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Identification of a
chemoresistance-related
prognostic gene signature by
comprehensive analysis and
experimental validation in
pancreatic cancer

Junliang Chen, Zhihao Liu, Zhiyuan Wu, Wenjun Li
and Xiaodong Tan*

Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang,
Liaoning, China
Background: Chemoresistance is a major hurdle to improving the prognosis of

pancreatic cancer (PC). This study aimed to identify key genes regulating

chemoresistance and develop a chemoresistance-related gene signature for

prognosis prediction.

Methods: A total of 30 PC cell lines were subtyped according to gemcitabine

sensitivity data from the Cancer Therapeutics Response Portal (CTRP v2).

Differentially expressed genes (DEGs) between gemcitabine-resistant and

gemcitabine-sensitive cells were subsequently identified. These upregulated

DEGs associated with prognostic values were incorporated to build a LASSO

Cox risk model for The Cancer Genome Atlas (TCGA) cohort. Four datasets

(GSE28735, GSE62452, GSE85916, and GSE102238) from the Gene Expression

Omnibus (GEO) were used as an external validation cohort. Then, a nomogram

was developed based on independent prognostic factors. The responses to

multiple anti-PC chemotherapeutics were estimated by the “oncoPredict”

method. Tumor mutation burden (TMB) was calculated using the

“TCGAbiolinks” package. Analysis of the tumor microenvironment (TME) was

performed using the “IOBR” package, while the TIDE and “easier” algorithms were

employed to estimate immunotherapy efficacy. Finally, RT-qPCR, Western blot

and CCK-8 assays were conducted to validate the expression and functions of

ALDH3B1 and NCEH1.

Results: A five-gene signature and a predictive nomogram were developed from

six prognostic DEGs, including EGFR, MSLN, ERAP2, ALDH3B1, and NCEH1. Bulk

and single-cell RNA sequencing analyses indicated that all five genes were highly

expressed in tumor samples. This gene signature was not only an independent

prognostic factor but also a biomarker forecasting chemoresistance, TMB, and

immune cells. In vitro experiments suggested that ALDH3B1 and NCEH1 were

involved in PC progression and gemcitabine chemoresistance.
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Conclusion: This chemoresistance-related gene signature links prognosis with

chemoresistance, TMB, and immune features. ALDH3B1 and NCEH1 are two

promising targets for treating PC.
KEYWORDS
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microenvironment, tumor mutation burden
1 Introduction

Pancreatic cancer (PC) has the highest lethality among all types of

malignancies, and its incidence is still growing globally (1). Despite

major breakthroughs in the field of oncology, ninety percent of

diagnosed patients will eventually succumb to PC within five years

(2). With the advancement of multidisciplinary treatment, surgery plus

adjuvant chemotherapy is increasingly important in cancer

management. In addition, neoadjuvant chemotherapy can potentially

eliminate undetectable micrometastases and decrease the margin

positivity rates of resectable and borderline resectable PC patients

(3). Insidious onset and rapid progression are substantial hurdles

limiting the opportunity for radical resection and survival outcomes

of PC patients. Chemotherapy-based regimens are one of the most

recommended strategies for tumor downstaging and conversion to

resectability (4). Thus, how to increase chemosensitivity is closely

related to improving the prognosis of PC patients.

Gemcitabine, chemically known as 2′,2′-difluorodeoxycytidine,
is a DNA synthesis inhibitor that has been widely used as a first-line

anti-PC drug since 1997 (5). However, its overall survival (OS)

benefit is less than satisfactory. Hypovascularized stroma accounts

for approximately 90% of the total tumor volume and serves as an

important factor that prevents gemcitabine delivery into the

cancerous lesion (6). Targeting the tumor microenvironment

(TME) is an appealing approach to increase the gemcitabine

response rate. For example, nanoparticle albumin-bound

paclitaxel (nab-paclitaxel) synergizes with gemcitabine to improve

the OS of PC patients by depleting the peritumoral stroma (7).

Although gemcitabine is superior to other antineoplastic drugs as

monotherapy in PC, rapid development of resistance is another

urgent issue that remains to be solved (8). It is therefore highly

desirable to discover new targets to increase options for

combination therapy and promote susceptibility to gemcitabine.

In the present study, we identified six prognostic genes

(ALDH3B1, CHST11, EGFR, ERAP2, MSLN, and NCEH1) that

were upregulated in gemcitabine-resistant PC cells compared with

gemcitabine-sensitive PC cells. Then, we explored the expression

levels of the six genes in bulk RNA sequencing (RNA-seq) and

single-cell RNA sequencing (scRNA-seq). A novel prognostic gene

signature and nomogram were developed based on The Cancer

Genome Atlas (TCGA) cohort and validated externally in the Gene

Expression Omnibus (GEO) cohort. Further analyses revealed that

this signature was related not only to gemcitabine chemoresistance

but also to therapy responses to other first-line anti-PC drugs,
02
tumor mutation burden (TMB), and immune checkpoint blockades

(ICBs). The results of CCK-8 assays indicated that ALDH3B1 and

NCEH1 were new therapeutic targets for enhancing gemcitabine

sensitivity and restraining cancer growth. Overall, this

chemoresistance-related signature opens new avenues for

prognosis assessment and personalized medication for PC patients.
2 Materials and methods

2.1 Data acquisition and processing

The raw drug response data of the Cancer Therapeutics

Response Portal (CTRP v2) were obtained from the CTD² Data

Portal (https://ocg.cancer.gov/programs/ctd2/data-portal/). The

RNA-seq data of corresponding pancreatic cancer cell lines are

available from the DepMap portal (https://depmap.org/portal/).

The “TCGAbiolinks” R package (9) was used to download and

process the bulk RNA-seq results of 178 PC patients along with

clinical, mutation, and copy number variation (CNV) files in the

TCGA database. The TCGA cohort was used as the training cohort

to develop a predictive gene signature and nomogram. Meanwhile, a

total of 186 patients with complete follow-up information from the

GEO (https://www.ncbi.nlm.nih.gov/geo/) database were merged as

the validation cohort, including GSE28735, GSE62452, GSE85916

and GSE102238 datasets.

As there are no data regarding normal pancreatic cell lines in

the DepMap portal, the transcriptome data of normal pancreatic

duct epithelial cell lines (HPNE and HPDE) were obtained from

GSE97003 and GSE181625. We also explored the expression levels

of key genes regulating gemcitabine resistance between normal and

tumor samples at both bulk and single-cell resolutions. Two

scRNA-seq datasets were included in our study, GSE212996 and

CRA00160 (10). The sequencing data of normal pancreatic tissues

from the GTEx portal (https://gtexportal.org/home/) were analyzed

in combination with the TCGA cohort. We also compared the

expression levels of these genes in matched tumor-normal samples

from GSE28735 (45 pairs), GSE102238 (28 pairs), and GSE101448

(18 pairs).

Raw RNA-seq and microarray data of bulk tissues were

normalized using transcripts per kilobase million (TPM)

transformation and robust mult ichip average (RMA)

normalization, respectively, followed by log2 (x + 1) conversion

(11, 12). The “Seraut” package was used to create an S4 object from
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the unique molecular identifier (UMI) count and barcode matrices

of scRNA sequencing in accordance with the standard pipeline (13).

After excluding low-quality cells (< 200 genes/cell, > 3000 genes/

cell, < 3 cells/gene, hemoglobin genes < 3%, and > 10%

mitochondrial genes), linear principal component analysis (PCA)

and nonlinear uniform manifold approximation and projection

(UMAP) algorithm were adopted to visualize the clustering

results. The primary cell type annotations of the “singleR”

package (14) were checked and adjusted manually based on

marker genes from the Cel lMarker database (http://

xteam.xbio.top/CellMarker/).
2.2 Identification of key genes regulating
gemcitabine sensitivity

A lower gemcitabine resistance score indicates a higher drug

sensitivity. According to the scaled gemcitabine resistance score,

pancreatic cells were subtyped into gemcitabine-sensitive (Z score ≤

–0.5), intermediate gemcitabine-resistant (–0.5< Z score < 0.5), and

gemcitabine-resistant (0.5 ≤ Z score) groups. Subsequently, the

“limma” package was used to identify differentially expressed genes

(DEGs) between gemcitabine-sensitive and gemcitabine-resistant

cells (15). The DEGs with a P value < 0.01 and log2 fold change

(FC) > 1 were defined as the key regulators contributing to

gemcitabine resistance.
2.3 Risk model development
and evaluation

The least absolute shrinkage and selection operator (LASSO)

Cox regression algorithm was applied to develop a risk model from

the prognostic genes associated with chemoresistance in the TCGA

cohort (16). The optimal penalization parameter was selected by

tenfold cross validation. Gene signature with better performance

and fewer included genes was selected as the appropriated model

from multiple runs. The risk score of each enrolled patient was

equal to the sum of each gene expression value multiplied by the

corresponding coefficient. In line with other studies, the median risk

score was selected as the threshold to equally divide the patients in

the training cohort into two groups (17). Utilizing the “survival”,

“survminer”, “timeROC”, and “stats” R packages, the prognostic

values in the TCGA, GEO, and whole cohort were evaluated by

Kaplan-Meier (K-M) curves with log-rank tests, time-dependent

receiver operating characteristic (tROC) curves, and principal

component analyses (PCA).
2.4 Nomogram construction and validation

Univariate and multivariate analyses were conducted to identify

independent prognostic factors with statistical significance for

constructing a predictive nomogram (18). The performance of the

nomogram was assessed by the concordance index (C index), tROC,

decision curve analysis (DCA), and calibration curve. The following
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R packages were used for analyses and visualization: “survival”,

“rms”, “pec”, and “ggDCA”.
2.5 Functional enrichment analysis and
TMB calculation

Comparison of functional enrichment scores between the high-

and low-risk groups was implemented by the “GSVA” and “limma”

packages. Gene sets for GSVA analyses are open-access from the

Molecular Signatures Database (MSigDB; https://www.gsea-

msigdb.org/gse), including Hallmark (c2.all.v2022.1.Hs.symbols)

and KEGG (c2.KEGG.v2022.1.Hs.symbols) collections. TMB in

the TCGA cohort was calculated as the number of mutated bases

per million bases utilizing the “TCGAbiolinks” package.
2.6 Chemotherapy response prediction

The “calcPhenotype” function of “oncoPredict” R package was

used to predict the drug sensitivity for each patient based on bulk

RNA-seq result (19). The datasets for fitting the ridge regression

model are updated and uploaded by the “oncoPredict” team,

including resources from the Genomics of Drug Sensitivity in

Cancer (GDSC2) and CTRP V2 databases (https://osf.io/c6tfx/).
2.7 TME deconvolution and
immunotherapy response estimation

The deconvolution module of the “IOBR” R package (20) was

used to estimate the landscape of the TME, which integrates six

open-source deconvolution methodologies, namely, CIBERSORT

(21), MCPcounter (22), EPIC (23), xCell (24), quantiseq (25), and

TIMER (26). In addition, the ssGSEA algorithm was also adopted to

evaluate the TME score for each patient (27). The reference gene

sets for ssGSEA estimation were gathered from previous works

(28–32).

First, the ICB resistance score was calculated using the Tumor

Immune Dysfunction and Exclusion (TIDE) algorithm (32).

However, the TIDE signature may be biased, as only tumor-

infiltrating cell signatures are incorporated for estimation.

Generally, the immune response (immune cells, intracellular

networks, and intercellular networks) and tumor antigenicity

(TMB) are two hallmarks involved in regulating the response to

immunotherapy (33). Then, the Estimate Systems Immune

Response (EaSIeR) method was introduced to predict ICB

response, taking into account the tumor microenvironment as a

whole (34). A lower TIDE value and a higher EaSIeR score indicate

a better ICB response.
2.8 Cell culture and transient transfection

Three human pancreatic cancer cell lines (AsPC-1, CFPAC-1,

and PANC-1) were purchased from Procell Life Science &
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http://xteam.xbio.top/CellMarker/
http://xteam.xbio.top/CellMarker/
https://www.gsea-msigdb.org/gse
https://www.gsea-msigdb.org/gse
https://osf.io/c6tfx/
https://doi.org/10.3389/fonc.2023.1132424
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Chen et al. 10.3389/fonc.2023.1132424
Technology Co., Ltd. (Wuhan, China). Human pancreatic normal

cell lines (hTERT-HPNE) were obtained from Meisen Cell

Biotechnology Co., Ltd. (Hangzhou, China). AsPC-1 and CFPAC-

1 cells were maintained in Roswell Park Memorial Institute-1640

and Iscove’s Modified Dulbecco’s Medium (IMDM; Procell),

respectively. PANC-1 and HPNE cells were cultivated in high-

glucose Dulbecco’s modified Eagle’s medium (DMEM; Procell). All

media contained 10% fetal bovine serum (FBS; Procell) and 100 mg/
mL penicillin-streptomycin solution (Procell). The humidity

incubator was set to 37°C with 5% CO2.

Cells in six-well plates were transiently transfected with siRNA

using Lipofectamine™ 3000 transfection reagent (Invitrogen, Carlsbad,

CA, USA) according to the manufacturer’s protocol. siRNAs were

synthesized by GenePharma (Shanghai, China), including ALDH3B1

siRNA (sequence: 5′-GCU GAA GCC AUC GGA GAU UAG tt-3′),
NCEH1 siRNA (sequence: 5′-CAA UGA UCG UUA ACA AUC Att-

3′), and universal negative control (NC) siRNA.
2.9 RNA isolation and quantitative
real-time PCR

Total RNA was isolated using RNA Isolater Total RNA Extraction

Reagent (Vazyme, Nanjing, China) and dissolved in RNase-free

ddH2O (Vazyme). Reverse transcription and quantitative real-time

PCR (qRT-PCR) procedures were performed using Hiscript III Reverse

Transcriptase (Vazyme) and ChamQ Universal SYBR qPCR Master

Mix (Vazyme). The primers were synthesized by Sangon (Shanghai,

China), and the sequences were as follows: ALDH3B1, 5′-GCC CTG

GAA CTA TCC GCT G-3′ (forward), 5′-CGT TCT TGC TAA TCT

CCG ATG G-3′ (reverse); NCEH1, 5′-GAA TAC AGG CTA GTT

CCA AAG-3′ (forward), 5′-TAC TTC TGT AAG ACT TCT GGC-3′
(reverse); GAPDH, 5′-GGA GCG AGA TCC CTC CAA AAT-3′
(forward), 5′-GGC TGT TGT CAT ACT TCT CAT GG-3′ (reverse).
The whole experimental process was carried out as described

previously by our group (35). Gene expression was compared using

the semiquantitative 2-DDCt method.
2.10 Western blot analysis

Western blotting (WB) was performed according to the previous

protocol (36). In brief, total protein was extracted using RIPA buffer

(Sevenbio, Beijing, China), denatured for 10 min in a dry bath, and

then quantified using BCA kit (Sevenbio).A total of 20ug protein was

loaded for 10% SDS-PAGE electrophoresis and transferred to PVDF

membrane (Millipore, Hertfordshire, UK), which was then blocked

by 5% non-fat milk. After overnight incubation with primary

antibodies at 4°C, the PVDF membrane was incubated with

secondary antibodies for 2 h at room temperature. Signals were

determined using ECL kit (Sevenbio). Primary antibodies against

ALDH3B1 (1:500, Zen Bioscience, Chengdu, China), NCEH1 (1:500,

Zen Bioscience), and b-actin (1:10000, ProteinTech Group,

Rosemont, IL, USA) were used. Gray value analysis of all bands

was performed using Image J software (Image J 1.53, NIH).
Frontiers in Oncology 04
2.11 Cell proliferation and
cytotoxicity assays

Cell Counting Kit-8 (CCK-8; GlpBio, CA, USA) was used to

measure cell viability and proliferation. The experimental

procedure was the same as the official instructions. For the

proliferation assay, transfected cells (2000 cells per well) were

seeded in 96-well plates, and optical density (OD) 450 nm values

were measured at 0, 24, 48, 72, 96, and 120 hours with a microplate

reader (BioTek, Vermont, USA). Cell proliferation fold was

calculated using the following method: cell proliferation fold =

(OD0-120 hours –ODblank)/(OD0 hours –ODblank). For the cytotoxicity

assay, 4000 cells per well were plated in 96-well plates 24 hours

before gemcitabine (GlpBio) treatment. After 48 hours, OD values

were determined, and cell viability was obtained using the following

algorithm: cell viability = (ODgemcitabine-treated group – ODblank)/

(ODcontrol group – ODblank).
2.12 Statistical analysis

All statistical analyses and graphical visualizations were implemented

using R software (version 4.21) and packages from the Comprehensive R

Archive Network (CRAN) or Bioconductor repositories. Two-tailed

Student’s t test, nonparametric Wilcoxon, and Spearman tests were

used for comparison and correlation analyses, as appropriate. Two-tailed

P < 0.05 was considered significant.
3 Results

3.1 DEGs upregulated in gemcitabine-
resistant PC cell lines

The workflow of the current study is presented in Supplementary

Figure S1. To better compare the differences in gemcitabine

sensitivity, data from the CTRP database were first Z-scored. As

similar responses were observed in seven cell lines (PANC0403,

PATU8988S, PANC0813, PANC1, CAPAN1, MIAPACA2, and

SUIT2), 0.5 and –0.5 were selected as the grouping thresholds. Of

the 30 PC cell lines, 13 were classified as gemcitabine-resistant, 7 as

intermediate gemcitabine-resistant, and 10 as gemcitabine-sensitive

(Figure 1A and Supplementary Figure S2). Differential expression

analysis revealed that the expression levels of 17 genes were

significantly higher in the gemcitabine-resistant group than in the

gemcitabine-sensitive group (Figures 1B, C). Additionally, we

summarized the CNV and somatic mutation frequencies in the

TCGA cohort (Figures 1D, E). The number of CNV gains was

much higher than CNV losses in OSBPL1A, NCEH1, DUSP1, and

ALDH3B1, while the opposite tendencies were observed in ERAP2,

CHST11, GALM, andMSLN. The mutation rates of the DEGs related

to gemcitabine chemoresistance were less than 3%, except for

OSBPL1A (13%).
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3.2 Expression levels of the prognostic
genes related to gemcitabine
chemoresistance measured by bulk RNA-
seq and scRNA-seq

K-M analysis revealed that 6 out of 17 DEGs associated with

gemcitabine chemoresistance had prognostic value in the TCGA

cohort, namely, ALDH3B1, CHST11, EGFR, ERAP2, MSLN, and

NCEH1 (Figure 2A). The expression levels of the six prognostic

DEGs were significantly higher in the TCGA tumor samples than

in the nonmatched GTEx normal samples (Figure 2B).

Consistently, these genes were more highly expressed in

gemcitabine-resistant PC cell lines than in normal pancreatic

cell lines (Figure 2C). However, matched tumor-normal

comparisons indicated that EGFR was not relatively upregulated

in malignant tissues (Figures 2D-F).

After quality control, the number of normal/tumor cells in

GSE212966 was 10751/17338 and in CRA00160 was 13771/34974.

At the single-cell level, tumor cells expressed low levels of CHST11

compared with ALDH3B1, EGFR, ERAP2, MSLN, and NCEH1

(Figures 3A-E, 4A-E). The fibroinflammatory stroma and cancer-

associated fibroblast (CAF)-enriched TME are two characteristics of
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PC (37). Pancreatic stellate cells are the precursors of CAFs, which

are essential in tumorigenesis and gemcitabine resistance (37, 38).

As shown in the UMAP plots, most of the stellate and fibroblast

cells came from the tumor samples (Figures 3A-C, 4A-C). The

relatively low expression of EGFR in bulk RNA-seq analyses was

further confirmed by single-cell analyses (Figures 3D, 4D).

However, it was still upregulated in malignant and stromal

components of tumor tissues, proving that it was indispensable

for tumor progression (Figures 3E, 4E). In contrast to the results in

CRA00160, the mean UMI count of ERAP2 in GSE212966 was

lower in tumor samples, which could be accounted for by the low

proportion of detected malignant cells (Figures 3A-D).
3.3 Development and validation of a
chemoresistance-related gene signature

Except for CHST11, the other five chemoresistance-related genes

were included in the LASSO Cox model predicting the OS of the

TCGA training cohort (Figures 2G, H). The risk score formula was as

follows: risk score = (0.3731 * EGFR expression) + (0.2364 * ERAP2

expression) + (0.1588 * MSLN expression) + (0.1254 * NCEH1
A B

D E

C

FIGURE 1

Characterization of key genes regulating gemcitabine resistance. (A) Scaled gemcitabine resistance scores of the 30 pancreatic cancer cell lines in
the CTRP database. (B) Differentially expressed genes (DEGs) between gemcitabine-sensitive and gemcitabine-resistant cell lines. (C) Heatmap
depicting the expression levels of the 17 DEGs correlated with gemcitabine resistance. (D) Copy number variation (CNV) frequencies of the 17 DEGs
in the TCGA cohort. (E) Somatic mutation frequencies of the 17 DEGs in the TCGA cohort.
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expression) + (0.2233 * ALDH3B1 expression). On the basis of the

median risk score of the patients in the TCGA cohort, all the enrolled

patients were separated into high- or low-risk groups. K-M analyses

and risk plots indicated that patients with higher risk scores had

significantly worse prognoses (Figures 5A, B). Log-rank test P values

of the TCGA, GEO, and whole cohorts were less than 0.001. The

prediction accuracies of the 1-, 3-, and 5-year survival rates were

0.750/0.781/0.741 in the TCGA cohort, 0.596/0.615/0.755 in the GEO

cohort, and 0.653/0.668/0.765 in the whole cohort, respectively

(Figure 5C). Positive correlations were observed between the risk

score and expression levels of the five genes (Figure 5D). Patients in

different risk groups could be clearly distinguished in PCA reduction

diagrams (Figure 5E).
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3.4 Establishment of a predictive
nomogram based on key genes regulating
gemcitabine chemoresistance

In the TCGA cohort, the chemoresistance-related risk score was

the only independent prognostic factor identified by univariate and

multivariate Cox analyses (Figures 6A, B). In addition, the risk score

was also a significant risk factor in the GEO and whole cohorts

(Figure 6A). As the clinicopathological information of the GEO

patients was incomplete, multivariate Cox regression was not

applicable. Therefore, a nomogram predicting 1-, 3-, and 5-year

OS rates was built based on the expression levels of the five genes

constituting the risk model (Figure 7A). C index analysis indicated
A B

D E

F G H

C

FIGURE 2

Prognostic values and expression levels of the genes related to gemcitabine resistance. (A) K-M analyses of the six differentially expressed genes
(DEGs) associated with gemcitabine chemoresistance and prognosis in the TCGA cohort. (B-F) Comparison of the expression levels of the six
prognostic DEGs in the GTEx-TCGA cohort (B), pancreatic cell lines (C), and matched tumor-normal samples (D-F). (G, H) LASSO Cox analysis. The
optimal number of signatures was determined by tenfold cross-validation. *p < 0.05; **p < 0.01; ***p < 0.001; ns, not statistically significant.
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that the nomogram had the highest prediction performance

compared with other factors in the TCGA cohort, which was

further supported by tROC and DCA curves (Figures 7B-D).

Then, the accuracies of the 1-, 3-, and 5-year OS predictions were

validated internally and externally, and the deviations between the

nomogram-predicted and observed OS were small (Figure 7E).
3.5 Chemosensitivity analyses

As the five prognostic genes (ALDH3B1, EGFR, ERAP2, MSLN,

and NCEH1) were highly expressed in gemcitabine-resistant PC cell

lines, this established gene signature was, therefore, a very
Frontiers in Oncology 07
promising indicator of gemcitabine sensitivity for PC patients.

This hypothesis was supported by subsequent analyses, which

showed that the risk score increased with the gemcitabine

resistance score, and the low-risk group was more sensitive to

gemcitabine (Figures 8A-D). TMB is a genetic characteristic of

cancers. In the TCGA cohort, the risk score was positively

correlated with TMB (Figure 8E). The top five mutated genes in

the high- and low-risk groups were KRAS (84%/46%), TP53 (75%/

48%), SMAD4 (29%/17%), CDKN2A (29%/12%), and TTN (14%/

10%) (Figure 8F). Since this gene signature was closely related to

gemcitabine sensitivity, we further explored its potential in

predicting the response to other commonly used anti-PC drugs.

As shown in Figure 8G, patients with higher risk scores were more
A B

D

EC

FIGURE 3

The dimension reduction of the GSE212966 dataset. (A, B) Uniform manifold approximation and projection (UMAP) plots of single-cell RNA
sequencing. (C) Percentage of the detected cells in tumor and normal samples. (D) Comparison of the mean unique molecular identifier (UMI)
counts between tumor and normal samples. (E) Feature plots of CHST11, EGFR, ERAP2, MSLN, NCEH1, and ALDH3B1.
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likely to be resistant to doxorubicin, olaparib, paclitaxel, and

FOLFRINOX components (fluorouracil, irinotecan, oxaliplatin),

while the same tendencies were also observed in patients with

higher TMB levels.

Moreover, we employed the GSVA method to understand the

mechanisms underlying chemoresistance. The pathways enriched in

the high-risk group were mainly associated with pancreatic cancer,

apoptosis, mismatch repair, cell cycle, spliceosome, hypoxia,

glycolysis, P53 signaling, MYC signaling, TGF-beta signaling, and

PI3K/Akt signaling (Figures 9A, B). The low-risk group showed

enrichment for pathways related to metabolism and downregulation

of KRAS. Thus, hyperactivation of oncogenic pathways could

account for the dismal prognosis and chemoresistance in the high-
Frontiers in Oncology 08
risk group. Taken together, this gene signature was a versatile tool

favoring multidrug resistance prediction.
3.6 Evaluations of immune infiltration and
immunotherapy sensitivity

Seven published methods were integrated to comprehensively

evaluate the TME compositions of PC patients in TCGA and GEO

cohorts. The risk score exhibits positive correlations with cells

favoring immunosuppression, including myeloid-derived

suppressor cells (MDSCs), regulatory T (Treg) cells, cancer-

associated fibroblasts (CAFs), and T helper type 2 (Th2) cells
A B

D

EC

FIGURE 4

The dimension reduction of the CRA00160 dataset. (A, B) Uniform manifold approximation and projection (UMAP) plots of single-cell RNA
sequencing. (C) Percentage of the detected cells in tumor and normal samples. (D) Comparison of the mean unique molecular identifier (UMI)
counts between tumor and normal samples. (E) Feature plots of CHST11, EGFR, ERAP2, MSLN, NCEH1, and ALDH3B1.
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(Figure 10A) (39). Consistently, the anticancer cells were

significantly lower in the high-risk group, such as CD8+ T cells,

cytotoxic cells, and effector memory T (Tem) cells (Figure 10B). The

TIDE method was applied to estimate the ICB resistance score, and
Frontiers in Oncology 09
the results showed that the low-risk group was more sensitive to

ICB treatment (Figure 10C).

Notably, the high-risk group patients had higher TMB levels

and higher expression levels of immune checkpoints (PDCD1 and
FIGURE 5

Prognostic values of the chemoresistance-related signature in TCGA, GEO and whole cohorts. (A) Risk plots depicting the risk score and survival
status distributions. (B) Kaplan-Meier (KM) curves comparing overall survival between high- and low-risk groups. The survival difference was
evaluated by the log-rank test. (C) Time-dependent receiver operating characteristic (ROC) curves and area under the curve (AUC) analyses for
predicting 1-, 3-, and 5-year survival. (D) Heatmaps showing the Z-scored expression of the five genes constituting the risk model. (E) Principal
component analyses (PCA).
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PD-L1), which was contradictory to the TIDE estimation

(Figures 8E, 10C, D). Then, the “easier” R package was employed

to objectively assess the ICB response by leveraging multiple proxies

of the immune response, including cancer type, TMB, pathway

activities, cell fractions, transfer factor activities, and intracellular

and intercellular communications. Interestingly, TMB exhibited a

negative correlation with the EaSIeR score (Figure 10E). However,

there was no significant difference regarding the EaSIeR scores

between the high- and low-risk groups (Figure 10F).
3.7 Loss-of-function experiments in
PC cells

Because previous studies reported that EGFR, ERAP2, and

MSLN were associated with gemcitabine response, siRNA-

mediated knockdowns were carried out to investigate the roles of

NCEH1 and ALDH3B1 in cell proliferation and gemcitabine

resistance (40–42). First, RT-qPCR analyses demonstrated that

the expression levels of ALDH3B1 and NCEH1 were relatively

higher in the three PC cell lines (AsPC-1, CFPAC-1, and PANC-1)

than in the normal pancreatic epithelial cell line (hTERT-HPNE)

(Figures 11A, B). At the mRNA protein level, high silencing

efficiencies (> 70% for PCR assay, > 40% for WB assay) of both

siRNAs were achieved at 48 hours posttransfection (Figures 11C-H;

Supplementary Figure S3A-C).

The CCK-8 proliferation assay indicated that the proliferation

rates of the three PC cell lines were noticeably diminished after

knocking down ALDH3B1 and NCEH1 (Figures 11I-K,

Supplementary Figure S3D-F). Gemcitabine cytotoxicity assays

demonstrated that knockdown of ALDH3B1 and NCEH1

enhanced gemcitabine sensitivity (Figures 11L-N). Of note, this

effect was concentration-dependent. The concentration threshold

for viability differences was 0.01/0.1/10 for CFPAC-1/AsPC-1/

PANC1 cells. These findings indicated that NCEH1 and
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ALDH3B1 were pivotal regulators of cell proliferation and

gemcitabine sensitivity in PC.
4 Discussion

PC is an extremely aggressive and lethal malignancy threatening

global health. Multiagent cytotoxic regimens are essential for the

multidisciplinary management of PC, either alone or in

combination with ICBs, surgical resection, and radiation therapy

(43). Gemcitabine has been widely used as the first-line agent for

progressive and metastatic PC, although it only shows a slight

improvement in prognosis (44). The limited therapeutic efficacy of

gemcitabine mainly results from intrinsic and acquired

chemoresistance. Factors leading to chemoresistance are

multifaceted in PC, such as autophagy, epithelial-mesenchymal

transition, and upregulation of ATP-binding cassette transport

protein (45–47). Therefore, pursuing a comprehensive

understanding of chemoresistance mechanisms is conducive to

yielding satisfactory therapeutic effects.

In this study, a LASSO Cox risk model and a prognostic

nomogram were developed based on the five DEGs upregulated

in gemcitabine-resistant PC cells as opposed to gemcitabine-

sensitive PC cells, including EGFR, MSLN, ERAP2, ALDH3B1,

and NCEH1 (also known as KIAA1363 or AADACL1). This gene

signature was an independent prognostic biomarker for predicting

prognosis and gemcitabine sensitivity. Except for ALDH3B1 and

NCEH1, the other three genes have been reported to be associated

with tumor progression and gemcitabine resistance in PC. EGFR

inhibitors have been widely studied for their potential applications

in PDAC since 2007. Compared with monotherapy, gemcitabine in

combination with erlotinib can improve survival in metastatic PC

patients, while gemcitabine plus afatinib can impede the growth and

metastasis potential of PC stem cells (40, 48). A novel conjugate

targeting EGFR/HER2 can enhance gemcitabine sensitivity via the

SMAD4-mediated mechanism (49). Although MSLN expression is
A B

FIGURE 6

Forest plots of univariate and multivariate Cox analyses. (A) Univariate Cox analyses in the TCGA, GEO, and whole cohort. (B) Multivariate Cox
analysis in the TCGA cohort.
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restricted to mesothelial cells in healthy tissues, it is also a malignant

factor expressed by 80-85% of PC masses (50). Amatuximab

treatment, an MSLN-blocking antibody, can result in a reduction

in metastatic potential and apoptosis induced by gemcitabine (51).
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Additionally, MSLN is also a valuable predictor of responses to

EGFR inhibitors and gemcitabine (41, 52). Knockdown of ERAP2

can enhance the cytotoxicity of gemcitabine against PC cells and

compromise the capacity of migration and invasion (42). Moreover,
A B

D EC

FIGURE 7

Establishment and validation of a chemoresistance-related nomogram. (A) A predictive nomogram based on the expression levels of EGFR, ERAP2,
MSLN, NCEH1, and ALDH3B1. (B) Concordance index analyses of clinicopathological factors in the TCGA cohort. (C–E) Evaluations of the prediction
performance by concordance index (C index), time-dependent receiver operating characteristic (tROC), and decision curve analysis (DCA).
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ERAP2 can indirectly modulate PC aggressiveness. Pancreatic

stellate cells (PSCs) are the most predominant contributors to the

hyperdense stroma that favors tumor progression (53). Decreased

ERAP2 expression weakens the activation of PSCs, tumor-PSC

interactions, and the capacities of PSCs to promote cancer

aggression (54). ALDH3B1 is a critical enzyme against oxidative

stress (55). After silencing ALDH3B1, glioma cells suffer from G2/

M arrest and epithelial-mesenchymal transition (EMT) inhibition
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(56). NCEH1 is a transmembrane hydrolase involved in neutral

ether lipid metabolism (57). It has been reported that the

inactivation of NCEH1 impairs cell migration and tumor growth

in ovarian and prostate cancers (57, 58). Although no experiments

have investigated the roles of ALDH3B1 and NCEH1 in PC, our

bioinformatic and experimental analyses indicated that the

increased expression of both genes was positively correlated with

PC progression and gemcitabine chemoresistance, thus conferring a
A B

D E F

G

C

FIGURE 8

Relationships among the chemoresistance-related risk score, tumor mutation burden, and estimated chemotherapeutic responses to anti-pancreatic
cancer agents. (A-D) Gemcitabine resistance scores of TCGA and GEO cohorts were estimated by the “oncoPredict” R package using CTRP V2 (A, B)
or GDSC2 (C, D) data as the training cohort. (E) Correlation of the five-gene signature with tumor mutation burden (TMB) level in the TCGA cohort.
(F) Oncoplots showing the top 15 most altered genes between the high- and low-risk groups of the TCGA cohort. (G) Correlation matrices depicting
the relationships among the chemoresistance-related risk score, TMB, and therapy responses to first-line chemotherapeutics. **, p < 0.01; ***, p <
0.001; ****, p < 0.0001.
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survival disadvantage. Taken together, all five genes comprising this

established signature are experimentally or clinically confirmed as

indicators of PC progression and gemcitabine sensitivity.

In addition to gemcitabine, this gene signature was theoretically

associated with sensitivities to other first-line anti-PC agents,

including doxorubicin, olaparib, paclitaxel, and FOLFRINOX. The

mechanisms of multidrug chemoresistance in the high-risk group

might be accounted for by the high activities of pathways associated

with mismatch repair (59), cell cycle (60), spliceosome (61), hypoxia

(62), and multiple oncogenic signaling (P53, MYC, TGF-beta, and

PI3K/Akt) (63–66).

The accumulation of multiple somatic mutations drives the

cancerous transformation of normal pancreatic duct cells, especially

four frequently mutated genes (KRAS, CDKN2A, TP53, and

SMAD4) (67). Consistently, our results suggested that the high-

risk patients harbored higher TMB levels and higher mutation

frequencies of these four genes than their low-risk counterparts.

TMB is conventionally used as a biomarker to predict ICB response

across various cancer types, but its relevance to PC chemosensitivity

remains largely unknown (68). In the JIPANG study, nonsquamous

non-small cell lung cancer (Ns-NSCLC) patients with high TMB

levels (≥ 12 mut/Mb) tended to benefit more from pemetrexed plus

cisplatin treatment than from vinorelbine plus cisplatin (69). One

retrospective analysis revealed that TMB-low patients with

colorectal cancer were more sensitive to irinotecan-based

chemotherapy versus oxaliplatin-based chemotherapy (70).

However, another study pointed out that TMB was not

significantly correlated with clinical benefits in breast, lung, and

gastrointestinal cancers (71). Therefore, the predictive performance

of TMB for drug sensitivity depends on the tumor type. In our

study, TMB was positively correlated with multichemoresistance in

PC, which might result from the gradual acquisition of resistance

mutations. For example, KRAS mutations (72) can impair the

efficacy of anti-EGFR treatment in colorectal cancer, and

gemcitabine resistance is linked to TP53 mutations (73),
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CDKN2A inactivation (74), and SMAD4 loss (75). Thus, TMB is

a molecular feature to predict the chemotherapy response of PC.

Advances in immunotherapies have radically changed the

therapy options for some historically chemotherapy-refractory

malignancies. However, PC has several intrinsic properties

resulting in immune escape. Our TME analyses indicated that

high-risk PC patients were more immune-cold with less CD8+ T

cell infiltration and more protumor cell infiltration (MDSCs, CAFs,

Treg cells, and Th2 cells), which was confirmed by the TIDE

estimation. Typically, immune-cold tumors are more resistant to

ICB treatment than immune-hot tumors (76). However, we

observed that the high-risk group had higher TMB levels and

expression levels of immune checkpoints (PDCD1 and PD-L1).

TMB is a proxy of tumor antigenicity, and high-TMB patients tend

to respond favorably to immunotherapy (68). TMB, in concert with

CD274 (PD-L1) expression, serves as a biomarker panel for ICB

selection in many kinds of cancers (77). Then, we used the “easier”

package to predict the ICB response, taking into account intrinsic

and extrinsic immune escape mechanisms. Paradoxically, the risk

score was negatively correlated with TMB. This may be caused by

KRAS mutation, which is present in 81-92% of PC patients (78, 79).

Mutated KRAS contributes to the development of the

immunosuppressive TME in PC through several avenues,

including recruitment of MDSCs and Treg cells (80, 81),

maintenance of the fibroinflammatory stroma (82), induction of

Th17 cells (83), and upregulation of PD-L1 expression via mRNA

stabilization (84). The EaSIeR scores (ICB efficacies) of high-risk

patients were similar to those of low-risk patients. Despite the

successes of ICB in other tumors, the overall response rates of PC

patients receiving anti-PD-L1 monotherapy and anti-CTLA-4 plus

anti-PD-L1 regimen are reported to be 0% and 3.1%, respectively.

Thus, all the high- and low-risk patients were not responsive to ICB

treatment alone. Combination strategies are more likely to yield

satisfactory therapeutic effects, such as pegvorhyaluronidase alfa

with nab-paclitaxel plus gemcitabine (85).
A B

FIGURE 9

Heatmap showing GSVA enrichment scores (A) KEGG pathway analysis. (B) Hallmark analysis. *, p < 0.05; **, p < 0.01; ***, p < 0.001.
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Although we performed comprehensive analyses and

experimental validations, there are several limitations that

warrant caution. Firstly, since the RNA-seq and chemosensitivity

data were acquired from different sources, some important genes

might have been ignored and not incorporated into this gene
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signature. Secondly, we only validated ALDH3B1 and NCEH1

mediated gemcitabine resistance in PC cell lines. Further studies

are needed to investigate the roles of ALDH3B1 and NCEH1 in

chemoresistance to doxorubicin, olaparib, paclitaxel, fluorouracil,

irinotecan, and oxaliplatin. Additional research is essential to
A B

D
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FIGURE 10

Exploration of the tumor microenvironment and estimation of immunotherapy efficacy. (A) Estimation of tumor-infiltrating cells for TCGA and GEO
patients. This analysis was performed using the CIBERSORT, MCPcounter, EPIC, xCell, quantiseq, TIMER, and ssGSEA algorithms. (B) Comparison of
the tumor environment score between the high- and low-risk groups. (C) Assessment of therapy response to immune checkpoint blockade (ICB)
using the TIDE algorithm for TCGA and GEO patients. (D) Correlations of the risk score with immune checkpoints. (E, F) Correlations of the EaSIeR
score with the tumor mutation burden (TMB) (E) and risk score (F). Only TCGA patients with available TMB data were included in the EaSIeR score
calculation. ns, not significant; *, p < 0.05; **, p < 0.01; ***, p < 0.001.
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investigate the specific roles of ALDH3B1 and NCEH1 in these

chemotherapeutics. Thirdly, only bioinformatic software was

employed to predict responses to chemotherapy and

immunotherapy. Further clinical studies are warranted to validate
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the predict ive performance of this chemoresistance-

related signature.

In summary, this study identified a chemoresistance-related

gene signature that can independently facilitate prognosis
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FIGURE 11

CCK-8 and qRT-PCR assays of pancreatic cancer cells transfected with ALDHB1 and NCEH1 siRNAs. (A, B) Relative mRNA expression levels of
ALDH3B1 and NCEH1 in three pancreatic cancer cell lines and hTERT-HPNE cells. (C-H) Knockdown efficacies of ALDHB1 and NCEH1 siRNAs in
AsPC-1 (C, D), CFPAC-1 (E, F), and PANC-1 (G, H) cells. (I-N) Results of CCK-8 proliferation and cytotoxicity experiments in AsPC-1 (I, L), CFPAC-1
(J, M), and PANC-1 (K, N) cells. *, p < 0.05; **, p < 0.01; ***, p < 0.001; ****, p < 0.0001; ns, not statistically significant.
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prediction in PC. This gene signature also helps to distinguish

immune features and is correlated with TMB. Additionally,

ALDH3B1 and NCEH1 are two promising targets for treating PC.
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34. Lapuente-Santana Ó, van Genderen M, Hilbers PAJ, Finotello F, Eduati F.
Interpretable systems biomarkers predict response to immune-checkpoint inhibitors.
Patterns (2021) 2:100293. doi: 10.1016/j.patter.2021.100293

35. Zu F, Chen H, Liu Q, Zang H, Li Z, Tan X. Syntenin regulated by miR-216b
promotes cancer progression in pancreatic cancer. Front Oncol (2022) 12:790788.
doi: 10.3389/fonc.2022.790788

36. Liu P, Zu F, Chen H, Yin X, Tan X. Exosomal DNAJB11 promotes the
development of pancreatic cancer by modulating the EGFR/MAPK pathway. Cell
Mol Biol Lett (2022) 27:87. doi: 10.1186/s11658-022-00390-0

37. Wei L, Lin Q, Lu Y, Li G, Huang L, Fu Z, et al. Cancer-associated fibroblasts-
mediated ATF4 expression promotes malignancy and gemcitabine resistance in
pancreatic cancer via the TGF-b1/SMAD2/3 pathway and ABCC1 transactivation.
Cell Death Dis (2021) 12:334. doi: 10.1038/s41419-021-03574-2

38. Pothula SP, Xu Z, Goldstein D, Pirola RC, Wilson JS, Apte MV. Key role of
pancreatic stellate cells in pancreatic cancer. Cancer Lett (2016) 381:194–200.
doi: 10.1016/j.canlet.2015.10.035

39. HoWJ, Jaffee EM, Zheng L. The tumour microenvironment in pancreatic cancer
{{/amp]]mdash; clinical challenges and opportunities. Nat Rev Clin Oncol (2020)
17:527–40. doi: 10.1038/s41571-020-0363-5

40. Moore MJ, Goldstein D, Hamm J, Figer A, Hecht JR, Gallinger S, et al. Erlotinib
plus gemcitabine compared with gemcitabine alone in patients with advanced
pancreatic cancer: a phase III trial of the national cancer institute of Canada clinical
trials group. J Clin Oncol (2007) 25:1960–6. doi: 10.1200/JCO.2006.07.9525

41. Fukamachi K, Iigo M, Hagiwara Y, Shibata K, Futakuchi M, Alexander DB, et al.
Rat n-ERC/Mesothelin as a marker for In vivo screening of drugs against pancreas
cancer. PloS One (2014) 9:e111481. doi: 10.1371/journal.pone.0111481

42. Yu P, Luo S, Cai J, Li J, Peng C. ERAP2 as a potential biomarker for predicting
gemcitabine response in patients with pancreatic cancer. Aging (2022) 14:7941–58.
doi: 10.18632/aging.204324

43. W P, A C, Em O. Pancreatic cancer: a review. JAMA (2021) 326:851.
doi: 10.1001/jama.2021.13027

44. Zeng S, Pöttler M, Lan B, Grützmann R, Pilarsky C, Yang H. Chemoresistance in
pancreatic cancer. Int J Mol Sci (2019) 20:4504. doi: 10.3390/ijms20184504

45. Ueda K. ABC proteins protect the human body and maintain optimal health.
Biosci Biotechnol Biochem (2011) 75:401–9. doi: 10.1271/bbb.100816

46. Piffoux M, Eriau E, Cassier PA. Autophagy as a therapeutic target in pancreatic
cancer. Br J Cancer (2021) 124:333–44. doi: 10.1038/s41416-020-01039-5
Frontiers in Oncology 17
47. Huang Z, Zhang Z, Zhou C, Liu L, Huang C. Epithelial–mesenchymal transition:
the history, regulatory mechanism, and cancer therapeutic opportunities. MedComm
(2022) 3:e144. doi: 10.1002/mco2.144

48. Kaushik G, Seshacharyulu P, Rauth S, Nallasamy P, Rachagani S, Nimmakayala
RK, et al. Selective inhibition of stemness through EGFR/FOXA2/SOX9 axis reduces
pancreatic cancer metastasis. Oncogene (2021) 40:848–62. doi: 10.1038/s41388-020-
01564-w

49. Yao H, Song W, Cao R, Ye C, Zhang L, Chen H, et al. An EGFR/HER2-targeted
conjugate sensitizes gemcitabine-sensitive and resistant pancreatic cancer through
different SMAD4-mediated mechanisms. Nat Commun (2022) 13:5506. doi: 10.1038/
s41467-022-33037-x

50. Nichetti F, Marra A, Corti F, Guidi A, Raimondi A, Prinzi N, et al. The role of
mesothelin as a diagnostic and therapeutic target in pancreatic ductal adenocarcinoma: a
comprehensive review. Targeting Oncol (2018) 13:333–51. doi: 10.1007/s11523-018-0567-0

51. Matsuzawa F, Kamachi H, Mizukami T, Einama T, Kawamata F, Fujii Y, et al.
Mesothelin blockage by amatuximab suppresses cell invasiveness, enhances
gemcitabine sensitivity and regulates cancer cell stemness in mesothelin-positive
pancreatic cancer cells. BMC Cancer (2021) 21:200. doi: 10.1186/s12885-020-07722-3

52. Poteet E, Liu D, Liang Z, Van Buren G, Chen C, Yao Q. Mesothelin and TGF-a
predict pancreatic cancer cell sensitivity to EGFR inhibitors and effective combination
treatment with trametinib. PloS One (2019) 14:e0213294. doi: 10.1371/
journal.pone.0213294

53. Pothula SP, Pirola RC, Wilson JS, Apte MV. Pancreatic stellate cells: aiding and
abetting pancreatic cancer progression. Pancreatology (2020) 20:409–18. doi: 10.1016/
j.pan.2020.01.003

54. Guan W, Nakata K, Sagara A, Iwamoto C, Endo S, Matsuda R, et al. ERAP2 is a
novel target involved in autophagy and activation of pancreatic stellate cells via UPR
signaling pathway. Pancreatology (2022) 22:9–19. doi: 10.1016/j.pan.2021.09.012

55. Marchitti SA, Orlicky DJ, Vasiliou V. Expression and initial characterization of
human ALDH3B1. Biochem Biophys Res Commun (2007) 356:792–8. doi: 10.1016/
j.bbrc.2007.03.046

56. Wang Z, Mo Y, Tan Y, Wen Z, Dai Z, Zhang H, et al. The ALDH family
contributes to immunocyte infiltration, proliferation and epithelial-mesenchymal
transformation in glioma. Front Immunol (2021) 12:756606. doi: 10.3389/
fimmu.2021.756606

57. Chang JW, Nomura DK, Cravatt BF. A potent and selective inhibitor of
KIAA1363/AADACL1 that impairs prostate cancer pathogenesis. Chem Biol (2011)
18:476–84. doi: 10.1016/j.chembiol.2011.02.008

58. Chiang KP, Niessen S, Saghatelian A, Cravatt BF. An enzyme that regulates ether
lipid signaling pathways in cancer annotated by multidimensional profiling. Chem Biol
(2006) 13:1041–50. doi: 10.1016/j.chembiol.2006.08.008

59. Higuchi F, Nagashima H, Ning J, Koerner MVA, Wakimoto H, Cahill DP.
Restoration of temozolomide sensitivity by PARP inhibitors in mismatch repair
deficient glioblastoma is independent of base excision repair. Clin Cancer Res Off J
Am Assoc Cancer Res (2020) 26:1690–9. doi: 10.1158/1078-0432.CCR-19-2000

60. Alimbetov D, Askarova S, Umbayev B, Davis T, Kipling D. Pharmacological
targeting of cell cycle, apoptotic and cell adhesion signaling pathways implicated in
chemoresistance of cancer cells. Int J Mol Sci (2018) 19:1690. doi: 10.3390/
ijms19061690

61. Reviejo M, Soto M, Lozano E, Asensio M, Martıńez-Augustin O, Sánchez de Medina
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