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Metabolism-related signatures is
correlated with poor prognosis
and immune infiltration in
hepatocellular carcinoma
via multi-omics analysis
and basic experiments

Jiapei Shen †, Weijie Sun †, Jiaying Liu †, Jiali Li , Ying Li
and Yufeng Gao*

Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, China
Background:Metabolism is an ordered series of biological processes that occur in

an organism. Altered cellular metabolism is often closely associated with the

development of cancer. The aim of this research was to construct a model by

multiple metabolism-related molecules to diagnose and assess the prognosis

of patients.

Method:WGCNA analysis was used to screen out differential genes. GO, KEGG are

used to explore potential pathways and mechanisms. The lasso regression model

was used to filter out the best indicators to construct the model. Single-sample

GSEA (ssGSEA) assess immune cells abundance, immune terms in different

Metabolism Index (MBI) groups. Human tissues and cells were used to verify the

expression of key genes.

Result:WGCNA clustering grouped genes into 5 modules, of which 90 genes from

the MEbrown module were selected for subsequent analysis. GO analysis was

found that BP mainly has mitotic nuclear division, while KEGG pathway is enriched

to Cell cycle, Cellular senescence. Mutation analysis revealed that the frequency of

TP53 mutations was much higher in samples from the high MBI group than in the

low MBI group. Immunoassay revealed that patients with higher MBI have higher

macrophage and Regulatory T cells (Treg) abundance, while NK cells were lowly

expressed in the high MBI group. RT-qPCR and immunohistochemistry (IHC)

revealed that the hub genes expression is higher in cancer tissues. The

expression in hepatocellular carcinoma cells was also much higher than that in

normal hepatocytes.
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Conclusion: In conclusion, a metabolism-related model was constructed that can

be used to estimate the prognosis of hepatocellular carcinoma, and the clinical

treatment of different hepatocellular carcinoma patients with medications

was guided.
KEYWORDS
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1 Introduction

Hepatocellular carcinoma is one of the most commonly

diagnosed cancers and is the 2nd major cause of cancer-related

deaths (1). According to statistics, Age-standardized incidence and

mortality rates (ASRs) of liver cancer worldwide are 9.5 and 8.7 per

100,000 people, respectively. The number of new liver cancer patients

will rise by 55% each year in the next 20 years, with 1.4 million people

likely to be diagnosed in 2040 (2). Of these, 75-85% of primary liver

cancers are Hepatocellular carcinoma (3). Hepatocellular carcinoma

(HCC) is mainly caused by chronic HBV or HCV infection, Excessive

drinking, rare genetic disorders, and various metabolic diseases (4, 5).

Due to the complex etiology of hepatocellular carcinoma, the

treatment methods of hepatocellular carcinoma have great

differences (6). Therefore, new biomarkers and prognostic models

are needed for the precise management of individuals.

Metabolism is an orderly sequence of biological changes that take

place in an organism to sustain life (7, 8). Several studies have shown

that alterations in cellular metabolism are often closely associated

with the development of cancer (9, 10). One study found

hepatocellular carcinoma was promoted with fat by inducing

glucose metabolism in unconverted hepatocytes (11). And HDAC11

can regulate the glycolytic process through LKB1/AMPK signaling

pathway, which can maintain hepatocyte cancer stemness (12). In

addition, PRMT6-ERK-PKM2 plays an important role in

tumorigenesis. It also provides an important connection between

tumor and glucose metabolism (13).. However, current studies on

liver cancer and metabolism are often limited to a single molecule,

while studies on multiple metabolism-related genes and liver cancer

are still scarce.

The aim of this study is to integrate multiple metabolism-related

key genes to construct an excellent model to diagnose and assess

patient prognosis. The correlation of the model with immunotherapy,

drug sensitivity allows to give different treatment regimens for
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different populations. In addition, we validated these results by

multi-omics analysis and basic experiments.
2 Materials and methods

2.1 Data source

The Cancer Genome Atlas (TCGA) (https://portal.gdc.cancer.

gov/) program was launched by the National Cancer Institute

(NCI) and the National Human Genome Research Institute

(NHGRI), and currently studies 36 cancer types in total (14). 374

LIHC samples and 50 normal samples were included for study, with

clinical data including gender, age, stage, grade, survival time, survival

status, etc. In addition, the corresponding mutation data was

downloaded of hepatocellular carcinoma for subsequent mutation

analysis. The ICGC database (https://dcc.icgc.org/projects/LIRI-JP) is

an international tumor genome collaborative group, a global

collaborative database containing samples from different countries

and regions. We downloaded data from it for liver cancer as a

validation cohort. The GEO dataset (GSE45267) was used for

external validation (https://www.ncbi.nlm.nih.gov/).
2.2 Weighted gene co-expression
network analysis

WGCNA is to explore whether there is co-expression between

genes and to divide a certain cluster of co-expressed genes into a

module based on certain values, so that different clusters of genes

clustered together are divided into different modules. Metabolism-

related genes were used to construct the weighted correlation

network, where modules that differed between cancer and

paracancer were selected for further analysis (15).
2.3 Functional enrichment analysis

KEGG is a database for studying biological functions from

genomic and molecular level information. Its PATHWAY sub-

database integrates current knowledge in molecular interaction

networks and allows prediction of pathways enriched by differential

genes. The Gene Ontology (GO) database divides the functions of

genes into three components: cellular component (CC), molecular

function (MF), and biological process (BP). To explore the underlying
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biological processes and signaling pathways associated with the

acquisition of differential genes.
2.4 Model construction

A risk score model was constructed based on the integrated role of

key genes in liver cancer to comprehensively evaluate the function of

these molecules in patient prognosis. The model was construct by

lasso-cox regression analysis. The metabolic index (MBI) for each

patient with HCC was computed with the equation:

MBI = ∑ (Expression level of Gene i × coefficient i)

The TCGA dataset is the training set and the ICGC is the

validation set. Kaplan-Meier curves were used to investigate

survival situation between different MBI groups of patients with

liver cancer in the training and validation set. Risk-survival curves

were used to explore the survival and mortality of the samples in

different MBI groups, and the differences in the key genes that were

modeled between the two groups. The roc curve is used to determine

the effectiveness of this prediction model.
2.5 Immunoassay and drug
sensitivity analysis

The abundance scores of 16 immune cells and 13 immune-

associated terms in each sample were assessed with ssGSEA

method. The estimate algorithm was used to calculate the

immunescore, stromalscore, and Estimatescore in the tumor

microenvironment. The IMvigor210 dataset was used to assess the

efficacy of immunotherapy. We used the “oncopredict” package to

differentiate the sensitivity of the different groups to the drug, of

which a total of 198 chemotherapeutic agents could be evaluated. We

screened the most sensitive drugs from them (16).
2.6 Immunohistochemistry

Human Protein Atlas (HPA) (https://www.proteinatlas.org/) is a

freely available public database (17). This database investigates the

expression of proteins at the protein level in various human tissues

and organs. It contains the IHC profile in normal and tumor tissues. The

expression of key genes in normal and tumor tissues was investigated.
2.7 Sample collection

Ten pairs of HCC tissues and normal tissues were provided by the

First Affiliated Hospital of Anhui Medical University, and the samples

were stored at -80°C for a long time. The ethics committee of the First

Affiliated Hospital of Anhui Medical University approved the study.
2.8 Real-time quantitative PCR

The specific experimental procedure is described previously (18).

TRIZOL (#15596026, Invitrogen, USA) was used to extracted RNA
Frontiers in Oncology 03
according to manufacturer’s instructions. According to protocol,

cDNA was derived from RNA by reverse transcription by

PrimeScript™ RT Master Mix (Takara Bio, Japan). TB Green®

Premix Ex Taq™ II (Tli RNaseH Plus), Bulk (#RR820L, Takara,

Japan) was used to perform RT-qPCR according to the

manufacturer’s instructions. RT-qPCR reaction program: Preheat:

95°, 30; Denaturation: 95°, 30s; Protein refolding: 55°, 30s; Cycle: 72°,

60s, 40 times; Termination: 72°, 5min. The primer sequences are as

follows: ATIC-F: ACCTGACCGCTCTTGGTTTG, ATIC-R:

TACGAGCTAGGATTCCAGCAT ; G 6 PD - F : CGAG

GCCGTCACCAAGAAC, G6PD-R: GTAGTGGTCGATGCG

GTAGA; GAPDH-F: GGAGCGAGATCCCTCCAAAAT, GAPDH-

R: GGCTGTTGTCATACTTCTCATGG.
2.9 Data statistics

Analysis of differences was performed using the Wilcoxon test.

The correlation analysis was based on the Spearman correlation test.

Kaplan-Meier analysis was used for survival analysis. R package

“survival” was used to perform Cox regression analysis, along with

hazard ratio (HR) and 95% confidence interval (CI). P < 0.05 was

regarded as statistically significant. R software (version 4.1.2)

performs statistical analysis and plotting.
3 Result

3.1 WGCNA screening for differential genes

In order to understand the framework and logic of the article, a

flowchart was drawn (Figure 1). 947 metabolism-related genes were

collected from the GSEA database, and a total of 362 genes were

differential genes after performing differential analysis, as can be

clearly seen in the volcano plot (P < 0.05, |log 2 FC| > 1) (Figure 2A).

After calculation, the optimal soft threshold 8 is used to construct the

co-expression network (Figure 2B). After dividing the genes into

different modules, it is used to draw the gene clustering tree

(Figure 2C). The clustering was performed by WGCNA, and we

can see that the genes were divided into 5 modules, among which the

MEbrown module was selected for subsequent analysis, with a total of

90 genes (Figure 2D). After intersecting the differential analysis and

the genes selected byWGCNA, 52 genes were used for our subsequent

analysis (Figure 2E).
3.2 Construction of lasso regression model

As previously described, we performed a univariate COX

prognostic analysis of these differential genes, 19 of which were

statistically significant (P < 0.05) (Figure 3A). Next, a further

LASSO regression model calculated the optimal lamda value of 2,

where ATIC and G6PD were used to construct the model (Figure 3B).

KM analysis was used to analyze the prognosis of the two genes, and it

can be seen from the graph that patients in the high gene expression

group had a poorer prognosis (Figures 3C, D). We used the TCGA

database and applied the model to evaluate every patient’s MBI.
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FIGURE 1

A flow chart of the manuscript.
A

B D

E

C

FIGURE 2

WGCNA screening for key genes. (A) The volcano plot clearly shows the differential genes, with a total of 362 differential genes. (B) the optimal soft
threshold 8 is used to construct the co-expression network. (C, D) The genes were divided into 5 modules by co-expression network, and the P-value
and correlation coefficient of each module were clearly marked. (E) VENN plot showing the intersection of differential genes and the MEbrown module
of WGCNA with 52 genes.
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Patients were grouped equally to two teams according to MBI, and it

was found that high MBI patients had a worse prognosis (Figure 3E).

The model was further validated using the ICGC dataset and the

outcome is in agreement with the above (Figure 3F). Further risk

curves were then plotted, and both the TCGA database and the ICGC

database found higher mortality rates for patients at higher MBI

(Supplementary Figure 1A-D).

To explore the differences between differential MBI groups, GO and

KEGG analysis were performed using differential genes. Among them,

BP was mainly enriched to mitotic nuclear division, CC enrichment to

chromosomal regions and collagen-containing extracellular matrix, and

MF is mainly enriched to lipid transporter activity (Figures 4A, B).

KEGG analysis revealed that the enriched pathways were mainly cell

cycle, chemical carcinogenesis and cellular senescence (Figures 4C, D).
Frontiers in Oncology 05
3.3 Prognostic value of MBI

Subsequently, we performed a COX prognostic analysis of the

clinical characteristics and MBI of these patients. Among them,

staging and MBI were statistically significant in both univariate and

multivariate analyses (Figures 5A, B). Considering the clinical use of

the model, we further plotted the nomogram. MBI were included in

addition to the clinical information of the patients (Figure 5C). The

ROC curves analyzed the efficacy of the model at 1, 3 and 5 years and

found that all were well evaluated. Considering that the inclusion of

clinical information may be more effective for the model, we

calculated the Nomogram score. and the ROC curve was found to

be better when it was evaluated (Figures 5D, F). The calibration curve

results found the model to be good (Figure 5G).
A

B

D

E

F

C

FIGURE 3

Lasso regression model and KM prognostic analysis. (A) Univariate COX prognostic analysis revealed genes with prognostic value. (B) The LASSO
regression model calculated the best lamda value of 2 and selected the best modeled genes. (C, D) KM analysis shows poorer prognosis when both ATIC
and G6PD are genes with high expression. (E, F) In the TCGA and ICGC databases, KM analysis identified a poorer prognosis in the high MBI group.
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3.4 Mutation landscape of different
MBI groups

To study the profile of mutations, we mapped the major mutated

genes and frequencies in the different MBI groups. The predominant

mutation type in both MBI groups was Missense Mutation. And

TP53, CTNNB1, and MUC16 were mutated more frequently in high

MBI patients. Among them, the TP53 mutation frequency was 36% in

the high MBI group, while it was 16% in the low MBI group

(Figures 6A, B).
3.5 Immunoassay and drug
sensitivity analysis

To explore the relationship between MBI and immune cells, we

investigated the expression of 16 immune cells. Multiple immune cells

differed significantly between high and low MBI groups. Among

them, aDCs, iDCs, Macrophages, and Treg have higher expression in
Frontiers in Oncology 06
high MBI patients. And Mast cells, NK cell were mainly expressed in

the low MBI group (Figure 7A). Subsequently, we further evaluated

the differences in immune-related functions in high and low MBI

groups, and we found that APC_co_stimulation and HLA were

predominantly expressed in the high MBI group. While

Type_I_IFN_Response and Type_II_IFN_Response was expressed

in low MBI patients (Figure 7B). Next, we found a lower

S t roma l s co r e in the h i gh MBI g roup in the tumor

microenvironment (Figure 7C). Considering the relationship

between MBI and immunotherapy, we evaluated the relationship

between MBI and MMR. MMR all correlated with MBI, with MSH2

having the highest correlation with MBI (Figure 7D). Interestingly,

immune checkpoint analysis revealed a significant correlation

between MBI and PDL1, PD1, and CTLA4 (Figure 7E). The model

was found to be a better predictor of the effect of immunotherapy

through the dataset, where the TIDE score was lower in high MBI

patients (Figure 7F). Afterwards, we found that patients with better

immunotherapy outcomes had higher MBI (Figure 7G).

Subsequently, we investigated the sensitivity of different
A

B D

C

FIGURE 4

GO and KEGG enrichment analysis. (A-B) Gene Ontology functional enrichment analyses for differentially expressed genes. (C-D) KEGG pathway
enrichment analyses for differentially expressed genes.
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chemotherapeutic agents in different MBI groups, and we found IC50

values of Sorafenib, Cisplatin, Cytarabine, Fludarabine, Ibrutinib,

Dihydrorotenone, Gemcitabine, Irinotecan, Mitoxantrone,

Oxaliplatin and Ribociclib were higher in the high MBI group.

While 5-Fluorouracil, Dasatinib, Osimertinib, Lapatinib, and

Gefitinib had higher IC50 values in the low MBI group

(Figures 8A–S).
Frontiers in Oncology 07
3.6 External and experimental validation of
key gene expression

We first found that both ATIC and G6PD were significantly

higher expression in cancerous tissue through the GEO database

(Figures 9A, B). The subsequent qPCR performed on 10 pairs of

hepatocellular carcinoma and paraneoplastic tissues used both
A

B

D E

F G

C

FIGURE 5

Prognostic Value and Clinical Value of MBI. (A) Univariate COX analysis identified MBI as a risk factor. (B) multivariate COX analysis identified MBI as a risk
factor. (C) The nomogram constructed to predict the probability of patient mortality. (D–F) ROC curves show that both MBI and nomogram scores are
good predictors. (G) The calibration curve results found that the model works well. ***P < 0.001.
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revealed higher expression of these two key genes in the tumor tissues

(Figures 9C, D). Immediately after, we further performed qPCR

validation using LO2 normal hepatocytes and three types of

hepatocellular carcinoma cells, BEL-7402, HEPG2 and HCCLM3,

and we found hub genes were higher in cancer cells than in normal

hepatocytes (Figures 9E, F) . Final ly , we observed the

immunohistochemistry of these two critical genes. The results were

basically consistent with the above, that is, higher expression in HCC

tissues (Figure 9G, H).
4 Discussion

The treatment of hepatocellular carcinoma is still mainly surgical, but

the recurrence rate of tumors in patients with intermediate and advanced

stages is extremely high (19). With the advent of the era of tumor

immunotherapy, immune checkpoint inhibitors have been used as one of

the new effective approaches for tumor treatment (20). Therefore, it is
Frontiers in Oncology 08
difficult to know whether immunotherapy is effective for a particular

patient, and how to screen this group of responding patients is a clinical

problem that needs to be solved. We used metabolism-related genes to

construct the model and also studied the correlation between the model

and immunity to screen for this population of patients.

In this study, AITC and G6PD were screened as key genes for the

model by WGCNA as well as lasso-cox based on TCGA

transcriptome data and clinical information. It was shown that

G6PD is activated by TSP50 along with the development of

hepatocellular carcinoma (21). In addition, Wang and Zhao et al.

found that G6PD could be used for building models of hepatocellular

carcinoma (22, 23). All of the above studies indicate that G6PD and

the development of hepatocellular carcinoma are closely related. The

bifunctional enzyme ATIC can promote the proliferation of liver

cancer (24). Moreover, ATIC can also be used as a prognostic

biomarker for hepatocellular carcinoma (25, 26). These studies

further confirmed that these two genes are good indicators for the

construction of prognostic models for liver cancer.
A

B

FIGURE 6

Mutation landscape of different MBI groups. (A) Mutation types, mutated genes and mutation frequencies in patients in the high MBI group. (B) Mutation
types, mutated genes and mutation frequencies in patients in the low MBI group.
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We further performed functional enrichment analysis. Where BP

is enriched to mitotic nuclear division, it has been found that mitotic

transmission disruption usually leads to aneuploid offspring

production. Aneuploidy is a general characteristic of tumor cells

(27, 28). Interestingly, KEGG is enriched to Cell cycle, Chemical

carcinogenesis, Cellular senescence and other pathways. Matthews’

study found that impairing cell exit from the cell cycle to allow

continuous cell division can lead to cancer development (29–31).

Cellular senescence is a condition in which the cell cycle is stalled. The

senescent state leads to the development of cancer by keeping the cells

alive (32, 33). These studies further confirm our results and show that

MBI is a good predictor. Further exploration of the correlation of MBI

and prognosis, we performed univariate and multivariate cox analyses

and found MBI to be a risk factor. In different years, the ROC curve
Frontiers in Oncology 09
showed that the prediction efficiency of the model was better. Further

nomograms can help to score clinical patients so that different

treatment plans can be given to patients with different scores.

Subsequently, to explore the differential profile in different MBI

groups, we analyzed the mutation types and mutation frequencies.

The TP53 mutation frequency was much higher in samples of the

high MBI patients. It was shown that Survival of liver cancer cells

increases with increasing mitochondrial fission wtih coordinated

regulation of ROS-regulated NF-kB and TP53 pathways (34). And

TP53 are significantly mutated in liver cancer (35, 36). Several studies

above have demonstrated that mutations in are strongly correlated

with hepatocellular carcinoma from multiple clinical and basic

perspectives. So, the high MBI group has a poorer prognosis for

this reason.
A

B
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F G

C

FIGURE 7

Analysis of immune cells, immune terminology and immunotherapy. (A) Immunoassay revealed the expression of aDCs, iDCs, Macrophages, Treg in the
high MBI group. Mast_cells and NK_cell are mainly expressed in the low MBI group. (B) APC_co_stimulation and HLA are mainly expressed in the high
MBI group. While Type_Ⅰ_IFN_Response and Type_Ⅱ_IFN_Response are mainly expressed in the low MBI group. (C) Lower Stromalscore in the high
MBI group in the tumor microenvironment. (D) MMR is correlated with MBI, with MSH2 having the highest correlation with MBI. (E) Immune checkpoint
analysis revealed a significant correlation between MBI and PDL1, PD1, and CTLA4 etc. (F) The TIDE score is lower in high MBI patients. (G) Patients with
better immunotherapy outcomes had higher MBI in IMvigor210 dataset. ***P < 0.001, **P < 0.01, *P < 0.05.
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To explore the relevance of MBI and immunity. We studied 16

immune cells and 13 immune-related terms. Previous studies have

demonstrated that Macrophages polarize under the influence of

tumor microenvironment and form tumor-associated macrophages

(TAM). And the abundance of TAM in tumors is closely associated

with poor prognosis (37). Our study revealed that macrophage

abundance was higher in the high MBI patients. This also explains

that high MBI patients had a worse prognosis. Togashi’s study

showed that Treg cells expressing FOXP3 suppress aberrant

immune responses against autoantigens and also suppress anti-

tumor immune responses. Large numbers of Treg cells infiltrating

into the tumor tissue usually have a poor prognosis (38). This is

broadly in line with our results that the higher MBI patients had

higher Treg. In addition, we found that NK cells were lowly expressed

in patients in the high MBI group. According to others, if cell surface

markers are correlated with carcinogenic transformation, NK cells

can quickly eliminate them. This property is unique among immune
Frontiers in Oncology 10
cells, and their ability to enhance antibody and T cell responses

supports the role of NK cells as anti-cancer agents (39). This further

confirms our results. After that, we observed that the interferon

response was mainly expressed in the group with low MBI.

Interestingly, Boukhaled et al. found that IFN contributes to

antitumor immune quality and immunotherapeutic response (40,

41). Subsequently, we predicted the effect of immunotherapy by

analyzing the TIDE scores of the high and low MBI groups. In

addition, we found that MBI was closely associated with

immunotherapy by MMR and immune checkpoint analysis. In

particular, the correlation between CTLA4 and MBI was extremely

high, which indicates that MBI is of great value in guiding clinical

immunotherapy. Our validation using the dataset revealed that

patients with high MBI had better outcomes after immunotherapy.

Our study also found significant differences between the high and low

MBI groups across multiple chemotherapeutic agents. These results

can further guide our clinical use of medications. Finally, we verified
A B D
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FIGURE 8

Sensitivity analysis of multiple chemotherapeutic agents. (A-K) Sorafenib, Cisplatin, Cytarabine and Fludarabine, Ibrutinib, Dihydrorotenone, Gemcitabine,
Irinotecan, Mitoxantrone, Oxaliplatin and Ribociclib had higher IC50 values in the high MBI group. (O-S) 5-Fluorouracil, Dasatinib, Osimertinib, Lapatinib,
and Gefitinib had higher IC50 values in the low MBI group. ***P < 0.001, **P < 0.01.
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the expression of key genes by qPCR in tumor and normal tissues and

in hepatocytes and hepatoma cells. This was confirmed by further

IHC results.

This study has important clinical applications. Our metabolism-

related genes screened by WGCNA combined with differential analysis

and prognostic analysis were more credible. Exploration of GO and

KEGG helps us to understand the reasons for the difference between high

and low risk groups. It helps to point the way for our next study.

Moreover, MBI calculated by the model constructed by lasso-cox is a

credible and independent biological marker to predict the prognosis of

patients of hepatocellular carcinoma. Studying the correlation between

MBI and immune and drug name susceptibility can be a useful indicator

to assess the efficacy of immunotherapy and chemotherapy in patients.
Frontiers in Oncology 11
There are several limitations to our study that need to be

acknowledged. First, this study is an analysis using a public

database and lacks validation of our own cohort. We will further

investigate these hub genes in our own cohort of hepatocellular

carcinoma data. Secondly, the downstream target genes of these

two genes were not explored further, which also needs our further

study afterwards.
5 Conclusion

In brief, we constructed a metabolism-related model. We hope

that this model can be used as a reference for predicting patient
frontiersin.org
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FIGURE 9

Validation of ATIC and G6PD expression in Tissues and Cell Lines. (A, B) GEO database (GSE45267) demonstrates that ATIC and G6PD are significantly
more expressed in tumor tissues than in normal tissues. (C, D) qPCR demonstrates that ATIC and G6PD are significantly more expressed in tumor tissues
than in normal tissues. (E, F) qPCR demonstrated that the expression of ATIC and G6PD was significantly higher in hepatocellular carcinoma cells than in
normal hepatocytes. (G, H) IHC demonstrated that the expression of ATIC and G6PD was significantly higher in tumor tissues than in normal tissues.
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survival and guiding related treatments for patients with

liver cancer.
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