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University, Jinan, China, 2Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital
Affiliated to Shandong First Medical University, Jinan, China
Background: Interferon regulatory factors (IRFs) played complex and essential

roles in progression, prognosis, and immunemicroenvironment in clear cell renal

cell carcinoma (ccRCC). The purpose of this study was to construct a novel IRFs-

related risk model to predict prognosis, tumor microenvironment (TME) and

immunotherapy response in ccRCC.

Methods: Multi-omics analysis of IRFs in ccRCC was performed based on bulk

RNA sequencing and single cell RNA sequencing data. According to the

expression profiles of IRFs, the ccRCC samples were clustered by non-

negative matrix factorization (NMF) algorithm. Then, least absolute shrinkage

and selection operator (LASSO) and Cox regression analyses were applied to

construct a risk model to predict prognosis, immune cells infiltration,

immunotherapy response and targeted drug sensitivity in ccRCC. Furthermore,

a nomogram comprising the risk model and clinical characteristics was

established.

Results: Twomolecular subtypes with different prognosis, clinical characteristics

and infiltration levels of immune cells were identified in ccRCC. The IRFs-related

risk model was developed as an independent prognostic indicator in the TCGA-

KIRC cohort and validated in the E-MTAB-1980 cohort. The overall survival of

patients in the low-risk group was better than that in the high-risk group. The risk

model was superior to clinical characteristics and the ClearCode34 model in

predicting the prognosis. In addition, a nomogramwas developed to improve the

clinical utility of the risk model. Moreover, the high-risk group had higher

infiltration levels of CD8+ T cell, macrophages, T follicular helper cells and T

helper (Th1) cells and activity score of type I IFN response but lower infiltration

levels of mast cells and activity score of type II IFN response. Cancer immunity

cycle showed that the immune activity score of most steps was remarkably

higher in the high-risk group. TIDE scores indicated that patients in the low-risk

group were more likely responsive to immunotherapy. Patients in different risk
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groups showed diverse drug sensitivity to axitinib, sorafenib, gefitinib, erlotinib,

dasatinib and rapamycin.

Conclusions: In brief, a robust and effective risk model was developed to predict

prognosis, TME characteristics and responses to immunotherapy and targeted

drugs in ccRCC, which might provide new insights into personalized and precise

therapeutic strategies.
KEYWORDS

interferon regulatory factors, clear cell renal cell carcinoma, tumor microenvironment,
immunotherapy, drug sensitivity
Introduction

Clear cell renal cell carcinoma (ccRCC) is the most common

histological subtype of renal cell carcinoma and accounts for

approximately 80%-90% of cases (1). Radical nephrectomy

remains the effective option for localized ccRCC, however, nearly

30% of patients develop distant metastatic or recurrence after

surgery (2, 3). TKIs-targeted and mTOR-targeted therapies have

been widely adopted, but the clinical benefits are limited (4). In

recent years, immune checkpoint inhibitors (ICIs) therapy targeting

PD-1/PD-L1 and/or CTLA-4 has made significant breakthroughs in

ccRCC (5, 6). However, the therapeutic response rate of ICIs in

ccRCC remains poor (7). Despite the combination treatment of ICIs

and targeted therapeutic drugs may improve the response rate,

these patients receiving the combination therapy often suffer from

adverse events (5, 8, 9). Moreover, ccRCC exhibits extremely high

heterogeneity , so the responses and prognoses after

immunotherapy in patients with the same degree of progression

vary extensively (10). Therefore, it is essential to explore the

heterogeneity of the ccRCC patients and develop novel

biomarkers or therapeutic targets to predict the prognosis and

improve ICIs therapeutic efficacy, thereby optimizing

immunotherapy for ccRCC.

Interferon regulatory factors (IRFs), which comprise nine gene

family members (IRF1, IRF2, IRF3, IRF4, IRF5, IRF6, IRF7, IRF8 and

IRF9), are a family of transcription factors that regulate the

transcription process of interferons by acting at their gene sites

(11). Cumulative evidences revealed IRFs played critical roles in the

regulation of cell cycle, cell differentiation, cell apoptosis and cancer

immune responses (11). Multiple studies suggested that IRFs played

complex and essential roles in progression, prognosis, and immune

microenvironment in ccRCC. Kong et al. reported that PD-L1

expression in ccRCC cells was induced by IFNg stimulation through

activation of JAK2/STAT1/IRF1 signaling (12). In addition, the high

expression of IRF3 and IRF4 was found to be significantly associated

with the advanced clinical stage and poor prognosis in ccRCC (13,

14). Moreover, Bai et al. found high expression of IRF5 was

significantly associated with poor overall survival (OS) and

recurrence free survival (RFS) in ccRCC (15). Furthermore, Ma
02
et al. revealed that IRF6 overexpression could attenuate

proliferation, migration and invasion of ccRCC cells by

downregulating the KIF20A expression (16). IRF8 expression by

tumor-associated macrophages (TAMs) was negatively associated

with tumor stage and positively correlated with prognosis in ccRCC

patients (17). As a component of IFN-stimulated gene factor 3

(ISGF3), IRF9 expression in ccRCC cells was negatively associated

with tumor growth (18). The above results indicated that IRFs played

a diverse regulatory role in the oncogenesis and progression of ccRCC.

Cumulative evidences showed that carcinogenesis and progression of

cancer was the consequence of the interaction of multiple genes and/

or signal pathways (19). A single gene as biomarkers may be not

sufficient to accurately predict prognosis and estimate immune status

in ccRCC. Hence, we utilized all IRF family members to construct a

novel risk model to provide new insights into predicting prognosis

and promoting the individualized immunotherapy.

In our study, we classified ccRCC patients into different

molecular subtypes based on IRFs and constructed a novel risk

model. Moreover, we estimated the clinical performance of this risk

model in terms of prognosis, immune microenvironment, response

to immunotherapy and targeted drug sensitivity.
Materials and methods

Ethical statement

This study was approved by the Ethical Committee of Shandong

Provincial Hospital Affiliated to Shandong First Medical University

(SWYX: NO.2021-277). Written informed consent was obtained

from all patients.
Data preparation

Transcriptomic RNA (HTseq-FPKM) including 539 ccRCC

tissues and 72 adjacent nontumor tissues with clinical

information were acquired from The Cancer Genome Atlas

(TCGA) database. The gene annotation of the gene transfer
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format (GTF, release 37, GRCh38.p13) file downloaded from

GENECODE (http://gencodegenes.org) was used to annotate gene

symbols. Somatic mutation data and copy number variation (CNV)

data of TCGA-KIRC patients were downloaded from the USUC

Xena (https://xena.ucsc.edu). In addition, three gene expression

profiles of the GSE40435, GSE53757 and GSE66272 datasets with a

total of 400 samples were downloaded from the Gene Expression

Omnibus (GEO) database. After the batch effects were corrected

using “sva” R package, the three datasets (GSE40435, GSE53757 and

GSE66272) were merged into a single dataset. The single-cell RNA-

sequencing (scRNA-seq) raw count files of the GSE156632 dataset

was also obtained from the GEO database. The E-MTAB-1980

cohort comprising 101 ccRCC patients with clinical data was

obtained from the EMBL-EBI database (https://www.ebi.ac.uk/).
scRNA-seq data analysis

The 10× scRNA-seq data was converted to Seurat object using

“Seurat” R package. The clusters with cells less than 3, cells that were

detected less than 50 genes and cells that expressed more than 5% of

mitochondrial genes were removed. Principal component analysis

(PCA) was performed using the top 1500 most variable genes. The

“FindNeighbors” and “FindClusters” functions were used for cell

clustering analysis based on the top 15 principal components (PCs).

The “FindAllMarkers” function was applied to identify marker genes

of different cell clusters based on the threshold of FDR< 0.01 and |

log2FC| > 1. Furthermore, cluster annotation was performed to

recognize different cell type using “SingleR” package.
Differential expression analysis of the
IRF family members and gene-gene
interaction network

The mRNA expression levels of the IRF family members in

non-paired samples and paired samples were analyzed using

Wilcoxon rank-sum test and Wilcoxon signed-rank test

respectively based on the TCGA-KIRC dataset. The mRNA

expression levels of the IRF family members between ccRCC

samples and normal samples were validated based on the GEO

dataset using the Wilcoxon signed-rank test. In addition, UALCAN

(http://ualcan.path.uab.edu) was used to analyze the protein

expression levels of IRF family members between ccRCC samples

and normal samples according to data from the Clinical Proteomic

Tumor Analysis Consortium (CPTAC). P< 0.05 was considered

statistically significant. The correlation analysis of the IRF family

members was performed on basis of their mRNA expression data

from the TCGA-KIRC dataset.
Prognostic values of the IRF family
members

Kaplan-Meier (KM) survival curves were plotted to evaluate OS

of the IRF family members in ccRCC based on the optimal cutoff
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value using “survival” R package. A receiver operating-

characteristic (ROC) curve was plotted using the “pROC” R

package, and the area under curve (AUC) was calculated to

evaluate diagnostic capability of the IRF family members.
Identification of molecular subtypes based
on IRF family members

Based on the expression profiles of IRF family members, non-

negative matrix factorization (NMF) with “brunet” method for 10

iterations was performed to cluster the TCGA-KIRC samples. The

number of clusters was set as 2 to 10 and the average contour width

of the common member matrix was determined using the “NMF” R

package. The minimum number of each subset was set as 10. Then,

the optimal number of clusters was determined according to

cophenetic, dispersion and silhouette indexes. KM survival curve

was used to explore the difference of OS between the different

molecular subtypes. Besides, the difference in mRNA expression of

IRF family members between the different molecular subtypes was

analyzed. Differentially expressed genes (DEGs) between different

molecular subtypes were identified using the “limma” R package

with the threshold of FDR< 0.05 and |log2FC| > 1.
Gene set variation analysis (GSVA) and
functional enrichment analysis

GSVA was applied to explore the difference in biological

pathways between the different molecular subtypes through

“GSVA” R package. The gene sets of “c2.cp.kegg.v2022.

1.Hs.symbols.gmt” were obtained from the MSigDB database.

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathway enrichment analyses were performed

with the “clusterprofiler”, “org.Hs.eg.db”, “enrichplot” and

“circlize” R packages. The enrichment categories were considered

as statistically significant if a false discovery rate (FDR)< 0.05.
Construction and validation of an IRFs-
related prognostic model

Subsequently, the prognostic-related DEGs were identified by

univariate Cox regression analysis based on the TCGA-KIRC

cohort (p<0.01). To avoid the overfitting risk, least absolute

shrinkage and selection operator (LASSO) Cox regression analysis

was performed to narrow down the candidate genes using the

“glmnet” R package. Finally, multivariate Cox regression analysis

was conducted to determine the target genes for constructing an

IRFs-related prognostic model. The risk score was calculated as

follows: risk score = o
n

i=1
 Expi � coefi(where n, Expi and coefi represent

the number of genes, the expression of each gene, and risk

coefficient of each gene, respectively). According to the median

value of the risk score, patients were divided into the high-risk and

low-risk groups. Survival analysis was conducted to explore

differences in the OS between the high-risk and low-risk groups.
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Additionally, time-dependent ROC curve using “timeROC” R

package was plotted, and the 1-, 3- and 5-year AUCs were

calculated to evaluate the sensitivity and specificity of the

prognostic model. PCA and t-distributed stochastic neighbor

embedding (t-SNE) were performed to explore the distribution of

the two risk groups. The E-MTAB-1980 cohort was used as an

external independent cohort to validate the prognostic model.

Furthermore, we evaluated the relationships between the risk

score and clinical characteristics. Univariate and multivariate Cox

regression analyses were used to evaluate whether the risk score

could serve as an independent prognostic biomarker. A nomogram

combining the risk score and clinical characteristics (age, gender

and stage) was constructed to predict the 1-, 3- and 5-year OS of

ccRCC patients. To evaluate the predictive accuracy of the

nomogram, the calibration curve and concordance index (C-

index) curve were plotted. Decision curve analysis (DCA) was

performed to evaluate the clinical utility and net benefit of

the nomogram.
Evaluation of immune characteristics

To explore the immune status in ccRCC, the ESTIMATE

algorithm was used to calculate the stromal score and immune

score of each sample. The abundance of 22 immune cells was

estimated using the CIBERSORT algorithm. The infiltration levels

of 16 immune cells and activity scores of 13 immune-related

pathways were calculated by the single sample gene set

enrichment analysis (ssGSEA). The cancer immunity cycle

including seven steps could reflect anticancer immune response in

tumor microenvironment (TME) (20). Therefore, we compared the

differences in the immune activity scores of the seven steps between

the high-risk and low-risk groups based on the Tracking Tumor

Immunophenotype (TIP; http://biocc.hrbmu.edu.cn/TIP/index.jsp)

database. Furthermore, tumor mutation burden (TMB) of each

patient in the TCGA-KIRC cohort was calculated. The difference in

TMB between the high-risk and low-risk groups was compared, and

the correlation between the risk score and TMB was also analyzed.
Assessment of immunotherapy response

To evaluate the immunotherapy response between the high-risk

and low-risk groups, the tumor immune dysfunction and exclusion

(TIDE; http://tide.dfci.atherard.edu/) was used to calculate the

TIDE score of each patient according to myeloid-derived

suppressor cell (MDSC), macrophage M2, T cell Dysfucntion and

Exclusion (21). Moreover, the T-cell inflammatory signature (TIS)

score was calculated based on the mean value of a log2-scaled

normalized expression of 18 signature genes (22). The ROC curve

was conducted to compare the predictive ability of risk model,

TIDE and TIS using “timeROC” R package.
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Drug sensitivity analysis

Based on the Genomics of Drug Sensitivity in Cancer (GDSC;

https://www.cancerrxgene.org/) database, the half-maximal

inhibitory concentration (IC50) of chemotherapeutic drugs was

estimated using the “oncoPredict” R package. Thereafter, the

difference in IC50 between the high-risk and low-risk groups was

analyzed by Wilcoxon signed-rank test.
RNA extraction and quantitative real-time
polymerase chain reaction (qRT-PCR)

20 pairs of ccRCC tissues and adjacent normal tissues were

collected and stored at -80°C for qRT-PCR. Total RNA was

extracted from 20 pairs of ccRCC tissues and adjacent normal

tissues using TRIzol (TaKaRa, Japan) in accordance with the

manufacturer’s instructions. The T100 Thermal Cycler (Bio-Rad,

USA) was used to reverse-transcribe RNA into cDNA. qPCR

reactions were performed using Fast Start Universal SYBR Green

Master (Roche, Switzerland) in the LightCycler 480 (Roche,

Switzerland). The qPCR conditions were as follows: (1) 30 s at

95°C; (2) 5 s at 95°C, and 30 s at 60°C for 45 cycles; and (3) melt

curve analysis. The sequences of primers are shown in

Supplementary Table S1. The relative mRNA expression levels of

IRF family members were calculated by the 2-△△CT method.
Immunohistochemistry (IHC)

In addition, ccRCC tissues and adjacent normal tissues were

fixed in formalin and embedded in paraffin for IHC analysis. Tissue

sections (4 mm in thickness) were cut from the clinical samples

(ccRCC tissues and normal tissues). The sections were placed in an

oven at 72°C for two hours to prevent the tissues from falling out.

Then, the sections were deparaffinized with xylene, rehydrated with

ethanol and placed in sodium citrate buffer in a pressure cooker for

antigen retrieval. Next, the sections were immersed into 3%

hydrogen peroxide solution for 4 min at room temperature to

inactivate endogenous peroxidase, and then they were rinsed in

phosphate-buffered saline (PBS). The sections were incubated with

primary antibodies against IRF1 (Abclonal, Wuhan, China), IRF2

(Abclonal), IRF3 (Abclonal), IRF4 (Abcam, Cambridge, UK), IRF5

(Abclonal), IRF6 (HUABIO, Hangzhou, China), IRF7 (Proteintech,

Wuhan, China), IRF8 (Abcam) and IRF9 (Proteintech) at 4°C

overnight. Then, the sections were incubated with secondary

antibodies at room temperature for 40 min. Subsequently, the

sections were stained with 3,3’-diaminobenzidine (DAB) and

counterstained with hematoxylin. We examined three fields of

view (200x) selected randomly from each section. The average

optical density (AOD) value of each image was measured by

Image J software, and the difference in AOD value between
frontiersin.org
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ccRCC tissues and normal tissues was compared using

Wilcoxon test.
Results

Multi-omics landscape of IRF family
members in ccRCC

Based on the TCGA-KIRC dataset, the mRNA expression levels

of IRF1/2/3/4/5/7/8/9 in 539 ccRCC samples were significantly

higher than those in 72 normal samples, whereas the mRNA

expression level of IRF6 in 539 ccRCC samples was significantly

lower than that in 72 normal samples (Figure 1A). Moreover, the

mRNA expression trends of the IRF family members, except for

IRF5, in paired samples were consistent with those in non-paired

samples (Supplementary Figure S1). The result in the GEO dataset

showed that the expression levels of IRF1/2/3/4/5/7/8/9 in ccRCC

samples were significantly upregulated compared with those in the

normal samples, whereas the expression level of IRF6 in ccRCC

samples was significantly downregulated compared with that in the

normal samples (Figure 1B). On basis of the scRNA-seq data, we

further validated the expression of the IRF family members in

different types of cells in the TME. Eight cell clusters, namely
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endothelial cells, macrophage, monocyte, tissue stem cells, T cells,

hepatocytes, epithelial cells and DC, were identified (Figure 1C) and

the expression levels of the IRF family members in different types of

cell clusters were shown in Figure 1D. Furthermore, we found that

the protein levels of IRF2/3/4/7/8/9 in ccRCC samples were higher

than those in the normal samples, while the protein level of IRF6 in

ccRCC samples was lower than that in the normal samples

(Supplementary Figure S2). The incidence of somatic mutation

and CNVs of IRFs were also estimated. Among the 336 samples,

only 5 samples (1.49%) had mutations in IRF family members

(Figure 2A). We also found IRF1 and IRF9 had copy number

amplification, while IRF2 had copy number deletion (Figure 2B).

The location of CNV alterations of IRF family members on the

chromosomes were shown in Figure 2C. A correlation network of

IRF family members was constructed to show the whole landscapes

of their interactions and prognostic values (Figure 2D). KM survival

curves showed that the high expression of IRF1 (p = 0.049), IRF3

(p< 0.001), IRF4 (p< 0.001), IRF5 (p< 0.001), IRF7 (p< 0.001) and

IRF9 (p< 0.001), and the low expression of IRF2 (p = 0.049) and

IRF6 (p< 0.001) were significantly associated with poor OS

(Supplementary Figure S3). We also found that IRF1, IRF3, IRF4,

IRF5 and IRF7 were significantly higher in tumor stage III/IV or

grade 3/4 compared with tumor stage I/II or grade 1/2, whereas the

expression level of IRF6 was lower in tumor stage III/IV or grade 3/
D

A B

C

FIGURE 1

The expression levels of the IRF family members between ccRCC samples and normal samples. (A) The mRNA expression levels of the IRF family
members in the TCGA-KIRC dataset. (B) The mRNA expression levels of the IRF family members in the GEO dataset. (C) The cell types were
identified by single-cell RNA-sequencing analysis. (D) The expression levels of the IRF family members in different types of cell clusters.
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4 (Supplementary Figure S4). These findings suggested that IRF

family members might serve an important role in the oncogenesis

and progression of ccRCC. Subsequently, multivariate Cox

regression analysis identified that IRF9 (HR: 1.174; 95% CI:

1.051-1.311; p = 0.004) was an independent prognostic risk factor

(Supplementary Figures S5A, B). ROC curve revealed that IRF9

(AUC = 0.826) had good diagnostic value for ccRCC

(Supplementary Figure S5C). Nonetheless, time-dependent ROC

curves indicated that IRF9 (1-, 3-, 5-year AUC: 0.581, 0.581 and

0.656, respectively) had low predictive capability for the OS

(Supplementary Figure S5D).
Validation of the IRF family members by
qRT-PCR and IHC

We performed qRT-PCR to examine the mRNA expression

levels of the IRF family members in clinical specimens. As shown in

Figure 3A, the relative mRNA expression levels of IRF1/2/3/7/8/9 in

ccRCC tissues were significantly higher than those in the normal

tissues, whereas the relative mRNA expression levels of IRF4/5/6 in

ccRCC tissues were significantly lower than those in the normal

tissues. The mRNA expression trends of the IRF family members,

except for IRF4/5, were consistent with the results of the above

bioinformatics analysis. Meanwhile, IHC was conducted to validate

the protein expression levels of the IRF family members between
Frontiers in Oncology 06
ccRCC tissues and normal tissues (Figures 3B, C). The result

revealed that the protein levels of IRF1/2/3/7/8/9 in ccRCC tissues

were higher than those in the normal tissues, while the protein level

of IRF6 in ccRCC tissues was lower than that in the normal tissues.
Identification of IRFs-related molecular
subtypes

According to the expression profile of IRF family members,

unsupervised NMF algorithm was performed to identify novel IRF-

related molecular subtypes in ccRCC. The optimal number of the

clusters was identified as two (k =2). Consequently, the TCGA-

KIRC cohort was divided into C1 (n = 62) and C2 (n = 468)

subtypes (Figure 4A). PCA showed diverse clustering of the two

molecular subtypes (Figure 4B). Survival analysis showed that the

patients in C2 subtype had a worse OS than those in C1 subtype

(Figure 4C). The distribution of clinical characteristics between the

two molecular subtypes was illustrated in Supplementary Figure S6.

As expected, all IRF family members showed significant differences

between the two molecular subtypes (Figure 4D). In addition,

GSVA enrichment analysis showed that C1 subtype was enriched

in Wnt signaling pathway, thyroid cancer, colorectal cancer,

regulation of autophagy and fatty acid metabolism, while C2

subtype was enriched in cytosolic DNA-sensing pathway,

cytokine-cytokine receptor in terac t ion and pr imary
D
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C

FIGURE 2

Somatic mutation and CNVs frequencies of the IRF family members in ccRCC. (A) Mutation frequency of the IRF family members in 336 patients with
ccRCC. (B) CNVs of the IRF family members. (C) Locations of the CNV alterations of the IRF family members on 23 chromosomes. (D) Correlations
and prognosis of the IRF family members in ccRCC patients.
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immunodeficiency (Figure 4E). Simultaneously, we estimated the

differences in immune score, stromal score and immune infiltrating

cells between the two molecular subtypes. The result revealed that

immune score and stromal score in C2 subtype were significantly

higher than those in C1 subtype. Additionally, naïve B cells, M2

macrophages, activated dendritic cells, resting mast cells and

eosinophils were remarkably higher in C1 subtype, whereas

plasma cells, CD8 T cells, T follicular helper cells (Tfh) and T

regulatory cells (Tregs) were significantly higher in C2 subtype

(Figure 4F). These results all indicated that there was a significant

difference in immune microenvironment between the two

molecular subtypes.

To further explore the heterogeneity between the two molecular

subtypes, 1425 DEGs were identified with the threshold of FDR<

0.05 and |log2FC| > 1. GO and KEGG pathway enrichment analyses

for these DEGs were performed. GO analysis revealed that these

DEGs were mainly concentrated on biological processes related to

immune regulatory processes, such as positive regulation of

lymphocyte activation, B cell mediated immunity, T cell receptor

complex, and chemokine activity (Figure 4G). Moreover, KEGG

pathway analysis showed that these DEGs were mainly enriched in

cytokine-cytokine receptor interaction, Th17 cell differentiation,

Th1 and Th2 cell differentiation, T cell receptor signaling pathway,

TNF signaling pathway, NF-kB signaling pathway, and PD-L1

expression and PD-1 checkpoint pathway in cancer (Figure 4H).

Hence, it is supposed that IRFs might be closely involved in
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regulating immune cells and immune responses in the TME

of ccRCC.
Construction and validation of an IRFs-
related prognostic model

By performing univariate Cox regression analysis, 421

prognostic-related DEGs were identified based on TCGA-KIRC

cohort (Supplementary Table S2). To avoid overfitting risk and

narrow down the range of candidate genes, LASSO Cox regression

analysis was conducted to further filter out 19 candidate genes

(Figure 5A). Finally, 9 genes (NPNT, BCL3, KISS1, PABPC1L,

DBH-AS1, PYCR1, BACE2, MELTF, and TOX3) were retained to

construct an IRFs-related prognostic model using the multivariate

Cox regression analysis (Figure 5B). The risk score of each patient in

both TCGA-KIRC and E-MATB-1980 cohorts was calculated using

the following formula: risk score = expression of NPNT*(-0.12142)

+ expression of BCL3*(0.278869) + expression of KISS1*(0.3112) +

expression of PABPC1L*(0.193679) + expression of DBH-AS1*

(0.225393) + expression of PYCR1*(0.156245) + expression of

BACE2*(0.208868) + expression of MELTF*(0.155669) +

expression of TOX3*(-0.21914). Then, we examined the

expression levels of the nine genes based on the TCGA-KIRC

cohort and found that the expression levels of BCL3, PABPC1L

and PYCR1 in ccRCC samples were higher than those in normal
A

B

C

FIGURE 3

QRT-PCR and IHC analyses of the IRF family members. (A) The relative mRNA expression levels of the IRF family members between ccRCC and
normal tissues were validated by qRT-PCR. (B) The AOD values of the IRF family members between ccRCC and normal tissues were compared.
(C) Representative IHC staining of the IRF family members between ccRCC and normal tissues were shown. * p<0.05, ** p<0.01, *** p<0.001.
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samples, while the expression levels of NPNT, BACE2, MELTF and

TOX3 in ccRCC samples were lower than those in normal

samples (Figure 5C).

Patients were stratified into low-risk and high-risk groups

according to the median value of risk score. PCA and t-SNE

revealed that patients in the two risk groups were distributed in

diverse directions in both TCGA-KIRC and E-MTAB-1980

cohorts (Supplementary Figures S7A–D). Additionally, there

were remarkably differences in expression levels of IRF1/3/4/5/

6 / 7 / 9 b e twe en th e h i gh - r i s k and l ow - r i s k g r oup s

(Supplementary Figure S7E). Meanwhile, we found that IRF

family members were positively or negatively correlated with

risk score and target genes in the risk model (Figure 5D).

Survival analysis indicated that the patients in the low-risk

group had a better OS than those in the high-risk group whether

in the TCGA-KIRC (Figure 5E) or E-MTAB-1980 cohorts

(Figure 5F). Furthermore, time-dependent ROC curves were

plotted to explore the predictive capability of the prognostic

model. The 1-, 3- and 5-year AUCs in TCGA-KIRC cohort were

0.807, 0.776 and 0.809, respectively (Figure 5G). Similarly, the

1-, 3- and 5-year AUCs in E-MTAB-1980 cohort were 0.773,

0.807 and 0.867, respectively (Figure 5H).
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Correlation between risk score and clinical
characteristics

To evaluate the independent prognostic value of the IRFs-

related prognostic model, univariate and multivariate Cox

regression analyses were performed in both TGCA-KIRC and E-

MTAB-1980 cohorts. Univariate Cox regression analysis revealed

that the risk score in both the TCGA-KIRC (Figure 6A; HR = 1.127,

95% CI:1.100-1.154, p< 0.001) and E-MTAB-1980 (Figure 6B; HR =

1.559, 95% CI:1.306-1.860, p< 0.001) cohorts was significantly

associated with OS. After adjusting for confounding factors by

multivariate Cox regression analysis, the risk score was confirmed

to be an independent prognostic indicator in ccRCC patients

(TCGA-KIRC: Figure 6C, HR = 1.098, 95% CI: 1.066-1.130, p<

0.001; E-MTAB-1980: Figure 6D, HR = 1.251, 95% CI: 1.024-1.528,

p = 0.028). According to the TCGA-KIRC cohort, the relationships

between clinical characteristics and risk score were explored, and

the result revealed a significant difference in age, grade and TNM

stage (Figure 6E). Furthermore, Figure 6F showed that there were

more ccRCC patients with stage I-II in the low-risk group, but there

were more ccRCC patients with stage III-IV in the high-risk group

(p< 0.001). Besides, the C-index and ROC curve were conducted to
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FIGURE 4

Identification of IRFs-related molecular subtypes. (A) Consensus map of NMF clustering (k = 2). (B) PCA plot of the expression profiling of IRFs.
(C) KM analysis of OS between the two molecular subtypes. (D) The differences in the expression levels of IRF family members between the two
molecular subtypes. (E) Heatmap of biological pathways between the two molecular subtypes. Activated and inhibited pathways are colored by red
and blue, respectively. (F) The differences in immune score, stromal score and immune infiltrating cells between the two molecular subtypes. (G) GO
enrichment analysis of DEGs between the two molecular subtypes. (H) KEGG pathway enrichment analysis of DEGs between the two molecular
subtypes. * p<0.05, ** p<0.01, *** p<0.001.
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evaluate the predictive performance of the risk model. We found

that the C-index of the risk score was higher than those of other

clinical characteristics (Figure 7D), suggesting the risk score could

better predict the prognosis of ccRCC patients. Similarly, ROC

curves also revealed that the AUC of the risk score was higher than

those of other clinical characteristics, indicating that the risk score

had higher sensitivity and specificity in predicting prognosis of

ccRCC patients (Figures 7A–C). As reported, the robust predictive

power of a ClearCode34 model has been validated in clinical

cohorts (23, 24). We performed the 1-, 3-, and 5-year ROC

curves of the ClearCode34 model (Figure 7E), and found that the

1-, 3-, and 5-year AUCs of IRFs-related risk model were higher than

those of the ClearCode34 model, indicating that IRFs-related risk

model was superior to the ClearCode34 model in predicting the

prognosis of ccRCC.
Construction and evaluation of the
prognostic nomogram

A nomogram scoring system comprising age, gender, stage and

risk score was constructed to predict the 1-, 3- and 5-year OS of

ccRCC patients based on the TCGA-KIRC cohort (Figure 7G). The
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excellent consistency of the calibration curve suggested that the

nomogram had a high accuracy to predict the 1-, 3- and 5-year OS

in ccRCC patients (Figure 7F). ROC curves revealed that the 1-, 3-

and 5-year AUCs of the nomogram were 0.866, 0.822 and 0.793,

indicating the nomogram showed satisfactory predictive ability,

which was superior to other clinical characteristics (Supplementary

Figures S8A–C). Furthermore, DCA revealed that the nomogram

had better net benefit than other clinical characteristics (Figure 7H).
Evaluation of immune characteristics and
immunotherapeutic response

To further explore the correlation between immune landscape

and the risk score, the ESTIMATE algorithm was used to calculate

the immune score, stromal score and ESTIMATE score. The high-

risk group had a higher ESTIMATE score and immune score than

the low-risk group (Figure 8A), indicating that ccRCC patients in

the high-risk group might present more active immune status.

Subsequently, the ssGSEA was used to explore the infiltration

levels of 16 immune cells and activity scores of 13 immune-

related pathways between the two risk groups. We found that the

high-risk group had higher infiltration levels of CD8+ T cell, CD4+
D
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FIGURE 5

Construction and validation of an IRFs-related prognostic model. (A) The LASSO Cox regression analysis was performed to filter out the candidate
genes. (B) 9 genes were retained to construct a prognostic model using the multivariate Cox regression analysis. (C) The mRNA expression levels of
the nine genes between ccRCC samples and normal samples in the TCGA-KIRC dataset. (D) Correlations between IRF family members and risk
score. (E, F) KM curves of OS between the low- and high-risk groups in TCGA-KIRC and E-MTAB-1980 datasets. (G, H) ROC curves of the IRFs-
related prognostic model in predicting the 1-, 3- and 5-year OS in the TCGA-KIRC and E-MTAB-1980 datasets. * p<0.05, ** p<0.01, *** p<0.001.
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T cell, macrophages, T helper (Th) cells, Tfh, Type 1 T helper (Th1)

cells and Type 2 T helper (Th2) cells, whereas the low-risk group

had higher infiltration levels of immature dendritic cells (iDCs) and

mast cells (Figure 8B). Moreover, the activity scores of APC co-

stimulation, CCR, check point, cytolytic activity, inflammation

promoting, parainflammation, T cell co-inhibition, T cell co-

stimulation and type I IFN response were higher in the high-risk

group, whereas the activity score of type II IFN response was lower

in the high-risk group (Figure 8B). Thorsson et al. (25) have

identified six cancer immune subtypes (IS) including IS1 (wound

healing), IS2 (IFN-g dominant), IS3 (inflammatory), IS4

(lymphocyte depleted), IS5 (immunologically quiet), and IS6

(TGF-b dominant). As shown in Supplementary Figure 8D, there

was significant difference in immune subtypes between the two risk

groups and there were more patients with IS3 immune subtype in

both the high-risk and low-risk groups (p< 0.001). To further

explore the activity of immune cells in ccRCC, we calculated the

immune activity score of each step based on TIP database. We

discovered that the immune activity scores of most steps in the
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high-risk group were remarkably higher than those in the low-risk

group (Figure 8D). Furthermore, we found that the high-risk group

presented a more extensive TMB level than the low-risk group, and

TMB level was positively associated with the risk score (Figure 8C).

However, clinical researches have demonstrated that TMB could

not predict the therapeutic response to ICIs in ccRCC (26, 27).

To evaluate the value of the risk model in immunotherapy, the

relationships between risk score and TIDE, T-cell dysfunction, T-

cell exclusion score and MSI score were explored. The result showed

that TIDE score in the high-risk group was higher than that in the

low-risk group, indicating patients in the low-risk group were more

likely to benefit from ICIs therapy than those in the high-risk group

(Figure 9A). Besides, we found that high-risk group showed a

higher T-cell dysfunction and lower MSI score than low-risk

group (Figures 9B–D). Meanwhile, ROC curve showed that the

AUC of IRF-related risk model was remarkably higher than that of

TIS and TIDE (Figure 9E), which suggested that the risk model

displayed better predictive value for prognosis in ccRCC than TIS

and TIDE.
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FIGURE 6

Correlation between risk score and clinical characteristics. (A, C) Univariate and multivariate Cox regression analyses showed that risk score was an
independent prognostic indicator in the TCGA-KIRC dataset. (B, D) Univariate and multivariate Cox regression analyses showed that risk score was
an independent prognostic indicator in the E-MTAB-1980 dataset. (E) Differences in clinical characteristics between the low- and high-risk groups in
the TCGA-KIRC dataset. (F) Distribution of tumor stages between the low- and high-risk groups. * p<0.05, *** p<0.001.
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FIGURE 7

Assessment of the IRFs-related prognostic model and construction of a nomogram to predict the OS. (A-C) ROC curves of the nomogram in
predicting the 1-,3- and 5-year OS in the TCGA-KIRC dataset. (D) C-indexes of the risk score and clinical characteristics. (E) ROC curves of the
ClearCode34 model in predicting the 1-, 3- and 5-year OS. (F) The calibration curve of the nomogram in predicting the 1-, 3- and 5-year OS. (G)
Construction of a nomogram based on age, gender, stage and risk score. (H) DCA curve of the nomogram. * p<0.05, *** p<0.001
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FIGURE 8

Immune landscape between the low- and high-risk groups. (A) Differences in the stromal score, immune score and ESTIMATE score. (B) Differences
in the 16 immune cells and 13 immune-related pathways between the low- and high-risk groups. (C) Correlation between TMB and risk score.
(D) Differences in the immune activity score of cancer-immunity cycle steps between the low- and high-risk groups. * p<0.05, ** p<0.01, ***
p<0.001.
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Drug sensitivity analysis

To explore the correlation between the risk score and response

to targeted drugs of ccRCC, we compared the differences in IC50 of

these drugs between the high-risk and low-risk groups. We

observed that the IC50 of axitinib, sorafenib, dasatinib, and

rapamycin in the high-risk group were lower than those in the

low-risk group, while the IC50 of erlotinib and gefitinib in the high-

risk group were higher than those in the low-risk group (Figure 9F).

Thus, we proposed that IRFs-related risk model could serve as a

potential predictive factor for the sensitivity of targeted drugs.
Discussion

ccRCC is a heterogeneous tumor with high infiltration levels of

immune cells, high aggressiveness and poor prognosis (28, 29).

Intratumor heterogeneity in ccRCC is considered to be related to

patterns of metastatic spread and prognosis, which makes it

complex to predict prognosis and determine the appropriate

therapeutic strategies (30). Moreover, the heterogeneity of tumor

microenvironment (TME) might be responsible for the distinct

therapeutic responses to ICIs in ccRCC patients (10). Cumulative

evidences showed that IRFs participated in regulating immune cells

and immune-related pathways in cancers (11), which suggested that

IRFs might play an essential role in TME. Hence, identifying IRFs-

related risk model is naturally significant to stratify ccRCC patient

heterogeneity, predict prognosis and develop the individualized

immunotherapeutic strategies.

Herein, multi-omic analysis of IRF family members in ccRCC

indicated that IRFs might play an important role in oncogenesis and

progression of ccRCC. Subsequently, the NMF algorithm was used

to classify ccRCC patients into two distinct molecular subtypes

based on the expression profile of IRF family members. We
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discovered that the patients in C2 subtype showed a worse OS

than those in C1 subtype. In addition, there were differences in

immune score, stromal score and abundance of various immune

cells between the two molecular subtypes. Furthermore, GO and

KEGG pathway enrichment analyses showed enrichment of

immune-related pathways, such as positive regulation of

lymphocyte activation, B cell mediated immunity, chemokine

activity, cytokine-cytokine receptor interaction, Th17 cell

differentiation, Th1 and Th2 cell differentiation, T cell receptor

signaling pathway, TNF signaling pathway, NF-kB signaling

pathway, and PD-L1 expression and PD-1 checkpoint pathway in

cancer. It was evidenced that regulatory B cells could attenuate

antitumor immune responses by suppressing the T-cell immune

response (31). Cytokines and chemokines were found to play a

crucial role in cancer-related inflammation and immune escape

(32). Qu et al. revealed that the TNF-a/TNFR2 pathway was

activated to enhance the immunosuppressive phenotype and

function of Tregs in TME of gastric cancer (33). Overexpression

of miR-210-3p could promote epithelial-mesenchymal transition,

invasion, migration and bone metastasis in prostate cancer by

activating NF-kB signaling pathway (34). IFNg could promote

tumor immune escape by regulating the PD-L1 expression via the

JAK/STAT and PI3K-AKT signaling pathways (35). Taken

together, it is reasonable to propose that IRFs were significantly

involved in oncogenesis and progression of ccRCC through

regulating immune responses and/or immune-related pathways.

We identified 9 target genes (NPNT, BCL3, KISS1, PABPC1L,

DBH-AS1, PYCR1, BACE2, MELTF, and TOX3) to construct an

effective and robust prognostic model in the TCGA-KIRC cohort,

and validated the performance of the prognostic model in the E-

MTAB-1980 cohort. Some target genes in the prognostic model

have been explored in ccRCC. For instance, Braga et al. revealed

that p50 together with Bcl-3 played an important role in the

regulation of gene transcription in RCC (36). The invasiveness
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FIGURE 9

Evaluation the value of the IRFs-related prognostic model in immunotherapy and drug sensitivity. (A-D) Differences in TIDE, MSI, T cell dysfunction
and T cell exclusion between the low- and high-risk groups. (E) ROC curve of IRFs-related prognostic model, TIDE and TIS in predicting the OS. (F)
Correlation between risk score and drug sensitivity. *** p<0.001. ns, no significance.
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and colonized ability in RCC cells were inhibited through the

activation of KISS1/KISS1R signaling by honokiol (37).

Bioinformatic analysis showed that PYCR1 may contribute to

create an immunosuppressive microenvironment in the TME,

and thus it could be as potential target in the immunotherapy for

ccRCC (38). Jiang et al. found that TOX3 overexpression could

inhibit the epithelial-mesenchymal transition (EMT) to reduce cell

migration and invasion via transcriptionally repressing SNAI1 and

SNAI2 in ccRCC cells (39). However, the other genes were revealed

for the first time, which remains to be further explored in ccRCC.

Survival analysis demonstrated that patients in the low-risk group

had a remarkably better prognosis. Multivariate Cox regression

analysis indicated that the risk model was an independent

prognostic indicator. Moreover, IRFs-related risk model was

superior to the ClearCode34 model in predicting the prognosis.

To improve the predictive performance of the risk model, we then

constructed a nomogram comprising risk score and clinical

characteristics to accurately predict prognosis for ccRCC, which

was superior to conventional clinical characteristics.

The ccRCC is reported to be one of the cancers with highly

immune infiltration by pan-cancer analysis (40). In the TME,

immune cells serve a critical role in cancer growth, invasion,

migration and regulating anticancer immunity (41). Recent

studies revealed that high infiltration of CD8+ T cells was

observed in ccRCC, which was closely correlated with the poor

prognosis (42, 43). In addition, overexpression of immune escape

markers and enhanced the infiltration levels of immunosuppressive

cells were related to the high infiltration of CD8+ T cells in ccRCC

(44, 45). Similarly, it was evidenced that the infiltration of Tregs and

Tfh in ccRCC indicated a poor prognosis (46, 47). Moreover, high

infiltration of tumor-associated macrophages (TAMs) correlated

with the poor prognosis and tumor metastasis of cancers (48, 49).

Şenbabaoğlu et al. found that the infiltration of mast cells was

significantly negatively associated with OS and progression-free

survival (PFS) in ccRCC (46). Consistent with these studies, we

discovered that high infiltration of CD8+ T cells, macrophages and

Tfh but low infiltration of mast cells in the high-risk group were

associated with a worse prognosis. Interestingly, we also found

higher activity scores of inflammation promoting and type I IFN

response were in the high-risk group. Type I IFNs could be induced

by IRF1/3/5/7/8 through Toll-like receptor (TLR) signaling and

cGAS-STING pathways (50, 51). Meanwhile, evidences showed that

type I IFNs offered proinflammatory mediators that contribute to

tumor progression and increased negative regulatory cells and

factors to promote immune escape (52). However, patients in the

high-risk group presented lower activity of type II IFN response and

showed higher expression of IRF1, which seemed to contradict the

theory that activation of IFN-g can induce IRF1 expression (51). In

fact, IRF1 transcription can be driven not only by IFN-g but also by
proinflammatory NF-kB (51, 53). Previous studies showed that the

excessive activation of NF-kB was closely associated with increased

resistance to chemotherapy or cytokine therapy and a worse

prognosis in ccRCC patients (54). Combined with KEGG

enrichment analysis showing that NF-kB signaling pathway had a

close relationship with IRFs-related molecular subtypes, it is
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supposed that NF-kB rather than IFN-g played a major role in

the regulation of IRF1 expression in ccRCC patients with high-risk.

Additionally, IRF4 expression was excessively elevated in exhausted

T cells that reduced IFN-g production, which was in accordance

with our results (55). To summarize, the reciprocal crosstalk

between IRFs and IFNs might be responsible for the immune

evasion and poor outcome in ccRCC patients. Furthermore, we

also found that patients in high-risk group had higher immune

scores and ESTIMATE scores. In accordance with the above

findings, we believed that IRFs-related risk model could be an

effective indicator for predicting prognosis and reflecting immune

cells infiltration in the TME of ccRCC.

In recent years, ICIs have been widely used in immunotherapy

for ccRCC. However, ccRCC patients exhibited diverse therapeutic

responses to ICIs, which might be due to the heterogeneity of TME

(10). Thus, it is extremely important to predict which patients can

respond to ICIs. TIDE scores were associated with the potential of

anticancer immune evasion, thereby predicting the therapeutic

response to anti-PD1 and anti-CTLA4 (21). Moreover, high MSI

showed a better response to immunotherapy (56). Our analysis

showed that patients in low-risk group had lower TIDE score and

T-cell dysfunction but a higher MSI than those in high-risk group,

indicating that patients in low-risk group had a better response to

ICIs. At the moment the combination of immunotherapy with

targeted therapy have been deemed to be the first-line treatment for

advanced ccRCC (57, 58). Thus, we next explored the response to

targeted drugs in different risk groups. As expected, patients in

different risk groups showed diverse drug sensitivity to axitinib,

sorafenib, gefitinib, erlotinib, dasatinib and rapamycin. To

summarize, the IRF-related risk model may be a valid tool to

evaluate the response to both immunotherapy and targeted

therapy, which can promote the development of personalized

therapy for ccRCC patients.

In conclusion, we explored the different molecular subtypes of

ccRCC based on IRF family members and evaluated the clinical

prognosis, immune cell infiltration and signaling pathways of

different molecular subtypes. Furthermore, we developed a

robust and effective risk model to predict prognosis and

responses to ICIs and targeted drugs and reflect the TME

characteristics in ccRCC. These findings might provide new

insights into personalized and precise therapeutic strategies.

However, there were several limitations in our study. First, the

public TCGA-KIRC and E-MTAB-1980 retrospective cohorts

were used to construct and validate the risk model. Prospective

research with a larger sample size is required to verify the clinical

performance of the risk model. Besides, more functional

experiments are needed to explore the potential biological

mechanisms of IRFs in ccRCC.
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SUPPLEMENTARY FIGURE 1

The expression levels of the IRF family members between paired ccRCC
samples and normal samples in the TCGA-KIRC dataset.

SUPPLEMENTARY FIGURE 2

The protein expression levels of the IRF family members between ccRCC
samples and normal samples based on CPTAC using UALCAN database.

SUPPLEMENTARY FIGURE 3

Prognostic value of the IRF family members in ccRCC in the TCGA-

KIRC dataset.

SUPPLEMENTARY FIGURE 4

The correlation between the IRF family members and clinical stage/

histological grade.

SUPPLEMENTARY FIGURE 5

Prognostic and diagnostic values of the IRF family members in ccRCC. (A, B)
Univariate and multivariate Cox regression analyses showed that IRF9 was an

independent prognostic indicator in the TCGA-KIRC dataset. (C) ROC curve
of IRF9 in evaluating diagnostic value for ccRCC. (D) ROC curve of IRF9 in

predicting the 1-, 3- and 5-year OS.

SUPPLEMENTARY FIGURE 6

The dist r ibut ion of cl in ical character is t ics between the two
molecular subtypes.

SUPPLEMENTARY FIGURE 7

PCA and t-SNE showed the distribution of the two risk groups in the TCGA-

KIRC (A, C) and E-MTAB-1980 (B, D) datasets. (E) Differences in the
expression levels of IRF family members between the low- and high-risk

groups. * p<0.05, ** p<0.01, *** p<0.001.

SUPPLEMENTARY FIGURE 8

(A–C) ROC curves of the nomogram in predicting the 1-, 3-, and 5-year OS.

(D) Distribution of the immune subtypes between the low- and high-

risk groups.
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