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Cancer consists of a group of diseases with the salient properties of an uncontrolled

cell cycle, metastasis, and evasion of the immune response, mainly driven by the

genomic instability of somatic cells and the physicochemical environment. Long

noncoding RNAs (lncRNAs) are defined as noncoding RNAs with a length of more

than 200 nucleotides. LncRNA dysregulation participates in diverse disease types

and is tightly associated with patient clinical features, such as age, disease stage, and

prognosis. In addition, an increasing number of lncRNAs have been confirmed to

regulate a series of biological and pathological processes through numerous

mechanisms. The lncRNA epidermal growth factor receptor antisense RNA 1

(EGFR-AS1) was recently discovered to be aberrantly expressed in many types of

diseases, particularly in cancers. A high level of EGFR-AS1 was demonstrated to

correlate with multiple patient clinical characteristics. More importantly, EGFR-AS1

was found to be involved in the mediation of various cellular activities, including cell

proliferation, invasion, migration, chemosensitivity, and stemness. Therefore, EGFR-

AS1 is a promising marker for cancer management. In this review, we introduce the

expression profile, molecular mechanisms, biological functions, and clinical value of

EGFR-AS1 in cancers.
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Introduction

Cancer has been a leading cause of disease-related mortality worldwide in the last decade,

with high morbidity and poor functional outcomes (1–5). Despite the existence of accurate

biopsy-based diagnosis methods and advances in anticancer drug development, cancer

recurrence and poor prognosis still cannot be avoided (6–9). The molecular pathogenesis

of various cancers has been persistently investigated and our understanding has expanded,

and the related findings help to accurately diagnose cancer and personalize treatment

(10–13).

Increasing evidences have shown that noncoding RNAs (ncRNAs) play essential roles in

tumor progression (14, 15). Long noncoding RNAs (lncRNAs) are a class of noncoding

RNAs with a length of over 200 nucleotides (16–18). An increasing number of lncRNA
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structures and functions have been discovered in recent years (19, 20).

Various lncRNAs have been discovered to be abnormally expressed in

many human diseases, especially cancers (21–24). Moreover,

emerging studies have revealed lncRNA involvement in various

cellular processes, including the cell cycle, differentiation, and

chromatin modification (25–28). Functional experiments confirmed

that lncRNAs drive their roles through diverse molecular

mechanisms, including interactions with proteins, binding to

miRNAs, and combining with chromatin-modifying complexes

(29–33). In view of their diverse signatures, lncRNAs exhibit a

specific advantage in classifying different types of disease as

biomarkers for diagnosis, prognosis, and treatment response (34–36).

As a 2.821-kb transcript from the antisense chain of epidermal

growth factor receptor (EGFR), lncRNA EGFR antisense RNA 1

(EGFR-AS1) belongs to the family of receptor tyrosine kinases ErbB

and is located on human chromosome 7p11.2 (chr7:55179750-

55188934 according to hg38) (Figure 1A) (Images in Figure 1A

from the GeneCards website, https://www.genecards.org/cgi-bin/

carddisp.pl?gene=EGFR-AS1&keywords=EGFR-AS1). Numerous

articles have pointed out that the aberrant expression of EGFR-AS1

is involved in the progression of diverse diseases, such as lung cancer

(37–40), cervical cancer (41, 42), glioma (43, 44), bladder cancer (45,

46), kidney cancer (47, 48), head and neck cancer (49–51), gastric

cancer (52), colorectal cancer (53), liver cancer (54), uterine cancer

(55), preeclampsia (56), gestational diabetes mellitus (57), and

cryptorchidism (58). EGFR-AS1 is also crucial in physiological

processes, including cell migration, invasion, multiplication, and

drug sensitivity. High EGFR-AS1 is closely correlated with a poor

prognosis and adverse clinical features, such as malignant lymphatic

metastasis status, advanced tumor stage, and large tumor size.

Moreover, EGFR-AS1 was recommended to be utilized to evaluate

cancer prognosis and the efficacy of chemotherapies and has

promising diagnostic performance in different diseases. This review

mainly focused on the correlation of EGFR-AS1 expression with the

clinicopathological features and prognosis of patients, its functions in

regulating cellular processes, and its promising clinical applications.
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Expression and functions of EGFR-AS1
in human cancers

EGFR-AS1 was recently shown to be upregulated in diverse types of

cancers, including lung cancer (37–40), cervical cancer (41, 42), glioma

(43, 44), bladder cancer (45, 46), kidney cancer (47, 48), head and neck

cancer (49–51), gastric cancer (52), colorectal cancer (53), liver cancer

(54), and uterine cancer (55) (Figure 1B). Numerous studies have

indicated that high EGFR-AS1 expression is closely correlated with

multiple clinical characteristics, including tumor size, clinical stage,

vascular invasion, portal vein thrombosis, cumulative recurrence (CR),

lymph node metastasis, overall survival (OS), disease-free survival (DFS),

and recurrence-free survival (RFS) (Table 1). More importantly, EGFR-

AS1 participates in cancer progression via regulation of biological

processes, such as cell proliferation, migration, invasion, and even drug

response (Table 2). In this review, we mainly illustrated the

understanding of EGFR-AS1 in terms of its expression, correlation

with clinicopathological characteristics, biological roles, and

relevant mechanisms.

Lung cancer

Several studies reported that EGFR-AS1 was overexpressed in

lung tissues and cell lines (A549, NCI-H460, NCI-H1299, NCI-H358,

HCC827, NCH-H23, and NCI-H1650). High expressed EGFR-AS1

was strongly associated with poor CR and OS, large tumor size, and

advanced clinical stage. In addition, EGFR-AS1 was functionally

proven to enhance the proliferation, chemotherapy resistance,

invasion, and stemness abilities of lung cancer cells and the tumor

growth of mouse xenografts (37–40).
Cervical cancer

EGFR-AS1 expression was increased in cervical cancer tissues and

different cell lines. Previous research indicated that EGFR-AS1
FIGURE 1

The expression and potential roles in cancer types. (A) Chromosomal location of EGFR-AS1. (B) EGFR-AS1 was overexpressed in lung cancer, cervical
cancer, glioma, bladder cancer, kidney cancer, head and neck cancer, gastric cancer, colorectal cancer, liver cancer, and uterine cancer.
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contributes to the progression of cervical cancer by promoting the

proliferation, and invasion of SiHa and CaSki cells (41, 42).

Glioma

In glioma, EGFR-AS1 expressionwas elevated in tissues andU87, U251,

MG, and T98 G cells. EGFR-AS1 exerts its oncogenic roles through the

promotion of cell migration, invasion, apoptosis, and drug resistance in U87

and U251 cells and through the promotion of xenograft growth (43, 44).
Frontiers in Oncology 03
Bladder cancer

High EGFR-AS1 levels were observed in bladder cancer HT-1197,

5637, and T24 cells as well as tissues. Increased EGFR-AS1 expression

indicated a poor patient prognosis and unfavorable features in terms

of tumor size, stages, grades, and lymph node metastasis.

Functionally, EGFR-AS1 facilitates cell proliferation and invasion

and tumor growth and metastasis, thus promoting bladder cancer

progression (45, 46).
TABLE 1 EGFR-AS1 expression and clinical characteristics in cancers.

Disease type Expression Clinical characteristics Ref.

lung cancer overexpression CR, OS, tumor size, and clinical stage (37–40)

cervical cancer overexpression / (41, 42)

glioma overexpression / (43, 44)

bladder cancer overexpression OS, unfavorable tumor size, stages, grades, and lymph node metastasis (45, 46)

renal cancer overexpression OS, RFS, DFS, tumor size, Fuhrman grade, TNM stage, erlotinib resistance, and distant metastasis (47, 48)

head and neck cancer overexpression / (49–51)

gastric cancer overexpression tumor size (52)

colorectal cancer overexpression OS, tumor grade, tumor status, lymph node metastasis, and vascular invasion (53)

liver cancer overexpression portal vein thrombosis, and lymph metastasis (54)

uterine cancer overexpression / (55)
fronti
TABLE 2 Functions and mechanisms of EGFR-AS1 in cancers.

Disease
type

Role Cell lines Functions Related mechanisms Ref.

lung cancer tumor
promoter

A549, NCI-H460, NCI-H1299, NCI-H358,
HCC827, NCH-H23, and NCI-H1650

cell proliferation, chemotherapy
resistance, invasion, and stemness

miR-524-5p, DRAM1, miR-223, IGF1R,
AKT, HIF2A, FOXP3, and Notch1 (34–

37)

cervical
cancer

tumor
promoter

SiHa, CaSki, ME-180, and C4-1 cell proliferation, migration, and
invasion

H3K27ac, miR-2355-5p, ACTN4, and
WNT pathway

(38,
39)

glioma tumor
promoter

U87, U251, MG, and T98 G cell migration, invasion, apoptosis,
and drug resistance

miR-133b, and RACK1 (40,
41)

bladder
cancer

tumor
promoter

HT-1197, 5637, and T24 cell proliferation, and invasion miR-381, and ROCK2 (42,
43)

renal cancer tumor
promoter

786O, OSRC-2, RCC4, ACHN, A498, and
KETR-3

cell proliferation, drug sensitivity, and
invasion

HuR, and EGFR (44,
45)

head and
neck cancer

tumor
promoter

KYSE-30, EC109, NCC-HN19, NCC-HN64,
NCC-HN1, and NCC-HN43

cell invasion, and migration miR-145, and ROCK1
(46–
48)

gastric
cancer

tumor
promoter

SGC7901, BGC823, MGC803, and MKN-28 cell proliferation EGFR, and PI3K/AKT pathway (49)

colorectal
cancer

tumor
promoter

/ / miR-133b, EGFR, and STAT3 (50)

liver cancer tumor
promoter

SMMC-7721, LM-9, Huh-7, and HepG2 cell invasion, and proliferation EGFR (51)

uterine
cancer

tumor
promoter

SK-LMS-1, and SK-UT-1 T-cell infiltration, and immune escape EGFR, MYC, and PD-L1 (52)
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Renal cancer

EGFR-AS1 overexpression was also discovered in renal cancer

tissues and 786O, OSRC-2, RCC4, ACHN, A498, and KETR-3 cells.

A high level of EGFR-AS1 was related to unfavorable features in terms

of tumor size, Fuhrman grade, TNM stage, erlotinib resistance, distant

metastasis, OS, RFS, and DFS. Additionally, EGFR-AS1 stimulated the

proliferation, erlotinib resistance, and invasion of 786-O and A498 cells

and lung metastasis of renal cancer cells in mice (47, 48).

Head and neck cancer

Multiple studies have revealed the upregulation of EGFR-AS1 in

the tumor tissues and cells of head and neck cancer, including oral

squamous cell carcinoma and esophageal squamous cell carcinoma

(ESCC) (49–51). EGFR-AS1 was also demonstrated to promote the

invasion and migration of esophageal squamous cell carcinoma cells

(KYSE-30 and EC109) and thus achieved its pro-oncogenic effect (49).
Other cancers

In addition, EGFR-AS1 expression was upregulated in gastric

cancer tissues and SGC7901, BGC823, MGC803, and MKN-28 cells.

High EGFR-AS1 expression was remarkably associated with larger

tumor size and promoted MGC803 and SGC-7901 cell proliferation

as well as mouse tumor growth (52). In colorectal cancer, increased

EGFR-AS1 levels reflect adverse patient features in terms of tumor

grade, tumor status, lymph node metastasis, vascular invasion, and

outcomes (53). EGFR-AS1 overexpression was also discovered in liver

cancer tissues and a various of HCC cell lines and was closely

correlated with lymph metastasis (54). In vivo and in vitro
Frontiers in Oncology 04
experiments validated that EGFR-AS1 promotes the invasion and

proliferation of Huh-7 liver cells, resulting in the development of liver

cancer (54). Additionally, EGFR-AS1 was upregulated in uterine

cancer SK-LMS-1 and SK-UT-1 cells as well as tissues. EGFR-AS1

exhibited an oncogenic effect in uterine cancer by suppressing T-cell

infiltration and motivating immune escape and tumor growth (55).
The mechanism of EGFR-AS1 in
human cancers

Multiple mechanistic studies have reported that lncRNAs

function as tumor promoters through the regulation of a series of

biological processes of cancers, such as cell proliferation, apoptosis,

invasion and migration (22, 24, 28, 59, 60). In this section, we

summarize the major biological mechanisms of EGFR-AS1 during

cancer progression.

Uncontrolled cell proliferation causes malignant transformation

and ultimately tumorigenesis, which has long been a hotspot in cancer

research (61–65). Additionally, aberrantly activated cell migration

and invasion are responsible for tumor expansion into the adjacent

tissues, which accounts for more than 90% of cancer-related deaths

(66–69). The understanding of the molecular mechanisms underlying

dysregulated cellular processes may shed light on the improvement of

cancer management (70–74). As revealed by multiple studies, EGFR-

AS1 participates in the mediation of diverse cellular activities through

interactions with its target molecules. In lung cancer, EGFR-AS1

inhibited miR-524-5p and rescued DRAM1 expression and therefore

promoted the invasion of HCC827 and NCI-H1650 cells (37). EGFR-

AS1 was also indicated to enhance the proliferation and

chemotherapy resistance of NCI-H1299 and NCI-H358 cells via the

miR-223/IGF1R/AKT signaling pathway (39). In addition, previous

research reported that nicotine-derived nitrosamine ketone (NNK)
FIGURE 2

In lung cancer, EGFR-AS1 enhanced cell proliferation, chemotherapy resistance, invasion, and stemness via the miR-524-5p/DRAM1 axis, miR-223/IGF1R/
AKT signaling pathway, and HIF2A/FOXP3/Notch1 axis.
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downregulated EGFR-AS1 levels and then elevated HIF2A and

FOXP3 expression and promoted Notch1-mediated enhancement

of cancer cell stemness (40) (Figure 2). In cervical cancer, H3K27

acetylation-activated EGFR-AS1 interacts with miR-2355-5p and

activates the ACTN4-mediated WNT pathway to promote the

proliferation, migration, and invasion of SiHa and CaSki cells (42).

It was also shown in glioma U87 and U251 cells that EGFR-AS1

promotes cell migration and invasion by sponging miR-133b to

facilitate RACK1 expression (43). In bladder cancer, EGFR-AS1

accelerates cell proliferation and invasion in the T24 and 5637 cell

lines by increasing the expression of EGFR (45). EGFR-AS1 also

sponges microRNA-381 to elevate ROCK2 levels, which promotes

bladder cancer HT-1197 cell invasion and migration (46). Moreover,

EGFR-AS1 enhances the cell proliferation and invasion abilities of

renal cancer 786-O and A498 cells through the enhancement of HuR-

mediated EGFR expression (48). In esophageal squamous cell

carcinoma, EGFR-AS1 combines with miR-145 and increases

ROCK1 expression to increase the rates of KYSE-30 and EC109 cell

invasion and migration (49). EGFR-AS1 was also proven to stabilize

EGFR expression via the EGFR-dependent PI3K/AKT pathway and

to facilitate the proliferation of MGC803 and SGC-7901 gastric cancer

cells (52). In colorectal cancer, EGFR-AS1 exerts a pro-oncogenic

effect through the miRNA-133b/EGFR/STAT3 axis (53). EGFR-AS1

also decreases EGFR levels to enhance the invasion and proliferation

abilities of Huh-7 liver cancer cells (54). Moreover, EGFR-AS1

combines with EGFR to stimulate MYC and subsequent PD-1

expression, achieving uterine cancer cell proliferation (55).
Clinical application of EGFR-AS1 in
human cancers

Mounting evidence indicates that lncRNAs play pivotal roles in

the different stages of cancer progression and possess considerable
Frontiers in Oncology 05
potential for clinical diagnosis, prognosis evaluation, and even

treatment (23, 75–77) (Figure 3). Concerning its broad

participation in the regulation of diverse cellular processes, EGFR-

AS1 cloud be a promising novel biomarker for disease diagnosis,

treatment and prognosis prediction. For example, given the

overexpression of EGFR-AS1 in lung cancer patient plasma, plasma

EGFR-AS1 was regarded as a noninvasive marker for cancer diagnosis

as well as an independent prognostic predictor for the CR and OS of

lung cancer patients (39). Xu et al. further indicated that EGFR-AS1

expression has an inverse relationship with the response to cisplatin

and gemcitabine (39). EGFR-AS1 was also experimentally validated

by Nath A et al. as a predictive marker of lung cancer patient response

to anti-EGFR drugs such as erlotinib (38). Similarly, high EGFR-AS1

levels could differentiate bladder cancer tissue from adjacent normal

tissues with a high AUC value of 0.845. Kaplan–Meier analysis also

suggested that increasing EGFR-AS1 expression in bladder cancer was

markedly associated with poor outcomes in terms of factors such as

DFS and OS (45). As an independent prognostic factor for renal

cancer patients, EGFR-AS1 was demonstrated to regulate sensitivity

to the EGFR inhibitor erlotinib/Tarceva (ERLO) (47, 48). Survival

curves for esophageal squamous cell carcinoma showed that the 5-

year survival rate of patients in the EGFR-AS1 overexpression group

was distinctly decreased (49). In oral squamous cell carcinoma,

EGFR-AS1 knockdown was proven to reverse patient resistance to

tyrosine kinase inhibitors (50). Similar results regarding the potential

of EGFR-AS1 for disease diagnosis and prognosis were found in

colorectal and liver cancer (53, 54).
Conclusions

EGFR-AS1 was found to be overexpressed in diverse cancers,

including lung cancer, cervical cancer, glioma, bladder cancer, kidney

cancer, head and neck cancer, gastric cancer, colorectal cancer, liver
FIGURE 3

The clinical applications of EGFR-AS1.
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cancer, and uterine cancer. Upregulation of EGFR-AS1 was reported

to be closely correlated with unfavorable clinicopathological

characteristics such as tumor stage and distant metastasis as well as

a poor prognosis in patients with multiple cancers. In vitro and in vivo

research elucidated the molecular mechanisms of EGFR-AS1 in

cancer-related biological processes, including cell proliferation,

invasion, and migration, which mainly involve interaction with its

target molecules. Regarding the exploration of its clinical value,

EGFR-AS1 was validated to function as a sensitive indicator of

cancer diagnosis, prognosis, and treatment response in several

cancer types. Further studies clarifying the in-depth mechanisms of

EGFR-AS1 in cancer progression and validating the efficacy and

safety of EGFR-AS1 application in cancer management

are warranted.
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