCNA analysis, both

collectively and individually, each subgroup was significantly

associated with a different module, again indicating differential

protein expression between the subgroups and lending further

support that a genuine signal results from the alteration in the

proteome pre vs . pos t CRT. The findings point to

further investigation that can be done with significant module-

trait relationships to uncover potential ly meaningful

biological correlates.
Discussion

This study is unique in examining a population of patients with

GBM that received CRT and underwent large-scale 7k serum

proteomic analysis prior to and after treatment. The novelty of

this study involves several critical aspects that have not been

described elsewhere to date: 1) the provision of non-invasive

analysis using serum at two time points in GBM; 2) the

aggregation with 10 clinical features including radiation therapy

volumes; 3) The collection and effective analysis of serum samples

collected pre and post treatment spanning nearly a decade 2005-

2013 illustrating the feasibility of this approach; 4) the

characterization of the 7k proteome on an aptamer platform

linked to survival and biological signaling. This setup uniquely

allows for analysis of clinical features and proteomic alterations.

Based on existing evidence we have no clear resolution on which

clinical or outcome variables constitute “ground truth” as

pertaining to the proteome. Given that the largest databases of

outcomes originate in the Radiation Therapy Oncology Group

(RTOG), we elected to employ clinical features that the RTOG

uses acknowledging also that the RTOG does not currently have

outcomes with IDH status nor microarray grouping. The goal was

to frame the alteration in the proteome in the most robust manner

possible and since all clinical features suffer from limitations in both

acquisition and capture we determined that overall survival was the

most robust parameter that would in its current state stand the test

of time. The interpretation of what and when constitutes

progression in glioma remains highly controversial and is actively

evolving as imaging progression in glioma is subject to Response

Assessment in Neuro-Oncology (RANO) criteria themselves

adapting to both novel imaging analysis and the addition of novel

agents (33).

The analysis of clinical variables in relationship to survival

revealed results similar to published literature, with the best-

performing patient subgroup exhibiting a median OS of 28.7

months and the worst-performing group 13.2 months (34–38).

Patients were stratified using three factors previously identified as

prognostic for GBM: age (21, 39), MGMT (40), and GTV T1

volume (41). These factors represent different facets of the

patient-disease-treatment matrix: age to patient physiology,

morbidities, and tumor biology; MGMT to chemotherapy

response (42); and GTV T1 to radiation dosage (41). GTV T2

was not significant despite it (more specifically T2 FLAIR signal)

having been associated with OS in glioma and representing a

possible surrogate for tumor load (43); in this cohort, GTV T2
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may represent an insufficiently robust parameter when captured by

clinical contouring for RT planning as compared with its capture

and analysis via MRI imaging sequences.
Pathway analysis

Given redundant signaling, variation over time, variation

between individuals and most importantly the measurement of

protein signals reflecting a composite of the whole patient, the

tumor and all interventions, it is not self-evident that a serum signal

from a brain tumor should be detectable. It is important to

emphasize that known and unknown factors result in signals

measured in serum (Figure 9). In this study, we demonstrated

that the serum proteome in a 7K panel was significantly altered pre

vs. post completion of CRT in GBM, a finding that has not

previously been described. The RT response itself involves direct

and indirect effects with different types of cell death and immune

responses persisting days to weeks following RT (44). Given that the

post protein signal is based on protein signals captured anywhere

from -1 to 30 days after RT, in conjunction with patient and tumor

heterogeneity, significant variability is further expected. The

evolution of individual protein signals over time is still being

determined, especially on this scale and in acquisition via serum

(45). Additionally we were able to show that signal alteration exists

in serum with similar findings generated via different analyses,

hence it is realistic to pursue proteomic analysis of serum sample

alteration to examine GBM tumor response, progression,

transformation, and outcome. The alterations identified are

consistent with biological pathways previously described in cancer

and glioma, including angiogenesis, proliferation, stemness,

metabolism and immune response (3, 15, 18, 46) (Supplemental

Figure 2). The clinical subgroups exhibit distinct proteomic

signatures consistent with known risk factors for GBM

progression. The group with the lowest survival, distinguished by

UV_response_DN and a lack of association with metabolic

pathways observed in the intermediate and higher survival

groupsin the Hallmark genesets, all similarly noted in KEGG and

theWGCNA analysis, reveals a pathway signature consistent with

poor prognosis in glioma via increased proliferation, hypoxia,

enrichment in glioma stem cells, and radiation resistance via

Notch signaling (47), IL-6_JAK_STAT3 (48, 49). Pathways that

are less intuitive such as Heme_metabolism include BMP-2-

inducible protein kinase (50) described as promoting adaptation

of GBM cells to glucose starvation, MAP2K3 linked to poor

clinicopathologic features and negatively correlated with

prognosis in glioma (51) and HDGF previously implicated as a

serum marker of cancer progression (52). Thus the lowest survival

group with median survival of just over a year is distinguished by

the pathways that are consistent with rapid recurrence and

treatment resistance that is clinically observable in some patients

and now revealed in the serum proteome.The highest survival

group by contrast has a proteomic pathway signature with unique

associations involving increased peroxisome and Myc targets v1

signaling and a decrease in TNFa signaling via NF-kB. These
pathways suggest a differential response to therapeutic
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intervention involving both RT and chemotherapy and an interplay

with immunometabolism. Peroxisomes are involved in lipid

metabolism and cellular redox balance and are central to fatty

acid oxidation as well as reactive oxygen species homeostasis and

cancer immunometabolism (53), all of which bear a connection to

pathways in this analysis given that fatty acid metabolism was

elevated in both intermediate and high survival groups but

noticeably absent in the lowest survival group. The peroxisome

hallmark geneset notably includes IDH1 and 2, SMARCC1 (also

part of Myc targets v1), transcription factors part of PD1 target

associated with survival and immune signaling in glioma (54). The

decrease in TNFa signaling via NF-kB and the increase in

peroxisome in the best-performing patients could indicate a

possible relationship to glioma stem cell burden, tumor invasion,

and RT response (55, 56) resulting in a more favorable outcome

(Supplemental Figure 2). Interestingly, the superior and

intermediate performing groups share several similarities in

metabolic pathways (xenobiotic metabolism, fatty acid

metabolism, adipogenesis) as well as apical surface and apical

junction, all of which were not identified as altered in the poorer

performing patients enforcing the hypothesis of a fluctuating

balance of powers in the interplay of pro and anti stem cell and

resistance signaling between these two extremes of survival, equally

mirrored by pathways that are elevated (EMT, oxidative

phosphorylation) or decreased (TGF beta), with differential

behavior depending on the tumor context (57, 58)).

With respect to the impact of therepeutic interventions that

may be exploited to improve outcomes, the response to RT

revealed in this analysis is novel, with clear opposing signal

signatures identified between survival groups with differential
Frontiers in Oncology 13
alterations in RT-specific pathways including UV response UP

and DN unfolded protein response (UPR) (Supplemental

Figure 2). Previous research has shown that radiosensitization

may be mediated by reduced expression of proteins critical to

radioresponse (59), however considering the large number of

signals present in Hallmark UV response_DN (144 genes) and

UV response _UP (158 genes) and the dynamic nature of the

protein signal, conclusions here may be difficult to attribute to any

one or even a small set of proteins. UV response_UP was elevated

in the intermediate group, and UV response_DN and UPR were

decreased in the lowest survival group. This could be consistent

with tumor heterogeneity and signaling ambivalence and may be

connected to stem cell burden in the group of patients with the

lowest survival. The UPR response is defined by a complex balance

between prosurvival and prodeath proteins and has been reported

as engaged in glioma as a means of migration and proliferation in

response to a stressed state that may involve hypoxia due to

extensive cell proliferation (60). There is growing evidence that

RT-induced K-RAS/ERK signaling activation elevates CD44

expression through downregulation of miR-202 and miR-185

expression, promoting SRC activation to drive cancer stemness

and EMT as a pivotal mechanism to mesenchymal transition in

GBM cells (61). Given this understanding of molecular

mechanisms underlying the therapeutic response, the decrease

in UPR and increase in KRAS signaling DN, captured in the poor

survival group could be attributed to insensitivity to RT or

chemotherapy-induced stress and/or a decrease in prodeath

related proteins that may mediate resistance to therapy which

could be expoited with adjuvant targetted therapy. In summary

clinical survival groups have unique proteomic serum signatures
FIGURE 9

The protein signals in a patient with glioblastoma are reflective of a combination of factors including patient and tumor heterogeneity pre and post
treatment. The changes in expression of proteins and pathways measured in the blood reflect a superposition of multiple overlapping signaling
pathways. The underlying biological processes can be inferred from differentially altered pathways and proteins, but further precise multimodal
measurements are required to achieve clinically actionable understanding of patient and tumor response to treatment.
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that uncovered a delicate balance between resistance, stem cell

sustainment, apoptosis and the leverage of immunometabolic

pathways which could be targeted therapeutically irrespective of

oncogenic mutation status.
Protein analysis

Nine proteins were significantly differentially expressed

between groups and associated with survival, 1 of which was also

statistically significant on Kaplan Meier analysis (CEACAM16).

CEACAM 16, while novel in its association with GBM, is a member

of the carcinoembryonic antigen family with several

carcinoembryonic antigen-associated cell adhesion molecules

having been associated with tumor infiltration, migration and

invasion as well as mediators of immune function and cell

adhesion (62). Recent evidence also suggests that CEACAMs are

implicated in modulating dependent adhesion between

glioblastoma initiating cells and surrounding cells via signaling

through STAT3 (63) and are known for the association with

hallmarks of cancer (involving stemness, surfaceome,

ECMreceptor interaction, focal adhesion, platelet activation, the

PI3KAkt pathway and invasion) all supported by evidence to have

an association with prognosis in glioma (64–68) and in our serum

proteome alteration analysis they connected to survival. The top

altered protein in the lowest survival group was MGMT possibly in

keeping with the known prognostic effect MGMT methylation

status in GBM (42). While the alteration in these and other

proteins is of significant interest, given their association with

known hallmarks of cancer pathways, care should be taken in

interpreting these results for directionality since gene signatures

do not always correlate with proteomic expression and further

analysis is needed to fully characterise the connection between

MGMT promoter methylation status and MGMT protein

expression in this cohort.
Study limitations

The limitations of the study include the small sample size and

retrospective nature of the study. 36% of the cohort received VPA

concurrently on trial and the proteome response in this subcohort

is potentially distinct which is the subject of future directions and

separate analysis. MGMTmethylation status was unknown in 37%

of the cohort, and IDH mutation status was unavailable for all

patients. The patients were diagnosed between 2005 and 2013

before measurement of IDH mutation status became part of the

standard of care. In addition given that the tissue samples from

these patients date to anywhere from 18 to 10 years ago

performing this measurement is likely to be unreliable. We also

note that the changes in protein expression, while statistically

significant, are relatively small in magnitude. One uncertain aspect

of the study is the extent to which the measured proteins come

from cancer cells destroyed by the treatment vs. from surviving
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active cancer cells. Proteins from killed cells might not have much

predictive value. This study provides a significant advance in this

area, but more work needs to be done to validate and extend

these results.
Conclusion

We have demonstrated that the serum proteome exhibits

biologically congruent alteration following standard of care

management in GBM in a manner that connects to clinical

survival and response to chemotherapy and radiation therapy.

This is the first study examining the serum proteome pre and post

treatment in GBM. The data presented here suggest that it may be

possible to monitor GBM patient progression and response to

treatment via the serum proteome since clinical survival groups

follow different serum proteome alteration templates and this

could facilitate improved individualized care. It is anticipated that

both vaidation and superior clinical-proteomic classification is

forthcoming as clinical and proteomic data acquisition and

analysis advance in neuro-oncology.While individual protein

signals may be insufficiently robust to classify outcomes at this

time, promising signals are emerging and since clinical survival

groups are associated with the proteome via known hallmark

pathways in cancer, this could be exploited to advance new

therapies. Future efforts are directed at defining the proteomic

signal along specific clinical data streams, to hone in on potentially

significant protein signals that are measurable and provide

potentially druggable targets to advance outcomes.
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