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Integration of multi-omics
data reveals a novel hybrid
breast cancer subtype and
its biomarkers
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Yu Guo1, Xu Zhu1, Shu-heng Fu1, Fei-fan Xiong1, Jing Bai1*,
Xiao-ling Gao2* and Hong-jiu Wang1,3*

1Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical
Information and Engineering, Hainan Medical University, Haikou, China, 2The Medical Laboratory
Center, Hainan General Hospital, Haikou, China, 3College of Bioinformatics Science and Technology,
Harbin Medical University, Harbin, China
Tumor heterogeneity in breast cancer hinders proper diagnosis and treatment,

and the identification of molecular subtypes may help enhance the

understanding of its heterogeneity. Therefore, we proposed a novel integrated

multi-omics approach for breast cancer typing, which led to the identification of

a hybrid subtype (Mix_Sub subtype) with a poor survival prognosis. This subtype is

characterized by lower levels of the inflammatory response, lower tumor

malignancy, lower immune cell infiltration, and higher T-cell dysfunction.

Moreover, we found that cell-cell communication mediated by NCAM1-FGFR1

ligand-receptor interaction and cellular functional states, such as cell cycle, DNA

damage, and DNA repair, were significantly altered and upregulated in patients

with this subtype, and that such patients displayed greater sensitivity to targeted

therapies. Subsequently, using differential genes among subtypes as biomarkers,

we constructed prognostic risk models and subtype classifiers for the Mix_Sub

subtype and validated their generalization ability in external datasets obtained

from the GEO database, indicating their potential therapeutic and prognostic

significance. These biomarkers also showed significant spatially variable

expression in malignant tumor cells. Collectively, the identification of the

Mix_Sub breast cancer subtype and its biomarkers, based on the driving

relationship between omics, has deepened our understanding of breast cancer

heterogeneity and faci l i tated the development of breast cancer

precision therapy.
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1 Introduction

Breast cancer is the most common malignancy with highly

heterogeneous and has the second highest mortality rate among

female tumors worldwide (1, 2). The identification of novel

molecular subtypes could help in the accurate diagnosis and

personalized treatment of breast cancer (2, 3).

Thus far, PAM50 intrinsic breast cancer subtypes, luminal A

(LumA), luminal B (LumB), basal-like (Basal), HER2 over-

expressed (HER2), and normal-like (4), which are categorized

based on the mRNA expression profile of 50 genes, have received

the most attention from BRCA experts, but this classification

system was derived based on single-omics only. Therefore, some

studies that reclassify breast cancer based on other single-omics

data types have also deepened the understanding of breast cancer

heterogeneity. For example, by effectively combining gene mutation

profiles with unsupervised machine methods, three subtypes closely

related to clinical information were identified, and effective

classification models were developed, providing a new perspective

for understanding cancer subtyping studies (5). Using a copy

number variation (CNV) dataset, Andre et al. classified breast

cancers into three subtypes associated with copy number

abnormalities and identified a large number of previously

unidentified regions of DNA copy number variation and

identified potential therapeutic targets (6). Six molecular subtypes

of breast cancer with distinct miRNA profiles were revealed based

on miRNA expression profiles, illustrating that subtle differences in

miRNAs among cancer subtypes can be used to differentiate

subtypes and deepen the understanding of cancer heterogeneity

(7). In short, the widespread use of various high-throughput omics

data has identified breast cancer subtypes with specific molecular

mechanisms and expanded the study of breast cancer typing, but

the information provided by single-omics data is one-sided (8).

In recent years, the growing availability of multi-omics data,

including genome and transcriptome, has led to unprecedented

insight and resolution of cancer subtypes. The combination of

multi-omics data allows a higher resolution of breast cancer

subtypes (9). Several studies have been conducted to stratify

BRCA patients based on multi-omics data integration analysis.

For instance, a comprehensive correlation analysis of copy

number variation data and gene expression data from 997

primary breast cancer tumors identified new subgroups with

different clinical outcomes, which was validated in an external

dataset containing 995 primary breast cancer patients (10).

Similarly, the correlation of these two omics was analyzed by a

new algorithm in another study, which also revealed a potentially

novel subtype of breast cancer (11). Moreover, unsupervised

analysis of breast tumor samples using both expression and

methylation (MET) profiles discovered two novel subtypes with

distinct genetic and epigenetic patterns in the luminal-A subgroup

(12). The correlativity between data from three omics layers (CNV,

MET, and mRNA) were combined to stratify BRCA patients and

two biologically distinct subgroups were determined (13). It is

evident that the correlation between different omics has played a

major role in the development of breast cancer subtypes, but there is

still a need for more research to focus on the relationship between
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the genome and transcriptome and how it can be used for

cancer typing.

Thus, we have proposed a novel method, called GDTEC

(Genome-Driven Transcriptome), based on the driving

relationship between genome and transcriptome (denoted as

GDTEC) to identify breast cancer subtypes and a hybrid breast

cancer subtype with extremely poor survival prognosis was

identified from the TCGA-BRCA cohort. Differences in the

clinical phenotype, tumor microenvironment, biological function,

cell state, and cell-cell communication were identified for this

subtype patients. Patients with the hybrid subtype were also

found to be more mixed in histological classification and more

sensitive to targeted therapy. Subsequently, we identified 31

biomarkers that were used to construct prognostic risk models

and subtype classifiers for patients with the hybrid subtype at the

multi-omics level and at the gene expression level with significant

results. The generalization ability of these four prognostic risk

models and subtype classifiers was validated in four external

datasets obtained from the GEO database, indicating that these

biomarkers have reliable therapeutic and prognostic significance for

the hybrid subtype of breast cancer. See Supplementary Figure 5 for

the workflow.

In conclusion, our study identified a new hybrid breast cancer

subtype with extremely poor survival prognosis and its biomarkers,

which provides a new reference for molecular typing studies and

clinical precision treatment of breast cancer.
2 Results

2.1 GDTEC-based stratification of
breast cancer

To reveal the heterogeneity of breast cancer patients and obtain

robust clustering results. Three factors were considered: 1) The

selection of different LFC thresholds. 2) A multi-level LFC-based

score assignment. 3) Different clustering methods and distance

measures. The results showed that the GDTEC matrix and

clustering results were robust and consistent across different LFC

thresholds (Figures 1A, B). The clustering results obtained after

multi-level LFC-based score assignment were found to have no

higher resolution (Figure 1C). It was found that approximately

93.2% of all the clustering results had an overlap ratio of 0.8 using

different methods and measures (Figure 1D), and the clustering

results were consistent and robust. Finally, we chose LFC ∈ (-1, 1)

as the threshold to create a GDTEC fusion matrix containing 299

subtype-specific genes for 721 BRCA patients and used the R

package ‘ConsensusClusterPlus ’ for molecular subtype

identification. We found that k=4 was the inflection point for all

results (Figure S1). The clarity of the classification of the 23

clustering results at k=4 was observed and the results of the pam-

binary were considered as the final result of clustering (Figure 1E),

which proved that four breast cancer subtypes were identified based

on the characteristics of GDTEC. Then, a significant difference in

overall survival time (OS) was discovered among the patients of four

subtypes by using Kaplan-Meier and log-rank test, with the patients
frontiersin.org
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of subtype 4 having a significantly worse overall survival than the

patients of the other subtypes (Figure 1E, Log-rank, p = 0.0082).

Hierarchical clustering of the 299 subtype-specific genes used for

subtyping revealed that the signature genes were clearly clustered

into four clusters and had different levels of GDTEC expression in

the four breast cancer subtypes. Notably, almost all genes were

characterized by GDTEC expression in subtype 4 with the poorest

survival (Figure 1F). We also investigated the number of genes with

GDTEC expression among 14,749 genes in patients with the four

breast cancer subtypes and showed that the patients having the best

survival prognosis in subtype 1 had fewer genes with GDTEC

expression, while the patients with the poorest survival prognosis

in subtype 4 had the most genes with GDTEC expression

(Figure 1G). Therefore, we speculated that the poorer survival

prognosis of patients may be related to the fact that they have a

higher number of genes with GDTEC expression.
2.2 GDTEC-based subtypes show
significant distinct phenotypic and
clinical features

To reveal the differences in clinical phenotypes among these four

subtypes of breast cancer patients, we calculated the percentage of

PAM50 (Prediction Analysis of Microarray 50) classification in each
Frontiers in Oncology 03
subtype and found that subtype 1 was predominantly composed by

Luminal A (88.60%), defined as the LumA-dominant subtype

(denoted as Dom_A). Subtype 2 was predominantly composed of

both Luminal A (65.60%), and Luminal B (18. 80%), defined as the

LumA- and LumB-dominant subtype (denoted as Dom_A&B).

Subtype 3 was mainly Basal-like (53%), defined as the Basal-like

dominant subtype (denoted as Dom_Basal). Subtype 4 with the worst

prognosis is not easily classified as any of the known subtypes, but

rather is a unique hybrid subtype, denoted as Mix_Sub, which

contains a mixture of different subtypes, including 34.40% Luminal

A, 38.40% Luminal B, 16% Her2, and 11.20% Basal-like (Figure 2A).

Then, the Mix_Sub subtype was characterized by a more dispersed

age distribution compared to other subtypes, as evidenced by the

folded graphs of the age proportions of patients (Figure 2B).

Additionally, an analysis of the expression levels of Her2, estrogen

receptor (Er), and progesterone receptor (Pr) of breast cancer patients

showed that the Mix_Sub subtype was also marked by confusion in

hormone levels in comparison to the other subtypes (Figure 2C).

Subsequently, we observed that patients with the Mix_Sub subtype

received the expected treatment according to the distribution of

PAM50 subtypes in this subtype (80% of patients received

treatment: 20% received combination therapy, and 60% received

monotherapy). However, their worst survival prognosis suggested

that they may need to be treated with increased treatment modalities

and given more attention at the time of treatment (Figure 2D). In
A B D

E F G

C

FIGURE 1

(A) The overlap of GDTEC matrices generated under different LFCs. (B) Overlap rate of patients in the clustering results obtained based on different
LFCs. (C) Overlap of patients in the clustering results obtained based on multilevel LFC score assignment. (D) The coincidence rate of the patients
among the clustering results. (E) Kaplan-Meier curves of the overall survival (OS) among the four subtypes in the TCGA cohort. (F) Hierarchical
clustering heat map of 299 genes with GDTEC features (‘1’ indicates GDTEC expression, and ‘0’ indicates no GDTEC expression). (G) The number of
genes with GDTEC features in the four subtypes, out of 14,749 genes in the multi-omics fusion dataset.
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conclusion, the above results suggested that the discovery of the

Mix_Sub subtype could improve the reference information for

clinicians in the diagnosis and treatment of breast cancer patients.
2.3 Multiple biological functions associated
with breast cancer are altered in the
Mix_Sub subtype

Altered biological function plays an important role in the

development and progression of cancer (14). Therefore, we

performed Gene Ontology (GO) enrichment analysis of subtype-

specific genes to investigate the altered biological processes in

patients of each subtype with GDTEC expression using the

‘ClusterProfiler’ package. It was found that patients with the

Mix_Sub subtype exhibited significant alterations in a large

number of biological processes (BPs), while the other three
Frontiers in Oncology 04
subtypes only showed partial alterations. The 97 significantly

altered biological processes in patients with the four subtypes are

shown in Figure 3A. We delved deeper into the biological changes

that are unique to each subtype of breast cancer and the results

indicated that patients with the Dom_A, Dom_A&B, or Dom_Basal

subtypes showed changes in biological processes that are crucial in

the development of breast cancer. These processes include

mammary gland epithelial cell proliferation and development,

cell-cell adhesion, macrophage and glial cell proliferation, neuron

cellular homeostasis, cell motility, migration, and differentiation,

and regulation of ERK1 and ERK2 cascade (15–17). Notably, all

these biological processes were altered in patients with Mix_Sub

subtype (Figure 3B). Overall, our analysis revealed that a large

number of biological processes were altered in patients with the

Mix_Sub subtype and the combined impact of these alterations

could potentially be a significant contributor to the unfavorable

survival prognosis observed in patients with the Mix_Sub subtype.
A B

DC

FIGURE 2

(A) The proportion of the existing PAM50 subtypes among the four breast cancer subtypes. (B) The distribution of the four breast cancer subtypes in
different age ranges. (C) The status of Her2, Er, Pr in patients with four breast cancer subtypes. N means negative; P means positive. (D) The status of
patients with four breast cancer subtypes received pharmaceutical or radiation therapy. YY means receiving two treatments; NN means not receiving
any treatments; Monotherapy means receiving either of these two treatments.
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2.4 Mix_Sub subtype patients with
complex tumor microenvironment
are expected to be more suitable
for targeted therapy

Tumor microenvironment (TME) is closely related to cancer

prognosis and therapeutic efficacy (18, 19). Consequently, we

compared the differences in tumor microenvironment between

patients with the Mix_Sub subtype and other subtypes. The

results showed that patients with the Mix_Sub subtype had

significantly lower immune cell infiltration, especially including B

cells, dendritic cells, and endothelial cells, compared to other

subtypes (Figure 4A, Kruskal-Wallis test, p = 0.00078, 0.0029,

2.4e-05). The immune signature scores also indicated a lower

level of immune cell infiltration in patients with the Mix_Sub

subtype (Figure 4B). T cells are an important component of

human immune function. Gene set variation analysis (GSVA) of

416 T cell disorders genes revealed higher T-cell dysfunction and

lower T-cell elimination in patients with the Mix_Sub subtype,
Frontiers in Oncology 05
which explains the poorer immune response in patients with the

Mix_Sub subtype from a perspective of T cells (Figure 4C).

Moreover, the average expression of 154 T-cell inflammatory

genes also indicated a lower inflammatory response in patients

with this subtype (Figure 4D). The tumor stemness score index can

be used to evaluate the malignancy of the tumor. We found that the

tumor stemness score increased with decreasing survival in patients

of each subtype, and the tumor stemness score of patients with the

Mix_Sub subtype was only lower than that of patients with the

Dom_Basal subtype (Figure 4E). Collectively, our results

demonstrated that patients with the Mix_Sub subtype have higher

T-cell disorders and lower immune cell infiltration, inflammatory

response, and tumor malignancy, which may contribute to the

worst survival rate in patients with this subtype.

Next, we investigated the proportion of the 12 consensus groups

in the histological classification of TCGA-BRCA proposed in the

literature (20) across the four subtypes and found that the Mix_Sub

subtype was mainly composed of five consensus groups

homogeneously (32.70% IDC-LumB, 22.20% IDC-LumA, 15.30%
A

B

FIGURE 3

(A) Sankey diagram showing the relationship between the 97 significantly altered biological processes and patients with four subtypes. (B) Representative
biological processes that are altered in patients with 4 breast cancer subtypes.
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IDC-Basal, 13.30% ILC-Luminal, 9.70% IDC-Her2E), while the

other three subtypes consisted mainly of two or three consensus

groups (Dom_A: 59.60% IDC-LumA and 21.90% ILC-Luminal,

Dom-A&B: 52.20% IDC-LumA and 17.20% IDC-LumB,

Dom_Basal: 51.50% IDC-Basal, 14.40% IDC-Her2E and 10.30%

IDC-LumB) (Figure 5A). This result indicated that the Mix_Sub

subtype is confusing even from a histological point of view.

Pathological sections of individual cases from these 12 consensus

groups in the TCGA database are presented here (Figure 5B).

Recently, several breast cancer-targeted therapeutic genes have

been identified in published studies (21–23). We found that

genomic variation in these genes increased with decreasing

survival in patients with subtypes, being highest in patients with

Mix_Sub subtype (Figure 5C, EGFR: 12.46% ~ ERBB2: 31.65%).

Particularly, the highest percentage of patients with simultaneous

genomic variants in at least two genes was observed in patients with

the Mix_Sub subtype (Figure 5D). Moreover, some combinations of

these genes showed concurrent genomic variants only in patients of

this subtype (Figure 5E). The drug sensitivity of these targeted

therapeutic genes was explored in 49 cell lines based on the drug

treatment data provided by the GDSC database. The results

demonstrated that breast cancer patients with EGFR mutation

(Student’s t-test: erlotinib, p = 0.0018; sapitinib, p = 0.0042;

lapatinib, p = 0.015) and ERBB2 mutation (Student’s t-test:

lapatinib, p < 2.22e-16; afatinib, p = 2.3e-2; sapitinib, p = 1.1e-3)

had better sensitivity to targeted drugs (Figure 5F). Therefore, we
Frontiers in Oncology 06
anticipated that combination therapy with multiple targeted agents

may be a better approach to treating patients with this subtype.
2.5 Mix_Sub subtype shows significant cell
state upregulation in Cell cycle, DNA
damage and DNA repair

The functional states of cancer cells are strongly linked to the

development and progression of cancer (24). By calculating the

GSVA enrichment scores of 14 cancer-related cell states for each

patient, we observed significant variations in cell states among

patients with different subtypes (Figures 6A, C). In particular,

patients with the Mix_Sub subtype showed significant

upregulation in cell cycle, DNA damage, and DNA repair

compared to the patients with the other subtypes (Figures 6A–C).

To gain further insight, we identified 13 differentially expressed

genes in the Mix_Sub subtype patients compared to non-Mix_Sub

subtype patients, based on a logFC >= 0.58 and FDR < 0.05. Further,

We performed a GO enrichment analysis for these differentially

expressed genes and all genes involved in these three cell states.

Subsequently, mapping the biological functions enriched by these

two sets of genes, it was found that the biological functions enriched

by the differentially expressed genes were clustered in those

enriched by all genes (Figure S2). Specifically, the differentially

expressed genes for these three cell states and the nine most
A B

D EC

FIGURE 4

(A) Immune infiltration level score based on the MCP-counter method (Kruskal-Wallis test, ‘*’p < 0.05, ‘**’p < 0.005, ‘***’p < 0.0005, ‘****’p <
0.00005).. (B) Immune signature scores, based on the Dom_A subtype, and relative scores of other subtypes. (C) GSVA enrichment scores for genes
associated with T-cell disorders. (D) Expression of T-cell inflammatory genes.
(E) Cancer stemness cell score.
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significant biological functions in which they are involved are

shown here (Figure 6D). We suspected that the upregulation in

these characteristic genes led to alterations in relevant biological

functions, further leading to disruption of the normal regulation of

cell states and ultimately, resulting in a poor survival outcome for

patients with the Mix_Sub subtype.

Numerous studies have confirmed that homologous

recombination deficiency (HRD) is a common feature of many

tumors that accelerates carcinogenesis through increasing genomic

instability, which has been widely documented in cancers such as

breast cancer and has become a valuable biomarker (25, 26). We

found that HRD scores in patients with the Mix_Sub subtype were

only lower than in patients with the triple-negative breast cancer-

enriched Dom_Basal subtype, suggesting that HRD is also one of

the factors contributing to the poor survival outcome in patients

with the Mix_Sub subtype (Figure 6E).
2.6 Mix_Sub subtype exhibits distinct cell-
cell communications

Cell–cell communication mediated by ligands–receptors is

essential for the proper functioning of multicellular organisms
Frontiers in Oncology 07
(27). We investigated the expression of 1216 ligands and

receptors, as well as 32 subtype-specific ligands and receptors, in

patients with the Mix_Sub subtype of breast cancer. It revealed a

higher proportion of GDTEC expression in Mix_Sub subtype

patients compared to non-Mix_Sub subtype patients (Figure 7A,

t-test, p < 2.22e-16; Figure 7B, t-test, p < 2.22e-16). Among these

ligands and receptors, the differential ligand NCAM1 and receptors

WNT5A and GNAI2 with a high percentage of GDTEC expression

in Mix_Sub subtype patients (percentage of patients >= 0.7) and a

low percentage of GDTEC expression in non-Mix_Sub subtype

patients (percentage of patients <= 0.3) were screened and their

GDTEC expression is shown in Figure 7E. Numerous studies have

confirmed the association of the three ligands and receptors with

the development and progression of breast cancer (28, 29)

(Figure 7C). Specifically, these three ligands and receptors had a

higher proportion of patients with GDTEC expression and lower

mRNA expression in the Mix_Sub subtype, while the opposite trend

was observed in the non-Mix_Sub subtype, reflecting transcriptome

expression was driven by genomic variation (Figure 7D). Next,

correlation analysis based on the expression of these three specific

ligands and receptors revealed that only NCAM1 had a high

correlation with its corresponding receptor (Spearman correlation

coefficient >= 0.2, P<0.05) (Figure 7G). Additionally, NCAM1 was
A B

D E FC

FIGURE 5

(A) Distribution of the 12 consensus groups previously reported for TCGA-BRCA in 4 subtypes. (B) Pathological sections of 12 consensus groups
classified according to a combination of molecular and histological features. (C) Mutation load of seven targeted therapeutic genes associated with
breast cancer treatment from the literature (Wilcoxon-test, '***'p < 0.005, '****'p < 0.001). (D) Common mutations in 7 target genes. (E) Lines of the
same color connect genes that are simultaneously mutated only in patients with the Mix_Sub subtype. (F) Drug susceptibility prediction for gene
mutation (‘yes’ is the mutant group, ‘no’ is the unmutated group). Student's t-test, '*'p < 0.05, '***'p < 0.005, '****'p < 0.001
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mapped into the human protein interaction network, and protein-

protein interactions interconnected with NCAM1 were screened

according to the same criteria (Figure 7G). To our surprise,

NCAM1- FGFR1 interaction was identified in both networks, and

many studies had proved that this interaction was associated with

many cancers (30). Furthermore, abundant research has

demonstrated that the identified FGF family and its related

ligands, receptors and locked proteins, are all closely associated

with the development of breast cancer (31).

Meanwhile, we found that a significant copy number deletion

and reduced mRNA expression of NCAM1 in most patients with

the Mix_Sub subtype and the reduction in NCAM1 expression

appears to be the result of the cis-regulatory effect of genomic copy

number changes on transcriptome expression (Figure 7F). We also

identified a mechanism of interaction between NCAM1 and

FGFR1, as depicted in Figure 7H (30, 32–37). Overall, our

analysis suggests that the low expression of NCAM1 in Mix_Sub

subtype patients is likely caused by the large number of copy

number deletions, which restrict its binding to FGFR1, resulting

in the inability of various downstream signaling pathways to be
Frontiers in Oncology 08
activated, which in turn led to tumor deterioration and ultimately to

poorer survival outcomes for Mix_Sub subtype patients.
2.7 Risk model constructed by
subtype-specific genes can accurately
predict prognosis of patients

To investigate the potential impact of subtype-specific genes on

patient survival prognosis. Based on the GDTEC matrix, two

prognostic genes, F11R (HR = 2.037, Log-rank, p = 0.0032) and

NDRG4 (HR = 1.700, Log-rank, p = 0.0286) were identified from

299 subtype-specific genes using univariate and multivariate Cox

proportional hazards models. A prognostic risk model was

developed based on these genes, which calculated a risk score for

each patient and divided them into high-risk and low-risk groups

based on the median risk scor (Figure 8A). The results indicated

that patients in the high-risk group had a significantly lower

survival rate than the low-risk group (Log-rank, p = 0.01,

Figure 8B), and there were more deaths in the high-risk group
A B

D

E

C

FIGURE 6

(A) The mean values of GSVA enrichment scores of 14 cell states in 4 breast cancer subtypes. (B) GSVA scores in the three specific cell states in 4
breast cancer molecular subtypes (Wilcoxon-test, '**'p < 0.01, '***'p < 0.001, '****'p < 0.0001). (C) GSVA scores of cell states for each patient in
Mix_Sub and non-Mix_Sub subtypes. (D) The main biological functions involved the differentially expressed genes of the three specific cell states.
Top left: Cell cycle-specific pathways. Middle and lower: DNA damage specific pathways. Upper right: DNA repair specific pathways. (E) DNA
damage footprint analysis.
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(Figure 8D). Meanwhile, patients were divided into three groups

according to whether these two risk genes expressed GDTEC or not,

and a significant difference in survival prognosis was found among

the three groups (Log-rank, p = 0.001), and the more GDTEC

expression of these two risk genes in patients, the worse the survival

rate (Figure 8C). Moreover, GO annotation and enrichment

analysis of these two risk genes showed that F11R was mainly

involved in T cell extravasation and establishment of the endothelial

intestinal barrier, NDRG4 was mainly involved in the regulation of

endocytic recycling and negative regulation of platelet-derived

growth factor receptor signaling pathway, and the two genes were

jointly involved in response to radiation. These functional pathways

were closely related to the occurrence and development of breast

cancer, and can potentially be used as biomarkers for the disease

(38, 39). Collectively, the prognostic risk model constructed using

subtype-specific genes has good predictive efficacy for patient

survival prognosis.
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2.8 Novel mix_Sub subtype and
prognostic classifiers were constructed
at the mRNA level based on
multi-omics-identified biomarkers

Due to poor survival and the uniqueness of patients with the

Mix_Sub subtype, accurate diagnosis of patients with the Mix_Sub

subtype before clinical treatment is beneficial to the cure of patients. A

classifier for the Mix_Sub subtype was constructed by random forest

method using GDTEC expression of 31 subtype-specific genes as

features. The classifier was able to accurately identify the subtypes of

patients in both the training and test datasets, with an accuracy of 0.73

and an AUC of 0.806 (Figures S3, 9A). The generalization ability of the

classifier was further validated using an independent dataset of 1981

breast cancer patients with CNV downloaded from the cBioPortal

database, achieving an accuracy of 0.89 and an AUC of 0.972

(Figures 9B, C, a significant survival difference: Log-rank, p =
A

B

D

E

F

G

H

C

FIGURE 7

(A, B) Number of genes expressing GDTEC in 1216 and 32 subtype-specific ligands and receptors in patients with different subtypes. (C) The ligand-
receptor pairs of NCAM1, WNT5A and GNAI2 with high proportion of GDTEC expression in Mix_Sub subtype patients. (D) GDTEC expression and
mRNA expression of NCAM1, WNT5A and GNAI2 in patients with Mix_Sub subtype and non-Mix_Sub subtype. (E) Ratio of patients with GDTEC
expression of NCAM1, WNT5A and GNAI2 in Mix_Sub subtype and non-Mix_Sub subtype patients. (F) Copy number deletion of NCAM1 in patients.
(G) NCAM1 ligand-receptor pairs and protein-protein interactions related to breast cancer. (H) Diagram of the cell-cell communication mechanism
mediated by NCAM1-FGFR1 (Symbol 1: Cis-homophilic interactions of an NCAM1 molecule. Symbol 2: Trans-homophilic interactions between
NCAM molecules on different cell membranes. Symbol 3: Interactions between NCAM1 and FGFR1).
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0.00073). Additionally, GO enrichment analysis showed that the 31

marker genes were predominantly related to the regulation of macro

autophagy, gland development, regulation of membrane permeability,

and platelet-derived growth factor receptor signaling pathway, etc.

(Figure 9D, Hypergeometric test, p < 0.05). Overall, all these pathways

are strongly associated with the development of breast cancer and have

been confirmed by numerous studies (40, 41), reflecting the accuracy of

the identified biomarkers.

As gene expression data is abundant and readily available, we

selected eighteen genes with the top importance as candidates based

on the Gini coefficients (MeanDecreaseGini > 5.95) from 31

biomarker genes identified by GDTEC features (Figure 9E), and
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their gene expression profiles were used to construct a subtype

classifier and prognostic risk model for the Mix_Sub subtype. The

AUC of this subtype classifier was 0.737 (Figure 9F), and its

generalization ability was validated in another independent

dataset, GSE42568, (Figures 9G–I, AUC = 0.948; Log-rank, p =

0.0036). Then Cox proportional-hazards model was used to

evaluate the effect of abnormal expression of these 18 marker

genes on patient survival prognosis. A prognostic risk model,

characterized by abnormal expression of F11R and MAF, was

constructed using multivariate cox regression analysis

(Figure 10A, F11R: HR = 1.66, p = 0.0261; MAF: HR = 1.66, p =

0.0281). The risk score was calculated for each patient, dividing
A

B D

E

C

FIGURE 8

(A) Multivariate cox regression model constructed with the GDTEC expression of NDRG4 and F11R as features. The hazard ratios are shown with
95% confidence intervals (Wald test, '*'p < 0.05, '**'p < 0.01). (B) Kaplan-Meier survival chart of low-risk and high-risk breast cancer patients. (C)
Kaplan-Meier survival chart of the three groups of breast cancer patients were grouped according to whether the two risk genes, F11R and NDRG4,
express GDTEC. F_N = 0 indicates that both genes do not express GDTEC; F_N = 1 indicates that one of the genes expresses GDTEC; F_N = 2
indicates that both genes express GDTEC. (D) Risk score ranking of patients and their survival status, as well as the risk scores of patients
corresponding to the number of genes expressing GDTEC in their 2 risk genes. (E) Functions of F11R and NDRG4 two risk genes involved. Pink
triangles represent genes and pink circles represent GO functional pathways.
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them into low-risk and high-risk groups according to the median

risk score. The high-risk group showed a significantly worse

survival rate compared to the low-risk group (Figures 10B, C,

Log-rank, p = 0.027). Furthermore, patients were grouped

according to the number of abnormally expressed genes in F11R

and MAF, and it was found that the higher the number of

abnormally expressed genes in patients, the worse the survival

rate (Figure 10D, Log-rank, p = 0.0071). The accuracy and

generalization of the prognostic risk model were validated in the

external datasets GSE61304, GSE31448, and GSE42568

(Figures 10E–G, GSE61304: Log-rank, p = 0.036, Log-rank, p =

0.043; GSE31448: Log-rank, p = 0.037; GSE42568: Log-rank, p =

0.11). Interestingly, by investigating the alterations in the genome of

F11R and MAF, we found that they underwent copy number

variation in the vast majority of patients (Figure 10H). Notably,

F11R was a higher risk factor not only at the gene expression level

(Figure 10A, HR = 1.66, p = 0.0261) but also at the GDTEC

expression level (Figure 8A, HR = 2.037, p = 0.0032), reflecting

the reliability of the identified risk factors (Figure 10I).

Next, the spatial variability of three risk prognostic markers

(NDRG4, F11R, MAF) was evaluated in different cell types using

spatial transcriptomic data from the SOAR database. The results

indicated a significant pattern of spatial expression changesmainly in

malignant cells, suggesting that these markers may play a crucial role
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in the development of malignant cells (Figure 10J, S4). Moreover, the

spatial expression and variability of MAF in three patients were

analyzed, revealing significant spatial variation in malignant cells

(Figure 10K). Finally, we assessed whether the risk scores (FM_risk)

obtained by patients based on this prognostic model were

independent of other clinical or pathological factors and found that

the FM_risk maintained a significantly independent correlation with

survival even after adjusting other standard clinical features in the

breast cancer analysis (Figure 10L, Univariate cox: HR = 1.66, p =

0.0288; Multivariate cox: HR = 2.085, p = 0.0051).

In conclusion, these results illustrated the accuracy and

generalization ability of the biomarkers identified by genes’

GDTEC features.
3 Materials and methods

3.1 TCGA datasets and pre-processing

Clinical data, somatic mutation data, and gene expression data

(mRNA count-UQ and mRNA FPKM-UQ) for TCGA-BRCA

samples were obtained from the TCGA database (https://

portal.gdc.cancer.gov/), including 778 disease samples and 100

normal samples. A new mutation dataset (post-SNV dataset) and
A B
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I

H

C

FIGURE 9

(A) ROC curves of classifiers constructed based on 31 marker genes. (B, C) ROC curves and Kaplan-Meier survival plots for validation of the Mix_Sub
subtype classifier using external breast cancer data. (D) GO enrichment analysis of 31 marker genes. (E) Gini coefficient for 31 characteristics. (F) ROC
curves of classifiers constructed based on expression fold changes of 18 marker genes. (G) Kaplan-Meier survival curve of K-nearest neighbor (KNN)
classification results for the GSE42568 dataset. (H, I) Using the grouped GSE42568 dataset, the ROC curves for validating the broad applicability of the
Mix_Sub subtype classifier and Kaplan-Meier survival curve for classification results.
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a gene expression change profile for each patient (post-RNAseq

dataset) were obtained after preprocessing. Copy number variation

(CNV) data for TCGA-BRCA samples were obtained from the

UCSC Xena (https://xenabrowser.net/) database. A new copy

number variation matrix (post-CNV dataset) was obtained after

preprocessing. Details of the data pre-processing can be found in

Supplementary Material 1.
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3.2 Construction of multi-omics fusion
matrix (GDTEC matrix)

The three pre-processed datasets (post-SNV, CNV, and

RNAseq) were combined to form a fusion matrix (GDTEC

matrix) of genomic variation-driven transcriptome expression in

breast cancer. The gene values from the post-CNV and post-
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FIGURE 10

(A) Multivariate cox regression model constructed with the LFC of F11R and MAF as features. (B) The Kaplan-Meier survival curve for classifying the high
and low risks of the TCGA-BRCA samples was constructed by F11R and MAF. (C) Survival status of patients in the high risk and low risk groups. (D) The
Kaplan-Meier survival curvet of the three groups of breast cancer patients is grouped according to the LFC of the two risk genes, F11R and MAF. F_M =
0, indicating that both genes were normally expressed. F_M = 1, indicating that one gene was abnormally expressed. F_M = 2, indicating that both genes
were abnormally expressed. (E–G) Kaplan-Meier survival curve of patients in the high-risk and low-risk groups using the GSE61304, GSE31448, and
GSE42568 datasets to validate the constructed risk-prognosis models. (H) The copy number variation of F11R and MAF in each sample. (I) Risk
prognostic factors identified at two levels. (J) Spatial variability of MAF, F11R and NDRG4 in typical samples, and the landscape of more samples was
displayed in S4. (K) Normalized spatial gene expression of MAF in three representative samples and annotated cell types. (L) Univariate and multivariate
analysis of the FM_risk scores with other standard clinical features in the breast cancer.
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RNAseq datasets were summed, with values of 1 and -1 marked as 0

(expressions not driven by CNV) and values of 2 and -2 marked as 1

(expressions driven by CNV), resulting in the CNV-RNAseq

consistency matrix. The value -1 in the post-RNAseq dataset was

also marked as 1 to obtain the post2-RNAseq dataset. The gene

values from the post-SNV and post2-RNAseq datasets were then

summed, with values of 1 marked as 0 (expressions not driven by

mutation) and values of 2 marked as 1 (expressions driven by

mutation), resulting in the SNV-RNAseq consistency matrix. The

CNV-RNAseq and SNV-RNAseq datasets were summed, and

values of 2 were marked as 0, as both somatic mutations and

copy number variations affecting transcriptome expression are rare.

Finally, the genes in the GDTEC matrix with expression levels of 0

in more than 60% of the samples were removed, leaving 299 genes

for the identification of breast cancer subtypes.
3.3 External validation data

We downloaded GSE42568, GSE61304, and GSE31448 data of

GPL570 platform from Gene Expression Omnibus (GEO) database

as external validation datasets (https://www.ncbi.nlm.nih.gov/geo/).

These datasets all contain normal samples.

Copy number variation data and clinical survival data of 1981

breast cancer patients were downloaded from cBioPortal database

(https://www.cbioportal.org/) as external validation datasets to

verify the generalization ability of the classifier. Patients were

grouped according to the occurrence of CNV in the marker genes

used to construct the classifier. A patient was defined as a patient of

Mix_Sub subtype if more than 80% (>80%) of these marker genes

had CNV, otherwise as a patient with non-Mix_Sub subtype.
3.4 Data related to tumor
microenvironment analysis

Immune signature score data was downloaded from the

literature (42) for 11,080 patients in the TCGA. 160 genes

associated with T-cell inflammation were obtained from the

literature (43). The DNA methylation based stemness scores

(DNAss) data and the RNA expression based stemness scores

(RNAss) data derived by the Stemness group were downloaded

from the UCSC Xena (https://xenabrowser.net/).

HRD score data for genome-wide DNA damage footprints were

downloaded from this database. HRD score assessed genomic

instability caused by homologous recombination deficiency

(HRD), including genomic loss of heterozygosity (LOH), telomere

allele imbalance (TAI), and large segment migration (LST).

12 consensus group data for TCGA-BRCA classified according to

their combined genomic and histological characteristics were obtained

from the literature (20). Also, images that were assessed via TCGA

digital slide archive (CDSA) (http://cancer.digitalslidearchive.net/)

were used for the histological interpretation of TCGA patients.

Drug response data and genomic markers of sensitivity related

to breast cancer were downloaded from the Genomics of Drug
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Sensitivity in Cancer (GDSC) (https://www.cancerrxgene.org/

) database.

The data of ligand-receptor interaction pairs was downloaded

from the CellTalkDB (http://tcm.zju.edu.cn/celltalkdb/) database.

Spatial transcriptome data was obtained from the SOAR

database (https://soar.fsm.northwestern.edu/) and the spatial

variability of genes in different cell types was analyzed in the

SOAR database.
3.5 Consensus cluster on
TCGA-BRCA samples

The R package ‘ConsensusClusterPlus’ (version 1.54.0) was

used to perform consistent clustering on the GDTEC matrix, with

four breast cancer subtypes with significantly different survival

prognoses identified. Supplementary Material 1 provides details.
3.6 Kaplan-Meier and Log-rank test

We used the R packages ‘survival’ (version 3.2-7) and ‘survminer’

(version 0.4.9) to calculate the survival difference among subtypes, log

rank p < 0.05 represents a significant difference.
3.7 Gene ontology (GO) functional
enrichment analysis

The ‘clusterProfiler’ package and the ‘org.hs.eg.db’ package in R

were downloaded and their enrichGO function was used to perform

functional enrichment analysis on the feature genes. Then, the

enrichment results were visualized using functions (emapplot,

emapplot, etc.) from the R package ‘enrichplot’.
3.8 MCP to calculate the cell
infiltration fraction

The infiltration fraction of immune cell was calculated using the

R package MCPcounter (version 1.2.0) (https://github.com/ebecht/

MCPcounter) based on the gene expression data in TCGA-BRCA.
3.9 GSVA to calculate the enrichment
score of 14 cell states and 4 types of
T cell disorders

Gene Set Variation Analysis (GSVA) is a non-parametric,

unsupervised method that estimates the enrichment score of each

gene set based on gene expression level. We used R package ‘GSVA’

(version 1.38.2) to calculate the enrichment scores of 14 cancer-

related functional states and 4 types of T cell disorders for each

sample based on the gene expression data. Cell status data was

downloaded from the CancerSEA (http://biocc.hrbmu.edu.cn/

CancerSEA/home.jsp) database for a total of 1574 genes related to
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various functional states. 433 genes regarded to be associated with

T-cell disorders were obtained from the literature (44, 45).
3.10 Cox proportional hazards regression
model and the Mix_Sub subtype classifier

We constructed prognostic risk models and subtype classifiers

for the Mix_Sub subtype using a Cox proportional hazards

regression model and a random forest approach. More

information can be found in Supplementary Material 1.
4 Discussion

Breast cancer is a highly heterogeneous disease, and the

identification of subtypes is important for the accurate diagnosis

and personalized treatment of patients. Meanwhile, the

development of fusion analysis of multi-omics data has advanced

the understanding of cancer subtypes. However, most previous

studies were performed based on correlations between multi-omics

data and only considered associations between single aspects of

omics, such as correlation analysis between somatic mutations and

transcriptome expression, and correlation analysis between copy

number variation and transcriptome expression. And cancer typing

based on the driving relationships between omics remains to

be explored.

In this study, we proposed a novel multi-omics fusion approach

for breast cancer typing, which focuses on the driving relationship

between the genome and transcriptome, where the genomic level

includes somatic mutations and copy number variation. We

expressed the driving relationships as dichotomous variables and

fused them into a matrix. We identified four subtypes based on this

relationship matrix and found that the Mix_Sub subtype was

associated with the worst survival rate, but it contained a smaller

number of triple-negative breast cancers that are currently

considered difficult to treat. Subsequently, the Mix_Sub subtype

was found to be significantly different from other subtypes in terms

of phenotype, tumor microenvironment, intercel lular

communication, and cell states, and revealed that its worst

survival may be the result of the combined effects of a large

number of his altered biological functions and cellular status,

higher T-cell disorders and HRD, lower immune cell infiltration,

inflammatory response, and tumor malignancy and blocked cell-

cell communication. It was also found that it may be more suitable

for targeted drug therapy. Finally, based on the differences in

driving relationships among patients with different subtypes, we

identified 31 differential genes as biomarkers and used them to

construct a risk prognostic model and a subtype classifier for the

Mix_Sub subtype. Considering the abundance and availability of

gene expression data, we also constructed a risk prognostic model

and a subtype classifier for the Mix_Sub subtype using a subset of

these biomarkers at the gene expression level only. And the

generalization ability of these 2 levels of subtype classifiers and

prognostic models was validated in 4 GEO datasets. Additionally,

the identified prognostic risk genes showed significant spatial
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variability in malignant cells, highlighting their reliability and

potential prognostic significance.

Moreover, when setting the threshold of LFC for determining

whether a gene is abnormally expressed, we have chosen a more

reasonable threshold of LFC by considering the factors of the

robustness of GDTEC matrixes generated under different

thresholds of LFC, and the consistency of the consistent

clustering results.

Overall, our results demonstrate the potential of our multi-

omics fusion approach in enhancing our understanding of breast

cancer heterogeneity. By fusing information from both the genome

and transcriptome, our approach provides a new perspective for

interpreting multi-omics data in complex diseases. Further studies

are needed to validate our findings and to explore the application of

our approach in other cancer types.
5 Conclusions

Our study sheds new light on the heterogeneity of breast cancer

by identifying a novel hybrid subtype, Mix_Sub, with a poor

prognosis and unique phenotypic and clinical features. Further

investigation into the inter-omics driving relationship uncovered

the complexity and distinctiveness of Mix_Sub, including its tumor

microenvironment, cell states, and cell-cell communication. By

identifying biomarkers with significant spatial variability in

malignant tumor cells, we have developed effective Mix_Sub

subtype classifiers and prognostic risk models. In conclusion, this

work advances our understanding of breast cancer and highlights

the importance of inter-omics analysis in uncovering the

underlying mechanisms of complex diseases.
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