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Background: Ferroptosis is closely associated with cancer and is of great

importance in the immune evasion of cancer. However, the relationship

between ferroptosis and glioma is unclear.

Methods:We downloaded the expression profiles and clinical data of glioma from

the GlioVis database and obtained the expression profiles of ferroptosis genes. A

ferroptosis-related gene signature was developed for the prognosis of gliomas.

Results: We screened out prognostic ferroptosis genes, named ferroptosis-

related genes, by the Cox regression method. Based on these genes, we used

unsupervised clustering to obtain two different clusters; the principal component

analysis algorithm was applied to determine the gene score of each patient, and

then all the patients were classified into two subgroups. Results showed that

there exist obvious differences in survival between different clusters and different

gene score subgroups. The prognostic model constructed by the 25 ferroptosis-

related genes was then evaluated to predict the clinicopathological features of

immune activity in gliomas.

Conclusion: The ferroptosis-related genes play an important role in the

malignant process of gliomas, potentially contributing to the development of

prognostic stratification and treatment strategies.
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Introduction

Glioma (GBM) is a kind of brain tumor, with an incidence of 5–6 cases per 100,000

people (1–3). Malignant glioma is a kind of highly invasive tumor, accounting for

approximately 55% of gliomas, with a median survival period of 14-16 months (4, 5).

Glioma has strong heterogeneity, which always leads to an increased recurrence rate after
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curative treatment (6). Despite aggressive treatments, the prognosis

of malignant glioma is still poor. Hence, it is urgent to develop new

therapeutic methods to enhance the prognosis of patients with

glioma. Many scholars found that tumor cells have characteristics

different from the cells of normal tissue, such as the avoidance of

cell death (7, 8). The tumor microenvironment (TME) is considered

a crucial factor in regulating invasion and preventing the

destruction and survival of blood vessels (9–11). Glioma cells

utilize their TME to maintain cellular homeostasis to avoid or

reduce cell death (12). Regulated cell death (RCD) refers to death

associated with gene regulation originating from the extracellular

microenvironment which is essential to restore cellular

homeostasis (13).

Ferroptosis, a newly discovered non-apoptotic RCD (14), is

mediated by the accumulation of reactive oxygen species (ROS). In

essence, under the action of ferroptosis, the accumulation of lipid

peroxides leads to an imbalance in intracellular redox, leading to

ferroptosis (15). Inhibition of glutathione peroxidase 4 (GPX4) or

glutathione synthesis by small molecular compounds has been

shown to result in ferroptosis (16, 17). Ferroptosis is associated

with various diseases, such as ischemia–reperfusion injury,

neurodegenerative diseases, and tumors. Several studies have

shown that ferroptosis is a key factor in acquired drug resistance

and immune evasion of cancer (18). In glioma, autophagy

inhibition can improve the sensitivity of glioma stem cells to

temozolomide (TMZ) by causing ferroptosis (19, 20). However,

there are few reports on how ferroptosis occurs, develops, affects,

and regulates glioma. It is important to study the biological

significance of ferroptosis-related genes in glioma so as to

construct a novel treatment method.

Recently, many researchers have been inclined to use

bioinformatics methods to study the genesis and development

mechanism of tumors. Using bioinformatics methods, we can

determine the most appropriate samples for testing and identify

the pathways and genes that can affect the development of glioma

more quickly and accurately, thus providing more ideas for the

treatment of glioma and the prediction of patient’s prognosis.
Materials and methods

Data source

Gene expression data and the glioma patient survival

information in The Cancer Genome Atlas (TCGA) program were

downloaded from the GlioVis GBM platform (http://

gliovis.bioinfo.cnio.es/) (21), in which the RNA-seq data were

processed by the normalized read counts from the preprocessed

data with log2 transformation.
Prognostic ferroptosis gene identification
and prediction and PCA score calculation

We downloaded 253 ferroptosis regulators, 111 ferroptosis

markers, and 95 ferroptosis–disease associations from FerrDb
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(http://www.zhounan.org/ferrdb). FerrDb can be used to obtain

insights into ferroptosis (Figure 1A) (22). The ferroptosis gene

expression data in the TCGA-GBM were obtained, and the

ferroptosis genes significantly correlated with prognosis were

determined based on the Cox regression method (p-value < 0.05).

The expression matrix of relevant iron metabolism genes was

extracted. Then, the score of each TCGA-GBM sample was

calculated according to the principal component analysis (PCA)

algorithm. PCA was applied to establish a ferroptosis-relevant score

model, namely, the PCA score, and the PCA score was determined

based on the formula: PCA score = (PC1i + PC2i), in which i

represents the level of ferroptosis family pattern-related signature

genes. Both PC1 and PC2 were regarded as signature scores.

According to the threshold, the patients were classified into high-

and low-score groups, while the relevant survival curves were

generated and checked by the log-rank test between the two groups.
Identification of differentially expressed
ferroptosis-related genes

We identified the differentially expressed genes (DEGs) between

the high-score and low-score groups. The “limma” package (23) of

R was used to identify DEGs. Fold-change (FC) >1 and adjusted p-

value <0.05 were set as the judgment standard for DEGs. An

adjusted p-value <0.05 was applied to control the false-positive

rate (24).
Identification of the ferroptosis-related
gene cluster in the TCGA-GBM

Based on the screened DEGs, unsupervised clustering was

applied to cluster distant genotypes of the TCGA-GBM samples

by the “ConsensusClusterPlus” package (25). Heatmaps were drawn

to visualize the clinical characteristics of different gene clusters. The

GBM score of each individual was also determined by these

ferroptosis-associated DEGs, which we called the PCA gene score.

In terms of cutoff value, the cases were classified into the high-gene

score and low-gene score groups. Kaplan–Meier (KM) curves were

generated and compared with the log-rank test between the high-

gene score and low-gene score groups.
Functional enrichment analysis

Gene ontology (GO) analysis (26) was used to analyze the

function of the gene products and to identify their biological

feature. The Kyoto Encyclopedia of Genes and Genomes (KEGG)

(27) enrichment analysis was mainly used to explain gene function

and was widely used in the bioinformatics research field. Based on

DEG, it was mainly applied to the “ClusterProfiler” software (28)

during the GO and KEGG analyses. The “gsva” package (29) was

mainly used for single-sample gene set enrichment analysis

(ssGSEA) to determine the proportion of infiltrating immune

cells and also to determine the activity difference of immune
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pathways in different groups. The correlations of infiltrating

immune cells and PCA score/gene score were shown in

correlation heatmaps.
Western blotting

The milled tissue and cells were lysed and boiled in sodium

dodecyl sulfate (SDS) sample loading buffer, separated by 10% SDS-

polyacrylamide gel electrophoresis (SDS-PAGE) and transferred to

PVDF membranes. The membranes were blocked in 5% skimmed

milk for 1 h, washed three times with TBST, incubated with the

appropriate primary antibody in TBST for 1 h, then washed twice,

and incubated with horseradish peroxide-conjugated anti-

immunoglobulin (1:5,000 dilution) for 1 h at room temperature.

After three washes with TBST, the membranes were developed

using ECL-enhanced chemiluminescence reagents.
Immunohistochemistry

Tissues were fixed in 4% paraformaldehyde for 24 h, followed

by embedding in paraffin. Sections were cut to a thickness of 5 mm
and incubated with anti-MAP1LC3A, anti-OLFM1, anti-CEND1,

anti-CLTB, anti-PRKAR1B, anti-HRAS, anti-DDRGK1, anti-

PITHD1, and anti-DEAF1 primary antibodies. Hematoxylin

restaining was followed by separate photographic observation of

each slide in a positive area of ×40 fields, which were independently

analyzed by three previously uninformed pathologists.
Statistical analysis

To compare the overall survival (OS) of the subgroups, the KM

curve with the log-rank test was applied (30). In order to determine
Frontiers in Oncology 03
the prognostic value of the iron production death gene in the

research process, this paper conducted Cox regression analysis on

the collected data and applied the Mann–Whitney method when

comparing the degree of immune cell infiltration of the two groups.

The correlations of infiltrating immune cells and PCA score/gene

score were established using the Pearson correlation coefficient. The

statistical analyses were carried out based on R (version 4.0.5).
Results

Ferroptosis genes were correlated with
prognosis in human GBMs

Using univariate regression analysis, we screened 14 ferroptosis

genes associated with OS in patients with GBM. According to the

optimal threshold of the level of these genes in the TCGA-GBM, the

cases were divided into two groups with high and low expression.

The KM curve showed significant prognostic differences between

the high and low gene expression groups (p-value < 0.05). The PCA

algorithm was applied to determine the PCA score of each TCGA-

GBM individual based on these 14 genes. The results showed that a

high score has a positive relationship with prognosis (p =

0.002, Figure 1B).
Identification of DEGs between the high-
score and low-score groups

Up to 231 DEGs were identified, among which 183 were

upregulated and 48 were downregulated in the high-score group. To

further explore the biological role of these ferroptosis-related genes in

GBM, we performed GO and KEGG analyses on these DEGs. The GO

result reflected that the GO annotations of DEGs can be classified into

three categories: biological processes (BPs), cell components (CCs), and
A B

FIGURE 1

(A) Research flow chart. (B) Kaplan–Meier curves of the principal component analysis (PCA) scores in the TCGA-GBM.
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molecular functions (MFs). The terms were arranged based on the false

discovery rate (FDR) value, and further screening was performed when

FDR <0.05. Screening showed that the DEGs were enriched in

processes of regulation of long-term neuronal synaptic plasticity,

proteasome-mediated ubiquitin-dependent protein degradation,

vesicle-mediated transport in synapses, and proteasomal protein

catabolic processes (Figures S1A, B). The signal pathway results were

ranked based on FDR value and were screened under the condition of

FDR <0.05. The KEGG result reflected that the DEGs were mainly

enriched in endocytosis, Alzheimer’s disease, and pathways of

neurodegeneration in multiple diseases (Figures S1C, D).
Tumor ferroptosis-related classification
according to the identified DEGs

To study the association of the expression level and GBM

subtypes of the 231 ferroptosis-related DEGs, we conducted

univariate Cox regression and consensus clustering test with all

GBM cases in the TCGA.When the clustering variable (k) increased

from 2 to 10, it can be found that when k = 2, there appeared the

highest intragroup associations and the lowest intergroup

associations, which reflected that the 158 GBM cases can be

perfectly divided into two groups by the 25 prognostic DEGs
Frontiers in Oncology 04
(Figures 2A–D). The clinical features, such as PCA score (high

score or low score), sex (male or female), age (≤65 or >65 years),

and survival condition, were listed in a heatmap (Figure 3A), and a

few differences in sex and age between the two groups were found.

The OS rates were also compared, and we found significant

differences (p = 0.013, Figure 3B). To study the prognostic effects

of these genes, the PCA algorithm was also applied to determine the

PCA gene score of each individual, and cases were divided into two

groups. The KM curves showed that the high-score group had

obviously a better prognosis (p < 0.001, Figure 3C).
Comparison of the immune activity

Based on the above analysis, this study used ssGSEA to compare

the enrichment fraction of 16 types of immune cells and the activity

difference of 13 immune-related pathways among groups in detail.

The comparative analysis results show that in the TCGA queue

(Figures S2A, B), the immune cell infiltration of the subgroup with

high gene score is also higher, and the corresponding immune

infiltration is mainly related to activated CD8+T, CD4+T, and Treg

cells. The comparison results also showed that the infiltration of

neutrophils and NK and Th cells in the high-score subgroup was

more obvious.
D

A B

C

FIGURE 2

Identification of GBM ferroptosis-related subgroups. (A, B) Heatmap of the samples under the condition of consensus k = 2 (A) and k = 3 (B).
(C) Consensus clustering cumulative distribution function (CDF) for k = 2 to 9. (D) Relative change in the area under the CDF curve for k = 2 to 9.
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Some immune pathways, such as the TGF beta pathway, NK

cell-mediated cytotoxicity pathway, JAK–STAT pathway, Toll-like

receptor pathway, and B-cell receptor pathway, showed higher

activity in the high-score group (Figure S2C). Moreover, amino

sugar/nucleotide sugar/starch/sucrose metabolism and other glycan

degradation pathways have higher activity in the high-gene score

group, while taurine/hypotaurine-glycine/serine/threonine

metabolism, calcium signaling, and neuroactive ligand–receptor

interactions have lower activity in the high-gene score group

(Figure S2D). According to the comparative analysis results, the

activity of the sucrose degradation pathway in the high-gene score

group is significantly higher than that in the other group, but the

corresponding calcium signaling and neural activity are relatively

low (Figure S2D). The cause is not very clear, and it needs to be

analyzed in detail to provide support for clarifying the pathological

correlation between ferroptosis and this disease, so as to better meet

the requirements related to treatment. Correlation analysis showed

a significant positive correlation between immune cells in GBM,

and almost all immune cells have a positive association with the

PCA score and PCA gene score (Figures 4A, B).
Frontiers in Oncology 05
Verification of potential biomarker
expression

In order to further verify the role of the 25 differential genes we

screened earlier in glioma, we detected the expression of the above

genes in glioma glial tissue and glioma paracancerous glial tissue by

immunohistochemistry, and the expression of the above genes in

glioma glial tissue was significantly increased. Next, we detected four

genes with differential expression greater than 10-fold by Western

blot at the cellular and tissue levels, namely, MAP1LC3A, OLFM1,

CEND1, and CLTB. The results showed that the expression levels of

the above proteins were significantly upregulated relative to both

glioma paracancerous glial cells and glioma paracancerous glial tissue.

This further validates the results of our previous analysis (Figure 5).
Discussion

Malignant glioma is a fatal tumor, and many scholars found

that ferroptosis is closely associated with glioma (31–34).
A

B C

FIGURE 3

Ferroptosis signatures. (A) Unsupervised clustering of overlapping ferroptosis-related genes in the TCGA-GBM cohorts to classify cases, termed as
gene clusters A and B, respectively. The gene clusters, PCA scores, and age were applied as patient annotations. (B) KM curves of the gene clusters.
(C) KM curves of the gene scores in the TCGA-GBM.
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A B

FIGURE 4

The association of immune cells and PCA score (A) and PCA gene score (B).
D

A

B

C

FIGURE 5

The expression of potential biomarkers. (A) Immunohistochemical detection of MAP1LC3A, OLFM1, CEND1, CLTB, PRKAR1B, HRAS, DDRGK1,
PITHD1, and DEAF1 gene expression. (B) Western blot detection of the MAP1LC3A, OLFM1, CEND1, and CLTB protein expression levels.
(C) Quantitative results of Western blotting. (D) Quantitative results of immunohistochemistry. *** means p value less than 0.001.
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Ferroptosis is closely related to iron-mediated oxidative stress,

cellular metabolism, and autophagy (35). Ferroptosis is very

important in the development of glioma, while the related

mechanism is still unclear. One study on the role and mechanism

of ferroptosis in glioma can provide a better understanding of the

pathogenesis of glioma and help to find new targets for the

comprehensive treatment of glioma. Therefore, this study mainly

aimed to identify DEGs associated with ferroptosis to offer a reliable

theoretical basis for glioma therapy and construct a prognosis score

for individual patients to better manage glioma treatment.

Ferroptosis inducers have high application value in tumor

treatment (36). In cancer treatment, drug resistance is the key

issue to be addressed. The comparative analysis showed that the

process of cell death and apoptosis was significantly different in

patients with iron deficiency syndrome. This drug can provide

support in dealing with the drug resistance of tumors (37). Studies

have found that activation of the ferroptosis pathway will promote

the death of cancer cells, which can solve the problem of drug

resistance, and also improve the sensitivity of cancer cells to drugs.

The combined use of ferroptosis inducers and chemotherapy may

achieve a synergistic reaction, thus improving sensitivity to

chemotherapy. There is compelling evidence that glutathione

peroxidase 4 inhibitors enhance the lethality of drug-resistant

cells via ferroptosis which may help prevent acquired drug

resistance in tumors (38). In addition, cisplatin in combination

with erastin has been shown to significantly increase antitumor

activity, suggesting that ferroptosis is critical in tumor therapy (39).

It can improve the sensitivity of cancer cells to chemotherapy drugs,

which is conducive to reducing the dosage and adverse drug

reactions and is of great significance for improving the

therapeutic effect. Autophagy inhibition in GBMs can enhance

the sensitivity of GBM stem cells to treatment by causing

ferroptosis (20). The combination of TMZ and erastin can

provide effective therapy. Therefore, research on the treatment of

ferroptosis may provide a new therapy approach for those who are

resistant to traditional radiotherapy and chemotherapy or those

who have not responded to immunotherapy.

In this study, we found that some ferroptosis genes could

predict the OS of patients. Based on these genes, the PCA method

was applied to determine the individual scores of patients and

divide them into high- and low-score groups. Survival analysis

reflected significant differences in OS between the two groups.

Subsequently, 231 DEGs were identified between different score

groups, and biological function analysis showed that these genes

were mainly involved in the regulation of long-term neuronal

synaptic plasticity, proteasome-mediated ubiquitin-dependent

protein degradation, vesicle-mediated transport in synapses,

proteasomal protein catabolic processes, etc. There were

significant differences in immune activity between the two

groups, suggesting that patients in the high-score group were in

a state of immune activation. We further screened 231 DEGs for

25 prognostic DEGs and then used these genes for unsupervised
Frontiers in Oncology 07
classification. The OS rates were also compared and significant

differences were found. In addition, the PCA algorithm was also

applied to determine the PCA gene score of each patient, and cases

were divided into high- and low-gene score groups. The survival

analysis showed that the high-gene score group exhibited

obviously a better prognosis. The high-gene score group had

higher immune cell infiltration. Correlation analysis showed that

the immune cells were positively associated with the PCA score

and PCA gene score.

This study showed that GBM samples can be divided into two

different groups using the PCA algorithm based on ferroptosis

genes, and the low-score group has a worse prognosis.

Subsequently, we identified 231 DEGs between different score

groups, and 25 ferroptosis-related DEGs were identified based on

Cox regression. The GBM samples were divided into two different

clusters by an unsupervised clustering method. There were

significant prognostic differences and immunoactivity between the

two groups. In terms of the 25 prognostic DEGs, we further

calculated individual risk scores using the PCA algorithm, which

can be used to effectively predict the prognosis of a patient with

glioma. Moreover, this research offers a novel understanding of the

occurrence of ferroptosis in the progress of glioma and provides a

valuable idea for the development of ferroptosis inducers for glioma

therapy. Given that these partial results were generated using the

public RNA-seq technique, further studies are needed to investigate

the prognostic function of these 25 gene signatures.
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