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Fueled by support from the National Cancer Institute’s “Cancer Moonshot”

program, the past few years have witnessed a renewed interest in the canine

spontaneous cancer model as an invaluable resource in translational oncology

research. Increasingly, there is awareness that pet dogs with cancer provide an

accessible bridge to improving the efficiency of cancer drug discovery and

clinical therapeutic development. Canine tumors share many biological,

genetic, and histologic features with their human tumor counterparts, and

most importantly, retain the complexities of naturally occurring drug

resistance, metastasis, and tumor-host immune interactions, all of which are

difficult to recapitulate in induced or genetically engineered murine tumor

models. The utility of canine models has been particularly apparent in sarcoma

research, where the increased incidence of sarcomas in dogs as compared to

people has facilitated comparative research resulting in treatment advances

benefitting both species. Although there is an increasing awareness of the

advantages in using spontaneous canine sarcoma models for research, these

models remain underutilized, in part due to a lack of more permanent

institutional and cross-institutional infrastructure to support partnerships

between veterinary and human clinician-scientists. In this review, we provide

an updated overview of historical and current applications of spontaneously

occurring canine tumor models in sarcoma research, with particular attention to

knowledge gaps, limitations, and growth opportunities within these applications.

Furthermore, we propose considerations for working within existing veterinary

translational and comparative oncology research infrastructures to maximize the

benefit of partnerships between veterinary and human biomedical researchers

within and across institutions to improve the utility and application of

spontaneous canine sarcomas in translational oncology research.
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Introduction

Sarcomas are a heterogeneous group of neoplasms which arise

from mesenchymal cells within tissues derived from the embryonic

mesoderm. Sarcomas are rare in people and account for only about

1% of all cancers, though pediatric patients are disproportionately

burdened by this tumor type as sarcomas represent greater than

20% of pediatric solid tumors (1). Sarcomas are broadly subdivided

into categories of bone and soft tissue sarcomas, however there are

over 70 histologically and genetically distinct sarcoma subtypes

recognized, and the incidence of each of these unique sarcoma

subtypes is substantially lower. Thus, patient recruitment for

clinical trials in rarer sarcomas remains a significant barrier to the

development of new therapies. Despite the rarity of sarcomas,

sarcoma research has historically made an outsized contribution

to our understanding of the fundamental biology of cancer and laid

the groundwork for remarkable advances in cancer treatment

including immunotherapy and personalized small-molecule

inhibitor therapy (2). Still, treatment advances for sarcoma

patients have lagged behind more common cancer types,

particularly with regard to the paradigm-shifting cell-based

therapies recently developed for hematologic malignancies. Novel

therapies for treatment-refractory, relapsed, and metastatic

sarcomas are lacking and overall survival remains quite poor for

these patients.

Animal models are essential for testing new interventions for

these rare cancers at a meaningful and time-efficient scale. Immune

competent and immunodeficient murine models are often utilized

in pre-clinical sarcoma research and have provided the rationale for

novel therapies. While studying experimentally induced tumors in

mouse models is cost-effective, accessible, and affords a high degree

of reproducibility, the limitations of these models are becoming

increasingly apparent. It is estimated that 85% of novel drugs which

show promise in preclinical testing will fail in early clinical trials.

The failure rate for cancer drugs is even greater, with as few as 8% of

novel cancer drugs translated successfully from preclinical animal

models to human clinical trials (3–5). The statistics surrounding

sarcoma drug development are even more discouraging, with

estimates suggesting only 5% of Phase I/II sarcoma trials make it

to Phase III studies (6). This unacceptable outcome is in part driven

by the fact that many of the drugs tested in sarcoma patients are

drugs originally developed, tested, or approved for other cancer

types (6). Most of these failures are attributed not to drug safety

concerns, but rather to lack of efficacy (7), suggesting that in vivo

preclinical testing as currently performed is poorly predictive of

clinical efficacy. Given the complex interplay of genetic, biological,

and environmental factors influencing disease phenotype and

outcomes in cancer patients, it is unsurprising that preclinical

rodent models are limited in their ability to predict treatment

efficacy in humans and it is apparent that incorporation of

additional representative animal models is desperately needed to

enhance the efficiency and success of cancer drug development.

Pet dogs with spontaneously occurring cancers have received

increasing attention as a promising model to bridge the

translational gap between rodent tumor models and human
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clinical trials. Cancer and associated complications are the leading

cause of death in most dog breeds and mixed breed dogs in North

America, and their large size, relative outbreeding, and shared

environmental exposures with their human caregivers are

advantageous for modeling human cancers. In contrast with their

rare incidence in people, sarcomas comprise a much larger

proprotion of malignant tumors in dogs (8). The increased

incidence of sarcomas in dogs provides both an impetus for

veterinary sarcoma research and a comparative research

opportunity. Canine sarcomas share many genetic, biologic, and

histologic features with their human counterparts. Most

importantly, canine spontaneous cancer models retain the

complexities of naturally occurring therapeutic resistance,

spontaneous metastasis, and tumor-host immune interactions

seen in human patients. Here, we provide an overview of

translationally relevant spontaneously occurring canine sarcomas

and offer perspectives on optimal application of these models in

current and future translational research (Figure 1), as well as

considerations for expanding translational research training and

facilitating greater inclusion of veterinary clinician-scientists into

cross-disciplinary cancer research teams.
Naturally occurring canine sarcomas

Osteosarcoma

Osteosarcoma (OS) is the most common primary malignant

bone tumor in both dogs and people (1, 8). However, it remains a

rare disease in people and accounts for approximately 2% of all

childhood cancers, and less than 1% of adult cancers (1). Based on

recent OS incidence estimates, less than 1000 new cases of OS are

diagnosed yearly in the United States (9), and the rarity of this

tumor has greatly limited its study in human patients. In contrast,

canine osteosarcoma accounts for about 5% of all canine cancers

and the incidence of OS in dogs is estimated to be 10-30 times

higher than in people (though incidence rates vary across dog

breeds), with at least 10,000 new cases diagnosed in the US each

year by conservative estimates (10–12). Thus, the inclusion of dogs

with OS can greatly expand the available patient populations for

translational OS research.

Appendicular OS arising from the metaphysis of long bones is

the most common and best researched form in both people and

dogs and has a remarkably similar clinical presentation in both

species, including a similar bimodal age distribution (12, 13–15).

However, notable differences in affected sites are seen between these

species, with a majority of canine OS occurring in the thoracic limbs

while OS in people most commonly affects the long bones of the

pelvic limb (13, 15). Thoracic limb OS is associated with an

increased risk of metastasis and subsequently a more rapid and

aggressive disease course, and thus this apparent site predilection

makes dogs a beneficial model for studying the biology and

treatment of OS within the context of the more aggressive disease

course seen with thoracic limb osteosarcoma (13, 15, 16). The

histological subtypes of OS observed in dogs also closely parallel
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those observed in people (17–20), and the most common OS

subtypes in people are seen with similar prevalence in the dog

(13, 19–21). However, the prognostic importance of OS histological

subclassification in dogs is unknown and it is not a feature included

in the histological grading of canine OS (22). Additionally, reported

cases of juxtacortical (periosteal and parosteal) OS in dogs are rare,

and it is not known whether these surface OS subtypes carry an

improved prognosis as is documented in people (19, 23, 24).

Retrospective analyses indicate that metastatic disease in both

human and canine OS results in worse clinical outcomes.

Strikingly, over 80% of patients of both species are presumed to
Frontiers in Oncology 03
have micrometastases at diagnosis, despite a minority of these

patients having detectable metastatic disease (25, 26). Thus,

prevention and treatment of metastatic disease represents a

critical area for utilization of canine OS models to improve

survival rates which have been largely stagnant over the past

several decades for both species.

The molecular landscape of canine OS has been relatively well

characterized compared with other canine sarcomas. Comparative

genomic analysis of OS from dogs and people consistently identifies

striking similarities between these tumors, with one study finding

them indistinguishable by global gene expression signature (27).
FIGURE 1

Sustaining and bolstering existing comparative oncology research infrastructure for continued acceleration of sarcoma therapeutic discovery and
translation to clinical trial evaluation. Increasing comparative oncology research funding and industry investment in development of species-specific
molecular tools, paired with veterinary and medical collaborative sarcoma research, will enhance an already effective pathway for more predictive
vetting of novel preclinical agents and movement into human clinical trials. Evaluation of small molecule immunotherapies, novel molecular-
targeted agents, monoclonal/bi-specific antibodies, and adoptive cell therapies alone and in combination are likely to be especially informative to
the field. Created with BioRender.com.
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The genomic structural complexity in canine OS appears to parallel

that of human OS, with both patterns of localized somatic

hypermutation consistent with kataegis as well as complex

chromosomal rearrangements suggestive of chromothripsis

identified in canine OS tumors (28). Furthermore, multiple

studies corroborate genomic aberrations in both human and

canine OS converging on key shared tumorigenic pathways, with

both tumors characterized by a high prevalence of TP53 mutations

(28–31) and hyperactivated PI3K/MAPK signaling (28, 30–33).

While further exploration is warranted (and ongoing), the genetic

similarities between the canine and human tumors suggest rich

opportunities for utilization of canine OS models in the development

of new prognostication methods and personalized, targeted

therapeutics. Indeed, comparison of the genetic signatures of canine

and humanOS have led to identification of a pair of genes (CXCL8 and

SLC1A3) for which high expression in human tumors was linked with

poorer clinical outcome (27). The clinical significance of one of these

genes, CXCL8, on lung metastatic OS progression and response to

macrophage-targeted immunotherapeutic intervention was also

subsequently verified in two independent studies in people and dogs,

respectively (34, 35). Unlike many rodent tumor models, dogs with OS

also offer an opportunity to investigate tumor-immune interactions

within an immunocompetnt host, and because of this have proven

instrumental in identifying the mechanisms by which OS may

modulate local and global anti-tumor immune responses to promote

progression and metastasis (36–38). Additionally, though the general

principles of treatment protocols are similar across these species (39–

42), neoadjuvant or multi-drug adjuvant chemotherapeutic protocols

are infrequently pursued in dogs due to quality-of-life concerns in the

face of questionable clinical benefit. This makes dogs with OS a unique

patient population in which to assess immunologic targets and

therapies in the neo-adjuvant setting where they may demonstrate

greater prognostic and therapeutic benefit.
Vascular sarcomas

Angiosarcoma (AS) refers to a group of sarcomas which exhibit

differentiation toward vascular or lymphatic endothelial cells. These

are among the rarest of the sarcoma types in humans, comprising

less than 1% of all soft tissue sarcomas (43). The incidence of

hemangiosarcoma (HSA), the canine analog of AS, is estimated to

be 25 to 100 times higher than in people, and HSA accounts for 5%

of all non-cutaneous primary malignant neoplasms in dogs (15, 44).

However, it should be noted that while the human angiosarcoma

term encompasses multiple vascular sarcomas including

lymphangiosarcoma, these tumors are still denoted separately in

veterinary literature with hemangiosarcoma commonly described

while only 30 cases of lymphangiosarcoma have been reported since

this tumor was first documented in the dog in 1981 (45, 46). The

extremely rare and heterogeneous nature of AS has made

researching this tumor in human patients particularly

challenging, and treatment options for people with AS remain

limited and patient mortality high. The much higher incidence of

a similar tumor in dogs highlights an important opportunity for
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comparative research with the potential to generate novel

treatment strategies.

The clinical presentations of AS and HSA are similar with both

tumors diagnosed predominantly in older patients (43, 47).

However, the distribution of affected sites differs between dogs

and people, likely in part due to differences in environmental

exposures (44). UV light exposure and radiation treatment for

other cancer types (particularly breast cancer) are well-

documented risk factors for AS, and correspondingly this

neoplasm most frequently presents in the cutaneous and

subcutaneous tissues of the head, neck, and breast (48, 49). In

contrast, visceral HSA affecting the spleen or right cardiac atrium is

the most common presentation in the dog (47), though UV-light

exposure has also been implicated in the development of cutaneous

HSA in this species (50, 51). The pathologic features of HSA closely

parallel those of AS, with neoplastic cells characterized by variable

vascular differentiation and expression of endothelial-associated

markers CD34, CD31, and von Willebrand’s factor (52–57). A

histologic grading scheme has not been established for canine HSA,

but tumor stage and primary site appear to be useful grade-

independent prognostic factors for both species (58–62).

AS and HSA exhibit similarly aggressive biologic behavior with

highly infiltrative and invasive patterns of local growth and a high

risk of metastasis contributing to the poor clinical outcomes seen in

both species (44, 48–50). The 1-year survival rate in dogs who

underwent surgical resection followed by adjuvant chemotherapy is

only about 10% (63), and in humans the five-year survival rate is

only about 35% to 40% despite multi-modal standard-of-care

treatment with surgery followed by adjuvant radiotherapy and

chemotherapy (64–66). Though shorter survival times in dogs

with HSA likely also reflect differences in treatment intent and

stage at diagnosis, as in OS, the more rapid disease course of HSA in

this species allows for the assessment of clinical endpoints within an

accelerated timeline.

The cellular origins of both AS and HSA remain incompletely

understood, but recent genomic profiling of canine HSA has driven

paradigm shifts regarding the histogenesis of this tumor. Though

classically thought of as arising from transformed endothelial cells,

these data suggest a pluripotent bone marrow progenitor cell of

origin for HSA (67, 68). While ontogenic molecular studies have

been comparatively limited in human AS, the data also seem to

support a similar bone marrow-derived pluripotent progenitor or

early endothelial progenitor as a cell of origin in AS (69). A recent

whole exome sequencing study of 20 HSA patients, and 30 more in

a following study, identified multiple driver mutations shared with

AS, including NRAS, PLCG1, PIK3CA and TP53 mutations with

net activating effects on both the PI3K and MAPK signaling

pathways (70, 71). Another recent study utilizing whole exome

and RNA sequencing from a large cohort of Golden Retriever and

mixed breed dog HSA showed additional shared molecular drivers

including CDKN2A/B deletions and VEGFA, KDR, and KIT gain-

of-function mutations (72). The driver mutations of KDR, TP53

and PIK3CA collectively identified across these three canine studies

were also the primary recurrently mutated genes observed in an

analysis of 47 human AS tumors by Painter et al. (73) Molecular
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data from both human AS and canine HSA increasingly support the

presence of distinct molecular and functional tumor subtypes,

which likely reflect differences in both cell-intrinsic mutations

and influences from the tumor microenvironment and may have

implications for prognosis and personalized treatments (68, 70, 74).

Given the commonalities between HSA and AS within these

proposed molecular subtypes, molecular subtyping may prove a

promising means for overcoming disparate nomenclature schemes

and enhancing translation of research between canine HSA and

human AS.
Stromal soft tissue sarcomas

In canine patients, multiple histologic subtypes of sarcomas

arising from cutaneous and subcutaneous connective tissues are

grouped under a shared grading system and are referred to

collectively as soft tissue sarcomas (STS) (75, 76). Despite their

distinct phenotypes and histogenesis, certain tumor subtypes within

this grouping have very similar microscopic features, and

immunohistochemical testing is typically required for their

definitive diagnosis. Grade and mitotic index have been shown to

be prognostic for these tumors, but the clinical significance of

subtype in canine STS is less clear (75–78) and thus subtyping is

frequently not pursued given the added time and client cost

involved. In people, the term soft tissue sarcoma refers more

broadly to all sarcomas arising from non-bony tissues and

includes multiple sarcoma subtypes which are specifically

excluded from the canine STS grouping due to their overall more

aggressive biologic behavior in dogs (75, 77, 78). Furthermore,

classification of human soft tissue sarcomas is increasingly defined

by molecular and immunochemical testing not routinely available

in veterinary medicine (18). Thus, facilitating more granular

subtyping of canine STS, as well as clarification of the discordant

veterinary and medical nomenclature schemes will be necessary

prerequisites for fully leveraging this diverse collection of canine

tumors in future pre-clinical and clinical research. Utilization of

whole exome/genome and RNA sequencing technologies for

comprehensive identification of cancer somatic variants, gene

fusions, and transcriptomic signatures in canine STS should be a

priority of the field to address this gap and better define histogenesis

and molecular subcategories of these canine tumors which could

inform human research. In this review, we will use the term stromal

STS (sSTS) to collectively refer to the subset of human soft tissue

sarcomas with histotypes corresponding to those in the canine

STS grouping.

While the general histologic features are similar between canine

STS and human sSTS the distribution of histologic subtypes varies

between these species. In dogs, fibrosarcoma, peripheral nerve

sheath tumors, and perivascular wall tumors are most common

among STS for which subtype is reported. In contrast, liposarcoma

and undifferentiated pleomorphic sarcoma are the most commonly

reported sSTS in people (79, 80). As in canine STS, grade also

appears to be strongly predictive of clinical outcome in human sSTS

(80). Treatment principles for canine STS and human sSTS are
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similar, with wide surgical resection with complete histologic

margins pursued as the primary treatment of choice in patients of

both species (79–83). Adjuvant radiation and chemotherapy are

also used with variable reported benefit (81–86).

Molecular characterization of canine STS represents an area

where increased focus could overcome challenges posed by

differences in current classification and nomenclature schemes to

facilitate inclusion of these tumors in translational studies. For

example, dermatofibrosarcoma protuberans in people is

characterized by a pathognomonic COL1A1-PDGFB gene fusion

(87), and though this fibrosarcoma subtype is not recognized in

canine patients, RNA-seq analysis of a dermatofibrosarcoma

protuberans-like tumor from a dog revealed an equivalent

COL3A1-PDGFB fusion suggesting the presence of an analogous

canine tumor (88).

The genetic landscape of human malignant peripheral nerve

sheath tumors (MPNST) reveals recurrent themes of Ras/Raf

pathway activation and impairment of DNA repair and P53

regulation resulting from mutations in NF1 (a hallmark of the

inherited disorder neurofibromatosis type 1 which confers

increased risk of MPNST), BRAF and CDKN2A/B (89–91).

Limited genetic characterization of canine PNST indicate that a

subset also have a correlate to the activating BRAFV600E mutation

described in the human tumor (92), and alterations to the P53

regulatory system in the form of P35 mutations or MDM2

amplification have also been described in PNST in dogs (93).

Interestingly, chromosomal rearrangements resulting in loss of

heterozygosity in the CDKN2A/B cluster region similar to the

alterations in this region in human MPNST have also been

documented in two canine STS described as poorly differentiated

fibrosarcomas (94). The authors in this study do not state what

modalities beyond light microscopy were used in subtyping, and

given significant microscopic overlap between canine PNST and

fibrosarcoma, it is possible that these tumors may also represent

PNST with a similar mutational profile to human MPNST.

Liposarcoma is an uncommonly reported STS subtype in dogs,

but one for which histologic classification closely parallels human

classification. Several immunohistochemical studies in canine

liposarcoma demonstrate some similarities with the human

disease, including overexpression of MDM2 in well-differentiated

and de-differentiated variants. However these studies fail to provide

evidence for other histotype-characteristic genetic alterations used

in the diagnosis of myxoid and pleomorphic liposarcoma variants

in people (95, 96). More complete genomic characterization of

canine liposarcomas and other tumors within the canine STS

categorization would be beneficial to better define their potential

comparative applications.
Other soft tissue sarcomas

Other rarer sarcoma subtypes occurring in dogs including

gastrointestinal sarcomas (gastrointestinal stromal tumors (GIST)

and leiomyosarcomas) and rhabdomyosarcoma, require further

investigation but may also have potential applications as models
frontiersin.org
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for human disease. GIST and leiomyosarcoma are primary

gastrointestinal sarcomas which account for only around 1% of

GI malignancies in people (97, 98) but are reported to comprise up

to 30% of all gastrointestinal neoplasms in dogs (99). These tumors

are nearly indistinguishable microscopically, and prior to the

routine use of immunohistochemistry for gastrointestinal

biopsies, many GIST in both species were misdiagnosed as

leiomyosarcomas (100–102). GIST and gastrointestinal

leiomyosarcoma exhibit a range of biologic behavior, but

distinction between these tumors is clinically important in people

as activating mutations in exon 11 of the c-kit gene are implicated in

the pathogenesis of many GIST and contribute to remarkable

sensitivity of these tumors to tyrosine kinase inhibitors (103). As

with many other sarcomas, cytogenetic data for canine

gastrointestinal sarcomas are limited, but analogous activating c-

kit mutations have been identified in canine GIST (104). Limited

patient data has also demonstrated clinical benefit of the KIT-

targeted tyrosine kinase inhibitor toceranib in canine GIST

suggesting shared oncogenic mechanisms and therapeutic

sensitivities that may make canine GIST a useful model for the

human tumor.

Rhabdomyosarcoma refers to a group of malignant

mesenchymal neoplasms which exhibit varying degrees of skeletal

muscle differentiation. These neoplasms are rare in the veterinary

literature, though this apparent low prevalence may be partially due

to diagnostic challenges posed by the extreme variation in

phenotype, age of presentation, and cellular morphology in these

tumors (105). In people, rhabdomyosarcoma is the most common

soft tissue sarcoma affecting children and teens, and over 50% of

cases are diagnosed in children under 10 years of age (106).

Similarly, and in contrast with the previously discussed sarcomas,

canine rhabdomyosarcoma is also a disease primarily of young and

adolescent animals (105). Canine rhabdomyosarcomas are classified

using a scheme that is derived from human pathology, but which

utilizes only histologic appearance and does not incorporate the

immunohistochemical and molecular diagnostics that are now

standard in subclassification of rhabdomyosarcomas in people.

Based on this histologic classification scheme, the distribution of

rhabdomyosarcoma subclasses in the dog appears similar to people

(105, 106), suggesting that dogs with rhabdomyosarcomas may

represent a yet largely untapped patient population which shares

characteristics with the human rhabdomyosarcoma patient

population. We recently published a small retrospective study on

canine rhabdomyosarcoma which optimized immunohistochemical

labeling for the myogenic transcription factors myogenin and

MyoD1 in these tumors. This study provides a resource which

may increase identification of these tumors in the canine population

for future comparative biology investigations (107). To date only

one cytogenetic examination has been performed on a single cell

line derived from a canine pleomorphic rhabdomyosarcoma, which

did not reveal any cytogenetic abnormalities (108). Further genomic

characterization of canine rhabdomyosarcoma is needed to

determine if the molecular pathogenesis of these tumors is similar

to their human counterparts, with particular attention to the
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presence of PAX3/7-FHKR gene fusions, which are a hallmark of

the more aggressive alveolar rhabdomyosarcoma subclass in people

and have both diagnostic and prognostic utility (109–111).
Considerations for co-clinical
trial approaches in canine
sarcoma patients

The conception and implementation of co-clinical trials

approaches in translational oncology research has significantly

expanded over the last decade. This expansion has been driven by

technological advances which continue to provide an ever-

increasing understanding of the mutational landscape and key

genetic drivers of human cancer types. Our expanded

understanding of this genetic complexity has led to an

increasingly granular stratification of patients with a common

cancer histology into diverse molecular subtypes. Personalized

medicine through tailored therapeutic approaches targeting each

individual patient’s actionable molecular drivers will no doubt led

to additional clinical advances. However, the breadth and depth of

these advances, and the time it takes to achieve them, continues to

hinge entirely on effective pre-clinical modeling of the in vivo

biological complexity of human tumors.

In part, this effective pre-clinical modeling has been achieved

through significant advancements in 1) accessibility and feasibility

of obtaining, expanding, and utilizing patient-derived xenograft

(PDX) mouse models, and 2) insightful development and

refinement of compelling genetically engineered mouse models

(GEMMs) of human cancers. These pre-clinical in vivo models

allow an almost exact recapitulation of treatment protocols for

human clinical trial cancer patients in their GEMM or PDX

counterpart. This type of mirrored approach can inform strategies

and biomarkers for patient stratification, lead to the identification of

mechanisms of de novo and acquired drug resistance, and rapidly

evaluate drug combinations that overcome this resistance. For

certain tumor types, the success of this approach has

surmounted increasing cynicism of the basic and clinical

oncology research communities around small animal pre-clinical

cancer models. Still, these models are not without inherent

challenges and disadvantages. PDX models require the use of

immunodeficient mice, thus failing to recapitulate tumor-immune

interactions and evolution and precluding investigation of anti-

metastatic or immunomodulatory therapies. GEMMs alleviate

some of these issues via de novo tumor development in the

presence of an intact immune system, subsequent establishment

of a microenvironment with tumor-host interactions, and in some

models, spontaneous metastasis, but GEMMs can be limited in the

number of concurrent mutations, limiting their ability to fully

recapitulate the molecular heterogeneity of human tumors

(112, 113).

Spurred from these challenges is an increasingly renewed

interest in employing a similar comparative dog-human co-
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clinical approach (Figures 1, 2 and Table 1). This approach has

already proven to hold translational value and has the potential to

fill some of the gaps associated with other pre-clinical models.

Historically, the field of comparative oncology has provided the

blueprint for the successful utilization of naturally occurring

diseases in companion animals to conduct informative

translational research. Clinical trials in dogs with spontaneous

tumors were being conducted as early as the mid 1970s in

pioneering bone marrow transplant studies by Storb and

colleagues (114, 115). Other notable past advancements specific to

sarcomas include development of human limb-sparing surgical

techniques in dogs with osteosarcoma (116), and clinical

evaluation of the biologic response modifier and macrophage

immune stimulant liposomal muramyl tripeptide phosphatidyl

ethanolamine (L-MTP-PE) in dogs with osteosarcoma by

MacEwen et al., which provided key data supporting Phase II and

Phase III trials of this compound in human patients (117). A more

contemporary example of the dog-to-human pipeline includes drug
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immunotherapy in dogs with metastatic osteosarcoma (34, 118),

which has led to a Phase I trial in human patients (ClinicalTrials.gov

Identifier: NCT03900793). Table 1 provides a non-comprehensive

list of active canine trials as a sampling of the intensive ongoing

comparative oncology efforts to accelerate sarcoma therapeutic

development. Nonetheless, leveraging dogs with naturally

occurring tumors also presents its own unique set of barriers and

considerations. These include competing trials for highly

investigated tumor types like OS, which can result in bottlenecks

in patient enrollment and subsequent failure to meet the desired

timelines of funding sponsors, both industry and academic

investigator alike. A lack of canine species-specific reagents is

another gap which limits the ability of the comparative oncology

field to provide more valuable bio-correlative data to

pharmaceutical sponsors besides just clinical outcome (Figure 1).

Moreover, the type of perfectly matched therapeutic mirroring that

can be effectively accomplished between mouse and human patient
FIGURE 2

Integrating canine sarcoma trials in human oncology drug development. Considerations for the various types of clinical and biological data that can
be generated through trials in dogs with spontaneous sarcoma and where in the human clinical trial pipeline integration of these data may be
informative. Created with BioRender.com.
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is precluded by several hurdles in our canine patients. Many of the

investigational drugs being screened in human patients have not

undergone extensive toxicity and pharmacokinetic studies in dogs.

If they have, these have often been completed by private

pharmaceutical companies, and thus the necessary safety and

dosing data required to design a canine-human co-clinical trial is

often not publicly available or is entirely unattainable. While dose

finding studies of investigational therapeutics are often conducted

in dogs, this necessary prerequisite alone can undermine the time

and cost efficiency gained from employing the drug in a co-clinical

trial type approach. Furthermore, purely from a body size

standpoint, obtaining these investigational therapeutics for co-

clinical trial studies in dogs can be financially prohibitive when

compared to their murine counterpart, if an industry collaboration

is not established.
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academic physician-veterinarian research teams and the

pharmaceutical industry is something that must be increasingly

addressed in the comparative sarcoma research community. One

potential solution to this pressure point is the National Cancer

Institute’s (NCI) Cancer Therapy Evaluation Program (CTEP). The

long-established NCI Comparative Oncology Trials Consortium

(COTC) could work internally with the NCI Division of Cancer

Treatment and Diagnosis to develop a secondary function wherein

COTC could enter into collaborative agreements with

pharmaceutical companies similar to those of CTEP. This could

allow COTC, perhaps through CTEP's already established “Non-

clinical Use Request” avenue, to supply academic investigators of

human-canine veterinary cancer center consortium institutions

(e.g. The V Foundation Canine Oncology Research Consortium –
TABLE 1 Ongoing canine sarcoma trials that can inform human studies.

Canine
Sarcoma Type

Therapeutic Agent/Molecular
Target Study Objective Reference

Any
Ladarixin - oral, small molecule CXCR1/2

inhibitor
To determine whether co-administration of ladarixin can reduce

chemotherapy-associated side effects.
https://vet.tufts.edu/clinical-
trials

Primary
appendicular
osteosarcoma

Losartran/Toceranib/Ladarixin - Triple
drug oral small molecule therapy targeting

CCR2 monocytes (losartan), multiple
kinases (toceranib), and CXCR1 and 2

(ladarixin)

To determine whether this triple drug oral immunotherapy
combination given in the neo-adjuvant and adjuvant setting

demonstrates equivalent clinical benefit (defined by progression-
free and overall survival) to current adjuvant carboplatin

chemotherapy.

https://
www.csuanimalcancercenter.org/
current-clinical-trials/ https://
vet.tufts.edu/clinical-trials

Hemangiosarcoma Not Applicable
Development and validation of the utility of plasma cell-free

tumor DNA for early detection and genomic characterization of
hemangiosarcoma.

https://vet.tufts.edu/clinical-
trials

Primary
appendicular
osteosarcoma

Verdinexor - oral inhibitor of the nuclear
export function of XPO1

To determine the safety and tolerability of verdinexor in
combination with carboplatin chemotherapy.

https://www.vet.cornell.edu/
hospitals/clinical-trials-0

Primary splenic
hemangiosarcoma

Copanlisib - pan-class I phosphoinositide
3-kinase (PI3K) inhibitor

To determine the safety and efficacy of single agent PI3K
inhibition for treating hemangiosarcoma.

https://www.vet.upenn.edu/
research/clinical-trials-vcic/all-
clinical-trials

Osteosarcoma and
high grade soft
tissue sarcoma

BG34-200 (200 kDa oat-derived b-(1-3)-
(1-4)-glucan) - CD11b targeting myeloid

cell immune stimulant
To determine the safety and efficacy of BG34-200.

https://ccr.cancer.gov/
comparative-oncology-program/
trials

Primary
osteosarcoma

Novel near infrared imaging agent
Intraoperative detection of osteosarcoma surgical margins for

improved success rate of limb-sparing surgery.

https://www.vet.upenn.edu/
research/clinical-trials-vcic/all-
clinical-trials

Splenic
hemangiosarcoma

Propanolol - nonselective beta adrenergic
antagonist and repurposed immune

modulator via targeting of myeloid-derived
suppressor cells

To determine whether propranolol in combination with standard
of care doxorubicin chemotherapy can improve clinical outcome.

https://www.vet.upenn.edu/
research/clinical-trials-vcic/all-
clinical-trials

Soft tissue
sarcoma

NF-kB essential modulator (NEMO)-
binding domain (NBD) peptide inhibitor

of NF-kB

To evaluate NF-kB target modulation and associated
cytotoxicity.

https://www.vet.upenn.edu/
research/clinical-trials-vcic/all-
clinical-trials

Primary
appendicular
osteosarcoma

Vismodegib - hedgehog pathway inhibitor
via competitive inhibition of Smoothened

(SMO)

To evaluate safety and target modulation in combination with
surgery and carboplatin adjuvant chemotherapy.

https://
www.csuanimalcancercenter.org/
current-clinical-trials/

Lung metastatic
osteosarcoma

Defactinib - focal adhesion kinase (FAK)
inhibitor

To determine the safety, efficacy, and proof-of-target modulation
of defactinib in combination with losartan and toceranib in dogs

with metastatic osteosarcoma.

https://
www.csuanimalcancercenter.org/
current-clinical-trials/

Lung metastatic
osteosarcoma

Inhaled recombinant human IL-15
To determine the safety and efficacy of inhaled IL-15 in

combination with doxorubicin standard of care.

https://ccr.cancer.gov/
comparative-oncology-program/
trials
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CORC) with investigator brochure canine pharmacokinetic and

toxicity data and the desired investigational agent or active

pharmaceutical ingredient for compounding.

Despite these challenges, co-clinical trial designs in dogs with

spontaneous sarcomas can still significantly aid in pharmacokinetic

and pharmacodynamic based vetting of pre-clinical therapies

(Figure 2). Co-clinical trials may also provide equal or greater

efficiency and utility in 1) addressing the biology underlying

mechanisms of therapy response and sarcoma progression and

metastasis, and 2) in “high-risk high-reward” biomarker

evaluation or combination therapy clinical approaches that would

otherwise not be attempted in human patients, no matter how

positive the pre-clinical supportive data is. These suggestions are

not to say that investigations leveraging dogs as a surrogate for

human sarcomas should not be supported by strong pre-clinical

data from cellular and small animal models. Nor are they meant to

undermine the undeniable value of the canine patient for preclinical

assessment of safety, efficacy, pharmacokinetics , and

pharmacodynamics of novel therapeutic candidates, or in

correlative studies on parallel evaluation of biologic responses and

predictors to the therapeutic actions of these candidates.

A prime example of the type of “high-risk high-reward”

investigations that may best leverage dogs with spontaneous

sarcoma is metastasis biology research in osteosarcoma.

Metastasis accounts for greater than 90% of all cancer-related

mortality (119), and in OS, roughly 30% of patients with localized

disease at diagnosis die within 5 years due to metastasis (120). Lung

metastasis accounts for up to 90% of OS recurrence, occurring on

average 1.6 years after diagnosis and portending an unacceptable

20% 5-year survival (21, 121, 122). Like their human counterparts,

dogs with naturally occurring sarcomas develop metastasis

spontaneously over a still protracted but more chronologically

relevant scale and after successful first-line therapy for their

primary tumor. Thus, canine OS patients provide an incredible

window of opportunity to conduct high risk clinical studies in the

setting of pre-/micro-metastatic disease (Figure 2), an otherwise

ethically and technically prohibitive endeavor in their human

counterpart (8, 16, 123–126). These studies can inform new

biomolecular imaging techniques, screen for early and more

robust biomarkers of metastasis development, and test anti-

metastatic drug strategies in the adjuvant/minimal residual

disease setting. The latter is increasingly important as many anti-

cancer drugs screened in early phase clinical trials are often

evaluated in the setting of gross metastatic disease, despite their

initial pre-clinical efficacy signal first being validated in mouse

models of microscopic/minimal residual.

Stephen Paget’s 1889 “seed and soil” hypothesis on metastatic

organotropism continues to foresee one of the most intensive areas

of cancer research over the last two decades (127–130). Despite this

intensive focus on the mechanisms of “pre-metastatic niche”

formation in distant organs, mice are essentially the singular

model for this area of investigation, and there remain significant

obstacles to evaluating the clinical importance of pre-metastatic

niche formation in human cancer patients. Nonetheless,
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lung’s unique permissiveness to pre-metastatic priming,

highlighting it as an archetype of metastatic organotropism for

many solid cancers. Retrospective studies estimate pulmonary

metastases occur in 20-54% of patients who die from extra-

thoracic malignancies, and the lung is a top 3 metastatic site for 9

of the 18 most lethal cancers in the U.S (131). As summarized

above, canine OS is an established, well-recognized, and

translationally relevant animal model with the potential to rapidly

accelerate discovery in human OS (8, 16, 123, 124). Additionally,

the significantly high and early lung metastatic tropism of canine

OS represents a spontaneous large animal model with significant

potential to inform discoveries on basic mechanisms of lung

metastasis which are fundamentally applicable across other tumor

types. Given the uniquely strong tropism of OS cell dissemination to

the lung in both humans and dogs, insights gained into the

fundamental biology underlying lung metastasis development in

OS from investigations in dogs are likely to provide a translational

value equal to those comparative oncology trials solely focused on

pre-clinical vetting of novel therapeutic candidates. Moreover,

comparative studies addressing these more basic research

questions could help to better address potential concerns

regarding the predictability of the canine model for human

(osteo)sarcoma.

While remarkable clinical and biological similarities of human and

canine OS have been previously demonstrated, increasing knowledge

of the genomic complexity in human OS obtained through

investigations leveraging technological advances is beginning to

widen the gap between these parallel patient populations. If not

addressed, this widening gap in the molecular understanding of

human vs. canine OS could undermine the predictability of the

canine model for testing novel preclinical candidates more so than in

studies focused on the fundamental biology of sarcoma progression

and metastasis. However, work on addressing this knowledge gap has

already begun through establishment of the NCI’s Integrated Canine

Data Commons (https://caninecommons.cancer.gov/#/home), a

centralized, open access repository of clinical and genomic data from

spontaneous canine cancers, and by private biotechnology companies

such as nanoString® who have made significant investments in canine

comparative oncology research (Figure 1), such as development of the

nCounter canine IO® panel, and canine cancer atlas GeoMX® spatial

transcriptomics. Continued funding and expansion of the comparative

oncology molecular toolbox over the next decade will surely close this

gap and continue to illuminate key species similarities and differences

in sarcoma biology. To this end, another mechanism to incentivize

canine species-specific reagent development such as therapeutic and

diagnostic antibodies could be continued engagement between private

biotechnology companies and the academic investigators and core

facilities which are members or supporting laboratories of the NCI

Comparative Oncology Trials Consortium or PRECINCT (PRE-

medical Cancer Immunotherapy Network Canine Trials; https://

www.precinctnetwork.org/). Through an NIH-hosted workshop,

these groups of comparative oncology investigators could provide a

list of prioritized canine targets for which antibody reagents are needed.
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Subsequently, working through the channels of the Comparative

Oncology Program or Canine Cancer Immunotherapy Network,

NCI could produce a Small Business Innovation Research (SBIR)

request for proposals for companies to produce these antibody

reagents. Once produced, competitive supplemental funding could

then be provided to NCI PRECINCT members who submit detailed

proposals for validating the specificity and functionality of these

antibodies in a variety of immune assays.
The veterinary clinician-scientist
pipeline

Continued efforts in diversification of our cancer research

workforce training infrastructure is an indispensable prerequisite

for enhancing the quantity and quality of comparative sarcoma

research. To be successful in this approach, the next generation of

cancer researchers must include veterinary biomedical scientists

with training backgrounds in medical, surgical, and radiation

oncology, pharmacology, pathology, and immunology (Figure 1).

In addition to their veterinary training, these individuals need an

outlet, through partnerships with medical schools, to participate in

comparative training opportunities. In some cases, these

opportunities exist in the form of clinical trials design training

and MS certification programs, non-MD-restricted molecular

genetics fellowships, post DVM residency training with a specific

focus on lab animal medicine or pathology, and NIH Clinical and

Translational Science Awards (CTSA) sponsored training and

partnerships such as TL1 training grants and CTSA One Health

Al l iance (COHA) tra ining fe l lowships (https : / /www.

ctsaonehealthalliance.org/). Additional opportunities in areas such

as advanced molecular imaging, cross disciplinary training in

human molecular pathology and human investigative new drug

trial design would allow veterinary clinician scientists to bring these

skills back to our patients and better inform comparative oncology

trial design and laboratory correlative studies to maximize

extraction of data from these trials and increase their impact on

clinical sarcoma patient management.

Sustaining and bolstering cross-veterinary and -medical

institutional support in the form of expanded financial and

faculty training investment into specialized and clinically relevant

comparative and translational biomedical research fellowship

training programs for veterinary scientists would provide more

than just a pipeline of well-trained, diverse clinician scientists to

foster co-clinical trial approaches in large animal models.

Specifically, these fellowship programs would be separate from

the already successfully established, and in some cases National

Institutes of Health training grant funded, DVM-PhD and post-

DVM residency/PhD programs established at veterinary schools

across the USA. Instead, these fellowships could more closely

mirror MD post-residency clinical fellowships programs, which

often contain a multi-year research intensive component and in

many cases lead the trainee to pursue further post-doctoral research

following fellowship completion. In veterinary medicine,

establishment of these fellowship programs would serve to further
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oncology research landscape from its current partially siloed state,

into one that effectively blends and aligns the comparative oncology

trials work of veterinary clinicians and scientists with their human

colleague counterparts. Veterinary clinicians and scientists

completing these fellowships would likely emerge with strong

established collaborations with their human oncology research

counterparts, a key benefit that circumvents an otherwise not

infrequent barrier for junior veterinary clinician scientist faculty

looking to establish independent comparative oncology

research programs.

Similar to their medical counterparts, veterinary clinician-

scientists are invaluable members of increasingly necessary multi-

disciplinary cancer research teams. If and when these types of

translational research fellowships are established, recruiting,

retaining, and growing the number of clinically trained

veterinarians entering into these programs would in part require

a paradigm shift in how veterinary medical institutions themselves

value these post-DVM trainees. Based on the latest American

Veterinary Medical Association (AVMA) compensation report,

veterinarians entering academic residency or PhD programs

immediately after graduation would likely receive 40-50% of the

starting salary of their fellow classmates entering into private

clinical practice despite comparably high educational loan

burdens. When considering post-residency DVMs entering PhD

or the fellowship programs proposed here, this compensation gap

exponentially widens. Post-residency academic fellowship

programs that provide compensation at the NIH-specified post-

doctoral stipend levels, regardless of whether or not the program

holds, or the individual successfully competes for, an NIH

institutional training grant, would provide the necessary

institutional commitment needed to broaden the veterinary

clinician-scientist pipeline.

There exists already a strengthening network of key academic,

government, and non-profit stakeholders with an expanding

intellectual and financial investment in comparative sarcoma

research. For example, opportunities are already arising to share

ideas and data from members of canine clinical trials and

comparative oncology research consortia such as the Comparative

Oncology Trials Consortium, the Consortium for Canine

Comparative Oncology (c3o) between Duke Cancer Institute and

North Carolina State University College of Veterinary Medicine,

and NCI PRECINCT (which was created through the

aforementioned NCI Cancer Moonshot funding opportunities),

with that of their human counterparts such as the Children’s

Oncology Group Osteosarcoma Biology and Bone Tumor

Steering Committees. These collaborative opportunities occur

through 1) focused comparative oncology scientific sessions at

national meetings, 2) joint national meetings between canine and

human cancer moonshot grant awardees, 3) funding opportunities

requiring veterinary and medical scientist co-PI submissions (V

foundation for Cancer Research), and 4) inclusion of members of

both groups in monthly grant progress and update meetings of

these consortia. Additionally, non-profit groups such as Ethos

Discovery, the Osteosarcoma Institute, and Make It Better (MIB)
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Agents are fully invested in engaging academic investigators,

leveraging their collaborative networks, and raising funds to

support both human and canine sarcoma research.
Conclusion

Although clear gaps in the comparative molecular

characterization of the canine sarcoma types reviewed herein

remain, these temporary limitations should not preclude the

cancer research community’s embracement of these valuable

translational models. Leveraging dogs with spontaneous sarcomas

in co-clinical trial approaches will undoubtedly provide a valuable

and complementary source of high predictive value data to inform

clinical practice, and ultimately, improve both human and canine

sarcoma patient outcomes. Fully realizing the potential of this

comparative approach requires fortifying veterinary and human

medical oncology research partnerships alongside continued and

enhanced investment in training the next generation of diverse,

cross-disciplinary cancer researchers.
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