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Despite distant metastases being the critical factor affecting patients’ survival,

they remain poorly understood. Our study thus aimed to molecularly

characterize colorectal cancer liver metastases (CRCLMs) and explore whether

molecular profiles differ between Synchronous (SmCRC) and Metachronous

(MmCRC) colorectal cancer. This characterization was performed by whole

exome sequencing, whole transcriptome, whole methylome, and miRNAome.

The most frequent somatic mutations were in APC, SYNE1, TP53, and TTN genes.

Among the differently methylated and expressed genes were those involved in

cell adhesion, extracellular matrix organization and degradation, neuroactive

ligand-receptor interaction. The top up-regulated microRNAs were hsa-miR-

135b-3p and -5p, and the hsa-miR-200-family while the hsa-miR-548-family

belonged to the top down-regulated. MmCRC patients evinced higher tumor

mutational burden, a wider median of duplications and deletions, and a

heterogeneous mutational signature than SmCRC. Regarding chronicity, a

significant down-regulation of SMOC2 and PPP1R9A genes in SmCRC

compared to MmCRC was observed. Two miRNAs were deregulated between

SmCRC and MmCRC, hsa-miR-625-3p and has-miR-1269-3p. The combined

data identified the IPO5 gene. Regardless of miRNA expression levels, the
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combined analysis resulted in 107 deregulated genes related to relaxin, estrogen,

PI3K-Akt, WNT signaling pathways, and intracellular secondmessenger signaling.

The intersection between our and validation sets confirmed the validity of our

results. We have identified genes and pathways that may be considered as

actionable targets in CRCLMs. Our data also provide a valuable resource for

understanding molecular distinctions between SmCRC and MmCRC. They have

the potential to enhance the diagnosis, prognostication, and management of

CRCLMs by a molecularly targeted approach.
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Introduction

Metastasis, the process of spreading cancer cells from the

primary site to distant organs, is a major cause of cancer

mortality (1). The liver is the most common site of distant

metastasis in colorectal cancer (CRC) patients. Colorectal cancer

liver metastases (CRCLMs) are rather frequent. Even during the

disease follow up, about 50% of CRC patients experience tumor

occurrence at a distant site, resulting in a poor prognosis with a 14%

five-year survival rate (2).

When the CRCLMs are not treated, the disease exhibits an

unfavorable prognosis with the median overall survival (mOS) of

less than 12 months. Even with the use of aggressive treatment (e.g.

oxaliplatin-based treatment), the overall survival (OS) does not

exceed 13-18 months (3–5). The only curative approach at present

is surgical resection of isolated liver metastases. However, only 20%

of resected patients attain long-term remission [1% of patients

would develop liver metastasis during one-year follow-up, whereas

15% during five-year follow-up (5–11)], while 60-70% of patients

experience local or distant recurrence (12). However, it remains

clinically impossible to predict which patients are more likely to

develop distant recurrence after resection of primary cancer. As the

incidence and mortality of CRCLMs remain high, it is important

and urgent to identify their etiology, molecular mechanisms, and

biomarkers for early prediction and personalized treatment.

Patients with CRCLMs form a heterogeneous group. We can

distinguish between Synchronous (SmCRC) and Metachronous

(MmCRC) colorectal cancers. There is, however, still no

consensus on the definition of SmCRC and MmCRC as used in

the context of CRCLMs. Although by definition, all metastases are

synchronous (occult or detectable at diagnosis), most definitions

include detection at or before diagnosis or surgery of the primary

tumor (13), while some also include metastases detected up to 3 (14,

15), 4 (16) or 6 months (17, 18) following diagnosis. It was

suggested that both diseases might represent a distinct phenotype

and impact therapy outcome, such as patients with SmCRC

compared with patients with MmCRC have more adverse

prognostic features and significantly shorter time to treatment

failure (19). However, several studies did not confirm that (20, 21).
02
Over the past few decades, numerous preclinical and clinical

studies have been conducted to uncover the underlying mechanisms

of CRCLMs formation. However, only a limited number of results

from these studies reached clinical practice, such as assessing PD-L1

expression in tumor cells using immunohistochemistry to provide

prognostic information and predict response to treatment with PD-

1/PD-L1 inhibitors (22). The lack of biomarkers in clinical practice

is mainly because most studies focused on a single gene or a

primary tumor.

In the present study, the high-throughput approaches with

comprehensive bioinformatic analysis provided us with a

platform for the analysis of metastatic tissue, both SmCRC and

MmCRC, to find relevant hub genes and pathways and understand

the molecular mechanism and characteristics of CRCLMs. In

addition, we also investigated clinicopathologic information of

SmCRC and MmCRC patients to improve patients´ management

and follow-up.
Materials and methods

Sample collection, transport, and storage

In this prospective single-center study, histologically confirmed

CRCLM patients were recruited at the Department of Oncology and

Radiotherapy (Hradec Kralove, Czech Republic) between June 2019

and December 2021. All CRCLM cases were monitored regularly

until May 31st, 2022. Patients with any personal history of previous

other malignancy or with CRC-associated well-defined inherited

syndromes (including Lynch syndrome, familial adenomatous, and

MUTYH-associated polyposis) were excluded from the study. In

total, 10 CRCLM patients were included in the study.

Biological samples were immediately put in an RNA Later

stabilization reagent (Invitrogen, USA) and stored at − 80°C.

Clinical data were collected from all subjects recruited in the

study. The clinicopathological data for the patients recruited are

reported in Table 1.

The local ethics committees at the Faculty Hospital in Hradec

Kralove, Czech Republic (number of approval 201207- S01P) and
frontiersin.org
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the Institute of Experimental Medicine, Prague, Czech Republic

(number of approval 2018/05) approved the study. All patients

provided written informed consent.

The colon mucosa from healthy individuals the fresh frozen

samples were collected consecutively during the planned

colonoscopy and were described in Jungwirth et al. (23).
Seed and soil mechanism and correction
of bioinformatical data

The first cells invading the liver came from the primary CRC

tumor. They thus also carry the genome/transcriptome of the

primary tumor, respectively colorectum. Thus, comparing the

genetic/molecular background of CRC cells with non-tumor liver

cells could lead to results focused on organ specificity rather than on

the distinctiveness of the metastasis relative to the healthy tissue.

For this reason, we included a set of control colon tissues into the

analyses apart from the patients’ paired samples (metastases and

adjacent liver tissue). Overall, control colorectal tissues (n=10) were

used to eliminate false positive results from contamination of liver

tissue. These tissues were used from healthy individuals with no

previous or current cancer. This correction was used for DNA

methylation assessment and RNA seq analysis. A more detailed

description of this correction is explained in the bioinformatics

section of the methods.
Frontiers in Oncology 03
DNA isolation, quality, and
quantity analyses

DNA isolation, quality and quantity analyses were all

performed according to the manufacturer’s instructions. For

detailed description see the appendix.
Whole exome sequencing (WES)

We enriched protein-coding DNA using Human Whole Exome

kit v7 (Agilent, USA) according to the manufacturer´s instructions.

For detailed description see the appendix.

The data curation was performed using the standard tools –

FastQC, MultiQC (24) for quality control, Trimmomatic for data

trimming (25), BWA for alignment (26), PicardTools for

deduplication, GATK pipline for variant calling (27), PureCN for

tumor purity and CNV calling (28), SnpEff for variant annotations

(29). For detailed description see the appendix. TMB was calculated

as aTMB and fTMB as described in Zou et al. (30).
DNA methylation analysis

DNA methylation analyses were done by the Infinium

Methylation EPIC Kit (Illumina, USA) according to the

manufacturer’s protocol and as described in Honkova et al. (31)
TABLE 1 Patients´ characteristics.

Characteristics N=10 Synchronous (N=7) Metachronous (N=3)

Age Years ± SD 64.6 ± 8.1 69.9 ± 4.2 62.4 ± 8.5

Gender Men
Women

7
3

5
2

2
1

Localization Colon
Rectum

5
5

4
3

1
2

Laterality1 Right-sided
Left-sided

2
8

2
6

1
2

Histology Adenocarcinoma, NOS
Mucinous adenocarcinoma

9
1

6
1

3
0

Neoadjuvant therapy2 Yes
No

2
8

2
5

0
3

Adjuvant therapy3 Yes
No

5
5

4
3

1
2

Relapse after liver surgery Yes
No

9
1

6
1

3
0

Reoperation feasible Yes
No
NA

3
6
1

2
4
1

1
2
0

Palliative therapy after liver surgery Yes
No
NA

5
4
1

3
3
1

2
1
0

Living status Alive
Dead

6
4

4
3

2
1

1Right- and left-sided primary tumors were defined as having their origin proximally or distally from the distant third of the transverse colon, respectively. 2Chemotherapy and/or targeted
therapy before CRCLM resection. 3Chemotherapy after CRCLM resection. SD, standard deviation; NOS, not otherwise specified; NA, not applicable.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1133598
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Horak et al. 10.3389/fonc.2023.1133598
Raw data were processed with the minfi package (32). Data were

normalized using the quantile method. A series of filtering was

performed(probes with SNPs and crossreactive probes (33), probes

to eliminate false positive results from tissue bias), resulting in the

final number of 559,364 probes. SVA package was used for batch

corrections (34). Differentially methylated loci were identified using

limma package (35) and for the multiple testing of the false

discovery rate (FDR), the p-values for the contrast of interest

were adjusted to be below <0.01, which is regarded to be the most

appropriate for microarray analysis (36). Annotatr package was

used for the probe annotations (37) and clusterProfiler (38) and

ReactomePA (39) for the functional analyses. For detailed

description see the appendix.
RNA isolation, quality, and
quantity analyses

RNA isolation, quality and quantity analyses were all performed

according to the manufacturer’s instructions. For detailed

description see the appendix.
RNA-seq analysis

Ribosomal RNAs (rRNAs) were removed using NEBNext

rRNA Depletion Kit (Human/Mouse/Rat, New England Biolabs,

USA). RNA sequencing cDNA libraries were constructed according

to the NEBNext Ultra II Directional RNA Library Prep Kit for

Illumina, as provided by the manufacturer (New England Biolabs,

USA). For detailed description of sequencing see the appendix.

The data curation was performed using the standard tools –

FastQC, MultiQC for quality control (24), Trimmomatic for data

trimming (25), BBmap for ribosomal RNA filtering, STAR for

alignment (40), RSEM for quantification (41). The tumor purity,

immune and stromal proportion, and contamination of liver tissue

were assessed by the ratio of somatic variants in non-differently

expressed genes and by the ESTIMATE R package (42) ahead of the

final expression calculation. The normalized counts of metastatic

samples were then cleaned from the contamination of liver tissue by

subtracting the calculated proportion of the liver tissue normalized

counts. EdgeR was used for identifying differentially expressed

genes (43). After Benjamin-Hochberg adjustment, gene was

considered deregulated with FDR lower than 0.01 and absolute

logFC greater than 1. culsterProfiler (38) and ReactomePA (39)

were used for functional analyses. For detailed description see

the appendix.
miRNA isolation, quality, and
quantity analyses

RNA isolation, quality and quantity analyses were all performed

according to the manufacturer’s instructions. For detailed

description see the appendix.
Frontiers in Oncology 04
Small RNA-sequencing

The next-generation sequencing library preparation was carried

out as described in Sabo et al. (44) and Cervena et al. (45). MiRNA

libraries were constructed using the NEB Next Multiplex Small

RNA Library Prep Set for Illumina (New England BioLabs, USA)

according to the manufacturer’s protocols.

FastQC and MultiQC (24) were used for quality control,

Cutadapt tool (46) for trimming and BBMap for ribosomal RNA

filtering. The miRge3.0 pipeline (47) was used for alignment and

quantification. Significantly different miRNAs were identified by

EdgeR R package (43). After BH adjustment, the miRNA was

considered DE with a false discovery rate lower than 0.05.
External validation

For external validation of our data, the GSE62321 set was used

(48, 49). This set comprises pairs of primary tumors and hepatic

metastases before chemotherapy from 13 patients.
Bioinformatic in silico analysis

DepMap data analysis
To analyze the IPO5 gene interactions, the correlation data were

downloaded from the CRISPR (Avana) Public Depmap v20Q3

portal (https://depmap.org/portal/download/) for all cell lines in

the database (1,078 cell lines). Gene correlation between IPO5

knockout effect and gene expression was considered significant

for a p-value lower than 0.05 and an absolute value of correlation

coefficient higher than 0.1. Functional enrichment analysis of

significantly correlated genes with the IPO5 effect was performed

using the clusterProfiler, and ReactomePA R packages. Only terms

associated with a BH-adjusted p-value lower than 0.05

were considered.
Results

Patients´ characteristics

The clinical and pathological characteristics of 10 patients with

liver metastasis included in the study are described in Figure 1 and

Table 1. Patients were predominantly males (70%) with a mean age

of 64.6 ± 8.1 years. At the time of diagnosis, three patients had CRC

stage III, while seven patients had stage IV disease with metastases

confined to the liver. Regarding the therapy, two subjects received

chemotherapy and/or radiation therapy prior to the surgical

resection of the primary tumor and one after the primary tumor

resection. All patients had CRCLM eligible for potential resection at

the time of enrollment. In terms of chronicity, the group SmCRC

patients comprised seven patients, while the MmCRC group three.

Two patients received induction therapy with Bevacizumab/

mFOLFOX6 prior to the CRCLM resection and six patients
frontiersin.org
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received a fluoropyrimidine-based adjuvant chemotherapy

following CRCLM resection. Nine patients relapsed with a

median relapse-free survival (RFS) of 12.0 months (range 2.3–

26.5 months). Three of these patients were eligible for subsequent

surgery and five received palliative fluoropyrimidine-based

chemotherapy and/or targeted therapy. Four patients had died

during the follow-up period with a median OS of 19.4 months

(range 18.6–35.6 months).
DNA-based analysis

Analysis of WES data
We have successfully analyzed the DNA isolated from 10 paired

CRCLM and adjacent liver tissue samples.

After alignment, a range from 81 to 169 million properly

aligned read pairs per sample were obtained. In summary, the

percentage of adequately mapped read pairs reached 99% for all

samples. The average read depth for each patient can be found in

Supplementary Table S1. Due to low data quality control, two out of

ten patient samples had to be discarded from this analysis.

With the advantage of robust WES data, several features, such

as mutational analysis, tumor mutation burden and copy number

variations were analyzed with obtained WES data. The first analysis

of all samples was performed, and then stratification for either

SmCRC or MmCRC was presented.

Mutation analysis
WES in CRCLM and adjacent liver tissue DNA was performed

to identify somatic tumor-specific single nucleotide variants (SNV)

and short insertion/deletion (Indel) mutations characterizing

liver metastasis.

In total, 1,900 heterozygous and homozygous SNVs and Indels

(1,779 substitutions, 4 double substitutions, 58 short insertions, and

59 short deletions) have been discovered as different between these

two groups: 104 with high, 361 with moderate, 645 with low and

816 with modifier putative effect. Regarding the SNV effect, the

largest group of identified variants belonged to the missense and
Frontiers in Oncology 05
intron variants, followed by synonymous variants. For the

Polyphen2 calculation, we filtered out only non-synonymous

exonic variants, and the results were as follows: benign prediction

was among all samples in the range 32-48%, possibly damaging in

the range 17-33%, and damaging prediction in the range 28-48%.

After stratification for chromosome localizations, the observed

variants’ distribution was similar across all chromosomes

(Supplementary Figure 1).

The most frequent somatic mutations at the time of enrolment

were in APC (75%), SYNE1 (50%), TP53 (50%), and TTN (50%)

genes. Only one APC mutation (rs121913333, c.2680C>T,

p.Arg894*) was detected more than once (patients ID 5 and 22,

Supplementary Table S2). No other mutations were observed more

than once. The top genes with a mutation frequency of > 38% are

presented in Figure 2A.

In the terms of chronicity, we further compared the mutational

landscape between SmCRC (n=5) and MmCRC (n=3) patients. No

significant differences in distribution among these two groups were

noticed after stratification for putative effect, SNV effect,

chromosome distribution, or Polyphen2 characterization

(Supplementary Figure 2).

Using the OncoPrint for visualization of differences in the

distribution of genomic variations, the most observed difference

between these two groups was noticed for MUC16, RYR2 (SmCRC

in 60% vs MmCRC 0%) and USH2A, ACACA, ALS2CL, ATP10A,

BRINP2, CACNA1l, CCNJ, CFAP46, DYNC2H1, ENPP7P13,

KIA1549L, MED13L, PCDHA10, PRPF6, PTPRT (0% vs 66%)

genes. No other substantial differences were observed between

these two groups (Figure 2B).

Tumor mutation burden analysis
The overall TMB representing the number of single nucleotide

variations (SNVs), multiple nucleotide variations (MNVs), and

InDels per Mb was calculated. TMB was defined as aTMB, which

includes synonymous mutations, and fTMB, which excludes

synonymous mutations. The average value of aTMB was 5.99 in

all patients, and the median value of aTMB was 6.62 in all patients

(SmCRC aTMB mean 5.84 and median 6.60, MmCRC aTMB mean
FIGURE 1

Swimmer plot. The clinical and pathological characteristics of 10 patients included in the study. Each bar represents one subject in the study, and
symbols along each bar represent various relevant clinical events.
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6.22 and median 6.64, respectively). The average value of fTMB was

5.21 in all patients, and the median value of aTMB was 5.75 in all

patients (SmCRC fTMB mean 4.98 and median 5.59, MmCRC

fTMB mean 5.59 and median 6, respectively).

Mutational signature
Mutational signature analysis revealed that transition mutations

were more common than transversion mutations, and C > T

substitutions were predominant in our samples (Supplementary

Figure 3).

To better understand the pathogenesis of CRCLM, we

performed mutational signature analysis on 2,696 (1,779

heterozygous/homozygous and 917 subclonal) SNVs by analyzing

the six mutation classes (C > T, C > A, T > C, T > G, C > G, and

T > A). According to the COSMIC SBS V3 database, we identified

eight mutational signatures with a higher than 5% proportion in our

CRCLM samples (in descending order SBS1, SBS6, SBS17b, SBS36,

SBS30, SBS25, SBS3, and SBS9, Figure 2C).

In the terms of chronicity, SmCRC patients had a higher

proportion of SBS1 (cause of mutations is age related) and SBS6

(cause is related to defective mismatch repair) mutational

signatures, while MmCRC patients displayed a more
Frontiers in Oncology 06
heterogeneous distribution of mutation signatures. Given the

small number of patients in each group taking this result with

caution is necessary.

CNV analysis
Using PureCN, we identified recurrent CNVs affecting 5,432

genes (4,564 gained genes and 868 lost genes, Supplementary Table

S3) within at least 50% of our group, containing several already

known and putative driver genes (Figure 2D). For all samples, the

median duplication length was 2,675,594 bases, while the median

deletion length was 783,537. The density of genomic sizes of

structural variants in all CRCLM patients is depicted in

Figure 3C. The deletions ranged from ~239 b to 92Mb, with a

distinct peak at ~496 kb. A broad range of differently sized

duplications (~264b-147Mb) was observed, with a peak at 1.2 Mb.

In the terms of chronicity, for SmCRC, the median duplication

length was 2,166,142 (range 264b-147Mb, peak at 1.2Mb) bases

while the median deletion length was 116,0517 (range 241b-92Mb,

peak at 929kb). For MmCRC, median duplication length was

3,267,214 and median deletion length 607,852 (range 269b-

125Mb, peak at 1.6Mb, respectively 239b-66Mb, peak at 382kb,

Supplementary Tables S4 and Supplementary Figure 4).
B

C D

A

FIGURE 2

Mutational and copy number variants analyses. (A) The distribution of genetic alterations detected in all samples. Only genes affected, at least in 3
samples, are pictured. Each column represents a patient, and each row represents a gene. Different colors indicate different mutation types. The bar
chart on the top shows the total number of the given gene mutations observed in the sample. (B) The distribution of genetic alterations detected
between SmCRC and MmCRC patients. Each column represents either SMCRC or MmCRC group of patients, and each row represents a gene. Only
genes with differences in relative group distribution difference of 50% or higher are pictured. Different colors indicate different mutation types. (C) The
distribution of mutational signatures in percents according to the COSMIC SBS V3 database across all samples. Only signatures with distribution in single
sample of more than 5% are pictured. Each column represents a patient. (D) Heatmap of CNV distribution across all samples. Each row is represented by
a patient. A chromosome represents each column. The green color represents a gain, while red represents a loss within a chromosome locus.
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B

C

D E

A

FIGURE 3

The description if miRNA-based results and functional enrichment of its targets. (A) Volcano plot reporting the log2FC and the adjusted p-value in
the DE analysis between metastasis and adjacent liver tissue. Thresholds: adjusted p-value < 0.0+ and |log2FC| > 1. (B) Heatmap of top 50
differentially expressed miRNAs between metastasis and adjacent liver tissue. (C) The top miRNA targets from target enrichment analysis. (D) The
Reactome enrichment analysis of the top 10 differentially up-regulated miRNAs. (E) The Reactome enrichment analysis of the top 10 differentially
down-regulated miRNAs.
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DNA methylation analysis
We have successfully analyzed the DNA isolated from 8 paired

CRCLM and adjacent liver tissue samples.

To obtain an overview of DNA methylation profiles, first, the

principal component analysis based on the differential DNA

methylation of the CpG loci showed a clear separation among

CRCLM and adjacent liver tissue (Supplementary Figure 5).

We next analyzed the major differences in DNA methylation

distribution and found 25,865 CpG sites differentially methylated in

CRCLM tissue compared to adjacent liver tissue. Among the

differentially methylated CpG sites, 5,185 were hypermethylated

and 20,680 hypomethylated and mapped to 3,412 different

genes (1,043 hypermethylated and 2,369 hypomethylated).

Hypermethylated CpG sites were predominantly observed in CpG

islands (64.4%). On the other hand, hypomethylated CpG sites were

mainly located in intergenic regions, the so-called open sea (79.8%)

(Supplementary Figure 5).

Additionally, we identified those genes with the highest

quantitative differences in methylation between CRCLM and

adjacent tissue. The comparison was based on the analyzed Db-
values and CpG sites with an adjusted p-value < 0.01. The

distribution of the top 25 genes with the highest differences in

methylation and hierarchical clustering is depicted in Figure 4A.

For the visualization, interpretation and analysis of affected

pathways, the Reactome database was used for pathway enrichment

in our list of differentially methylated genes (Supplementary Table

S5 and Figure 4B). The hypomethylated genes were involved in
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processes such as Cell adhesion and extracellular matrix (ECM)

organization, and the hypermethylated genes in Neuroactive ligand-

receptor interaction or calcium signaling pathways and various

cancer-related pathways.
RNA-based analyses

RNA-seq analysis
We have successfully analyzed the RNA isolated from 9 paired

CRCLM and adjacent liver tissue samples and 9 non-paired normal

colon tissue samples.

The expression profiling of transcripts and differential

expression of genes between the CRCLM and adjacent liver tissue

samples were analyzed using RNA-seq data. As for WES, the first

analysis of all samples was performed, and then stratification for

either SmCRC or MmCRC was presented.

After the normalization of liver contamination in metastatic

tissue by using paired liver samples, 14,121 genes remained in the

analysis. A total of 2,711 differentially expressed genes (DEGs,

adjusted p < 0.01 and absolute value of logFC > 1) were identified

by an analysis of CRCLM compared with colon tissue. Of these,

1,719 were up-regulated, and 992 were down-regulated in CRCLM

samples (Figure 5A and Supplementary Table S6). The stratification

for the top 50 significant DEGs is depicted in Figure 5B.

To further characterize the changes in mRNA expression levels

in CRCLM and adjacent liver tissue samples, functional pathway
BA

FIGURE 4

The distribution of DNA methylation patterns. (A) Heatmap of top 25 significantly hypermethylated and top 25 significantly hypomethylated genes between
metastasis and adjacent liver tissue. (B) Emapplot of the overrepresentation analysis (ORA) pathway enrichment according to the Reactome database.
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enrichment analysis was performed to identify the main related

biological functions. Gene set enrichment analysis (GSEA)

uncovered 124 significantly deregulated pathways in the

Reactome terms (adj. p-value < 0.05, top 80 in Figure 5C).

Overrepresentation analysis (ORA) of up-regulated (logFC > 1)

and down-regulated (logFC < -1) genes are reported in

Supplementary Table S7. The most significant results were

obtained for down-regulated genes, which were enriched in

Reactome terms related to Ion channel transport, the citric acid

cycle, and respiratory electron transport. Conversely, the up-

regulated genes were enriched prevalently in ECM organization

and degradation of ECM. Similarly, GSEA on KEGG terms

uncovered 27 significant terms, ORA on upregulated genes

descr ibed 15 s ignificant KEGG terms , and ORA on

downregulated genes described 17 significant KEGG terms

(Supplementary Figure 6).

In the terms of chronicity, only two genes were significantly

down-regulated in SmCRC compared to MmCRC (PPP1R9A

logFC=2.8, FDR=0.05, and SMOC2 logFC=2.6, FDR=0.05).

miRNA-seq analysis
We have successfully analyzed the miRNA isolated from 10

paired CRCLM and adjacent liver tissue samples.

To identify the miRNA signature for CRCLM detection, the

miRNA expression profiling between the CRCLM and adjacent

liver tissue sample was analyzed using miRNA-seq data. As for WES

and RNA-seq, the first analysis of all samples was performed, and

then stratification for either SmCRC or MmCRC was presented.

Additionally, we also looked at valid miRNA targets that may be

associated with differential miRNA expression levels in CRCLM.

After sequencing, an average of 57.3% of the reads were aligned

to miRNA sequences, while 10.2% were aligned to other small non-

coding RNAs (sncRNAs) (Supplementary Figure 7; Supplementary

Table S8). In total, 1,603 miRNAs were detected, with an average of

845 miRNAs detected in each sample and 670 miRNAs with

sufficient coverage across all samples for differential expression

calculation. Other classes of sncRNAs were seen, including,

tRNAs, and snoRNAs. The distribution of the detected non-

miRNA sncRNAs in the sample group is shown in

Supplementary Table S9. In total, 2,415 non-miRNA sncRNAs

were identified in all subject groups.

In total, 123 miRNAs were up- and 92 down-regulated in

CRCLM compared to adjacent liver tissue (Supplementary Table

S10). Among the up-regulated top miRNAs were hsa-miR-135b-3p,

hsa-miR-200c-3p, hsa-miR-200b-5p, hsa-miR-183-5p, hsa-miR-

182-5p, hsa-miR-200b-3p, hsa-miR-96-5p, hsa-miR-135b-5p, hsa-

miR-429 and hsa-miR-200a-5p. Among the top down-regulated

were hsa-miR-548p, hsa-miR-99a-3p, hsa-miR-548ah-3p/548am-

3p, hsa-miR-139-5p, hsa-miR-125b-2-3p, hsa-miR-30c-1-3p, hsa-

miR-455-3p, hsa-miR-126-3p, hsa-miR-483-5p, hsa-miR-365a-3p/

365b-3p. The levels of the most significant deregulated miRNAs are

reported in Figures 3A, B.

In the terms of chronicity, only two miRNAs were deregulated

between SmCRC and MmCRC (hsa-miR-625-3p and hsa-miR-

1269-3p, Supplementary Table S11).
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The miRNA binding to its target transcript does not necessarily

lead to a downregulation of gene expression. In fact, most of the

observed miRNA binding events have minor functional

consequences. Thus, focusing on miRNA binding alone has

limited value in predicting valid miRNA targets, i .e. ,

downregulated targets. To alleviate this problem, we directly

determined the target downregulation of miRNA-seq with RNA-

seq. Among the top miRNA targets were observed PTEN, HSPA1B,

BCL2L11, KRAS, and BCL2 genes (Figure 3C). Gene set enrichment

analysis of targeted mRNAs by miRNAs can support the role of

differentially expressed miRNAs. The Reactome enrichment in

Figures 3D, E and the KEGG enrichment analysis of differentially

expressed miRNA-targeted pathways is presented in

Supplementary Figure 7. Among these pathways Signaling

pathways regulating pluripotency of stem cells, TGF-Beta, WNT,

Ras, mTOR, and NOD-like receptor signaling pathway were the

most prominent pathway targeted by deregulated miRNAs.
Integration of results from the genome,
methylome, transcriptome, and
miRNAome analyses

To go behind the source of gene deregulation in our set, we also

performed integrated analysis for the regulatory relationships of

DNA methylation, genetic selection, and miRNA expression data,

together with mRNA expression data. The overlap of alterations

discovered between the CRCLM across all platforms was performed

(Figure 6A). We have identified 2,711 differentially DEGs, out of

which 612 could be explained as deregulation due to the CNV effect,

22 due to the miRNA expression levels, and 212 due to methylation

profile. CNV, methylation, miRNA, and DEGs overlapped at one

gene, IPO5 (high expression profile, high miRNA expression,

hypomethylation profile, and gain in the CNV analysis, Figure 6B).

To analyze the IPO5 gene interactions, the correlation data were

downloaded from the CRISPR (Avana) Public Depmap v20Q3

portal (https://depmap.org/portal/download/) for all cell lines in

the database (1,078 cell lines). With the threshold for adjusted p-

value 0.05 and absolute value of correlation coefficient >0.1, 1,739

genes that interact with the IPO5 gene were identified.

The most significant results obtained for IPO5 gene enriched in

Reactome were related to the cell cycle. The Reactome analysis for

IPO5 gene was visualized in Supplementary Figure 8 and

Supplementary Table S12.

It is well known that one miRNA can regulate several genes and

vice versa, multiple miRNAs can regulate one gene. For this reason,

we were also interested in overlapped genes without considering the

miRNA expression levels. This combined analysis resulted in 107

genes (Figure 6B and Supplementary Table S13). GSEA on

Reactome and KEGG terms uncovered significant terms

(Figure 6C and Supplementary Table S14) related to relaxin,

Estrogen, PI3K-Akt, WNT signaling pathways and intracellular

signaling by the second messenger.

Due to the low numbers in each group, no stratification for

SmCRC and MmCRC was not performed.
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B

C

A

FIGURE 5

Differentially expressed genes ‘characterization. (A) Volcano plot reporting the log2FC and the adjusted p-value in the DE analysis between
metastasis and adjacent liver tissue. Thresholds: adjusted p-value < 0.01 and |log2FC| > 1. (B) Heatmap of top 50 differentially expressed genes
between metastasis and control colon tissue. (C) Emapplot of the gene set enrichment analysis (GSEA) of the significantly deregulated pathways in
the Reactome terms (adj. p-value < 0.05, top 80 terms).
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B C

A

FIGURE 6

The integration of results from the genome, methylome, transcriptome, and miRNAome analyses. (A) The overlap of alterations discovered between the
CRCLM patients across all platforms. The outside heatmap circle represents the significant DEGs, the blue color represents up-regulation, yellow color
represents down-regulation. The middle heatmap circle represents the methylation level for the genes depicted in the outside circle, the red color
represents hypermethylation, the green color hypomethylation, and the black color non-significant changes. The inner heatmap represents the CNV
level for the genes depicted in the outside circle. The cyan color represents gains, the purple represents losses. (B) Venn diagram showing the overlap
between DEGs obtained in the analysis stratified by methylation profile, CNV, and miRNA expression levels. (C) The heatmap of KEGG (light blue) and
Reactome (dark blue) enriched pathways and genes from integrated analysis of genome, methylome and transcriptome analyses. Up-regulated genes
have red square while down-regulated genes have green square. White square means that the gene is not present in the specific pathway.
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External validation

To validate our results, the GSE62321 set was used (48, 49).

After data processing 9,115 genes were left out of which 2,873 genes

were significantly deregulated between colon and metastases. The

intersection between our and this validation set resulted in 5,918

genes where 592 genes were significantly deregulated (332 up- and

260 down-regulated) in the validation set and 1,060 (624 up- and

436 down-regulated) in our set. The final intersection between these

two sets resulted in 366 DEGs where 204 were up- and 162 down-

regulated (Supplementary Table S15).

The same validation set also comprised primary tumors from

patients with metastasis (105 significantly DEGs between primary

tumor and metastasis). Comparing this set with our set, the

intersection resulted in 9 significant DEGs (2 upregulated and 7

downregulated, Supplementary Table S16).
Discussion

In newly diagnosed CRC patients without metastases,

elucidating potential molecular risk factors for the development

of liver metastasis is paramount, as they could have important

clinical implications. For this reason, we focused on CRCLM

patients as, after all, metastasis constitutes the primary cause of

death for >90% of patients with CRC (1). Understanding the

dynamics of this process will help identify targets for molecular

therapies that may halt or possibly reverse cancer growth and

metastasis. By identifying these targets, therapies can be designed

to target cancer cells more precisely through either selective

disruption of pathways necessary for cancer cell survival/growth

or artificial modulation of the patient’s immune system to generate

a response against cancer cells. Besides, given its potential impact on

patient care, a better understanding of the development of distant

metastases is critical.

This study aimed to molecularly characterize metastatic tissues

in CRCLM patients and explore whether molecular profiles differ

between SmCRC and MmCRC. This characterization was

performed by high-throughput approaches, such as WES, whole

transcriptome, whole methylome, and miRNAome and analyzed by

comprehensive bioinformatic tools. We hypothesize that combining

all these approaches into comprehensive molecular profiling would

lead to more relevant findings than single analyses published

previously. We have demonstrated the utility of this integrative

and broad approach where each genomic platform, independently

and in combination, contributed to detecting pathogenic variants in

all samples. We first analyzed each approach separately and then

combined all the analyzes together and summarized the

results below.

By analyzing the results from the WES only, we revealed an

APC mutation (rs121913333, c.2680C>T, p.Arg894*) that was

detected more than once. No other mutation was observed in any

other gene more than once. Similarly, Naxerova and co-authors

reported that in 65% of cases, regional lymphatic and distant

metastases arose from independent subclones from the primary

tumor (50).
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CRC cells acquire a capacity to evade the primary CRC through

morphological changes such as EMT, migration through the ECM,

invasion into the neighboring tissues, intravasation, survival in the

circulation, extravasation and finally, colonization to distant liver

forming more aggressive CRCLMs (51). The ability of cells to

undergo all these steps in the metastatic cascade requires them to

acquire specific characteristics connected to the ‘hallmarks of

cancer’. In addition, Vermeulen et al. (52) proposed liver

metastasis as a heterogeneous tumor and classified CRC liver

metastasis into 3 growth patterns, i.e., pushing, desmoplastic, and

replacement, based on histological differences. This agrees with our

findings, the up-regulated genes in our study were prevalently

enriched in the ECM degradation and organization, and

hypomethylated genes were involved in processes such as Cell

adhesion and ECM organization.

Deregulation of gene expression in the metastatic process is a

complex process involving several modalities, including genomic

changes or epigenetic modifications. Although the mutations in a

few driver genes, such as APC and TP53, are shown to be one of the

drivers of CRC progression as well as a biomarker of CRC stage and

resistance to various CRC therapies (53), the true heterogeneity

between patients is represented by the CNV distribution. The

differences between patients and even the tumor cells were

observed as highly heterogeneous (54). Our results supported

these findings, as only a relatively low number of genes was

mutated in our cohort while CNV distribution affected more

genes, and the range was higher. Although only 10% of affected

genes by CNV had an impact on expression deregulation, it was the

major source of gene deregulation in our set. The well-known gains

and losses occurring in the CRC progression, specifically on

chromosomes 8, 13, 20, and chromosomes 4 or 18, respectively

(55) were also observed in our cohort.

Another gene expression deregulation source are small non-

coding RNAs, such as miRNAs. In this study, among the up-

regulated top miRNAs were hsa-miR-135b-3p and -5p, and the

hsa-miR-200-family. Among the top down-regulated was hsa-miR-

548-family. Serum hsa-miR-135b (56) and has-miR-200c (57) levels

were already considered as diagnostic (56) or prognostic and

metastasis-predictive (57) biomarkers in patients with CRC. High

serum miR-200c demonstrated a significant positive correlation

with lymph node metastasis, distant metastasis, and prognosis (57).

Regarding the has-miR-548-family, has-miR-548b was already

found to be down-regulated in CRC patients as well as in CRC

cells and even lower in advanced stages. The overexpression of miR-

548b suppressed cells’ proliferation and induced apoptosis. Our

observation means that the downregulation of miR-548b may lead

to uncontrolled cell division. Besides, WNT2 was predicted to be the

downstream gene binding miR-548b (58). Almost all CRC cases

demonstrated hyperactivation of the WNT pathway, which is

considered to be the initiating and driving event of CRC (59).

When the intersection of all our data is considered, the

combined data from CNV analysis, DNA methylation profiles,

and mRNA sequencing led to identifying the IPO5 gene. Several

sources upregulated the IPO5 gene: in 75% of our samples, the gain

in this gene was observed and concurrently was significantly

hypomethylated. On the other hand, miRNAs targeting IPO5
frontiersin.org

https://doi.org/10.3389/fonc.2023.1133598
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Horak et al. 10.3389/fonc.2023.1133598
were upregulated as well. We hypothesize that the upregulation of

targeting miRNAs might be driven by counter-regulation to reduce

the impact of the IPO5 upregulation to establish a balanced state.

The IPO5 gene belongs to the Karyopherins family, which are

crucial regulatory molecules of nuclear plasma transport and

represent the most classic cellular transporter proteins, including

both importins and exportins (60, 61). Transport proteins with a

molecular weight greater than 40 kDa help to transport molecules

between the cytoplasm and the nucleus through the nuclear pore

complex, such as transcription factors, splicing factors, and other

proteins (62, 63). Therefore, karyopherin dysfunction can lead to

altered transport activity and cause abnormal localization of

oncogenic factors, consequently leading to tumorigenesis (64).

Recently, Zhang et al. (65) noticed that the expression of the

IPO5 gene was gradually growing with the increasing CRC stage.

In addition, the high IPO5 expression, especially in CRC cells, was

also confirmed in the TCGA database and Oncomine database in

their study. Besides, the functional assays revealed that IPO5

promoted CRC growth in vitro and in vivo through the RASAL2

nuclear translocation, followed by the activation of the RAS

signaling pathway. Inhibition of the nuclear transport system,

therefore, has future potential for therapeutic intervention and

could contribute to the elucidation of disease mechanisms. IPO5

gene also seems to play an important role in the metastatic process

via matrix metalloproteinase 7 (MMP7) regulation (66) and EMT

induction (67). Furthermore, IPO5 expression may affect the tumor

immune microenvironment and mediate tumor immune response

(68). The commensal microbiota has already been shown to

influence immunity as well as tissue development. In the context

of cancer, commensal bacteria have been shown to play a key role in

modulating tumor microenvironment, which drives cancer therapy

responses (69). Therefore, direct inhibition of IPO5 function may

uncover a promising targeted therapeutic strategy for CRCLM.

On the other hand, as one miRNA can regulate several genes,

and conversely, multiple miRNAs can regulate one gene, we were

also interested in intersection regardless of miRNA expression

levels. This combined analysis resulted in 107 deregulated genes.

GSEA on Reactome and KEGG terms revealed significant terms

related to relaxin, estrogen, PI3K-Akt, WNT signaling pathways,

and intracellular second messenger signaling. All these pathways

were assigned to the CRC evolution and thus made our results valid

even if they were obtained from a smaller number of patients.

The occurrence of CRCLM, such as SmCRC vs. MmCRC

detection, was mainly investigated and reported in the surgical

case series (21, 70, 71). The gene expression and molecular patterns

of SmCRC and MmCRC are considered different. Synchronous

liver metastases are similar to local invasion and are more inclined

to become a disseminated disease (72). One of our main aims was

the comparison of the molecular characteristics of these two groups.

MmCRC patients evinced higher TMB, a wider median of

duplications and deletions, as well as heterogeneous mutational

signatures in our set of patients. We thus hypothesize that these

differences could be explained as a consequence of the adaptation of

resistant clones to escape previously applied chemotherapy in

MmCRC patients. Similarly, higher TMB in MmCRC patients

could be related to better immunosurveillance and thus delayed
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relapse (compared to SmCRC), as higher TMB is associated with

higher tumor immunogenicity (73). However, given the small

number of patients in each group, it is necessary to take this

result with caution.

Further, in terms of chronicity, we observed a significant down-

regulation of SMOC2 and PPP1R9A genes in SmCRC patients

compared to MmCRC. SMOC2 is an extracellular glycoprotein

involved in a broad spectrum of cellular processes, including cell

cycle, cell attachment and migration, angiogenesis, and others (74).

It has a suppressive role in tumor growth, migration, colon and

sphere formation role in CRC cells and could be considered a tumor

suppressor in CRC progression (74). PPP1R9A gene codes a protein

Neurabin-1 (75), which binds to protein phosphatase 1 (PP1) and

inhibits its activity (76). Neurabins are highly concentrated in

dendritic spines, and post-synaptic densities and their function is

to regulate synaptic transmission in mammalian neurons (77).

Despite there are no reports on the role of Neurabin-1 in

carcinogenesis, the loss of Neurabin-2 (also known as Spinophilin

or PPP1R9B), which has 80% homology in its sequence and similar

biological functions to Neurabin-1, was associated with more

aggressive histological phenotype, faster relapse, poor survival,

and a low response to fluoropyrimidine-based chemotherapy in

CRC (78, 79). Interestingly, the loss of Neurabin-2 is associated with

an increase in the stemness properties (80) which may facilitate the

spread to the liver. Given these circumstances, it could be

hypothesized that the down-regulation of both SMOC2 and

PPP1R9A genes might be associated with rapid CRCLM

formation in patients with SmCRC. Further research is warranted

to evaluate the potential value of these genes as predictors of

prognosis and risk of CRCLM formation in CRC patients.

Only two miRNAs were deregulated between SmCRC and

MmCRC, hsa-miR-625-3p and has-miR-1269-3p. Interestingly,

hsa-miR-625-3p induced oxaliplatin resistance by abrogating

MAP2K6-p38-regulated apoptosis and cell cycle control networks

(81). Bu et al. (82) observed that in stage II CRC patients, miR-

1269a expression in their surgically removed primary tumors was

strongly associated with the risk of CRC relapse and metastasis. The

authors hypothesized that miR-1269a was a potential marker to

contribute to adjuvant chemotherapy decisions for CRC patients

and a potential therapeutic target to deter metastasis. The fact that

we found these two miRNAs deregulated right between the SmCRC

and MmCRC patients where the MmCRC patients had already

undergone both surgical and adjuvant treatment strengthens our

results considerably.

In summary, we have identified genes and pathways that may be

considered actionable targets in CRCLMs (e.g. IPO5 gene, hsa-miR-

135b-3p and -5p, the hsa-miR-200-family, and hsa-miR-548-

family, WNT and PI3K-Akt signaling). The data presented here

also provide a valuable resource for understanding molecular

distinctions between SmCRC and MmCRC, and have the

potential to enhance the diagnosis, prognostication and

management of CRCLMs by a molecularly targeted approach.

The strength of this study lies in the sizeable high-throughput

analysis, including the non-trial patients reflecting real-world

patients. On the other hand, we are aware of certain limitations

of our study, such as the lack of primary tumors due to the
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prospective design. However, the intersection between our and

validation sets confirmed the validity of our results.

Detailed molecular analysis of mechanisms that mediate

metastatic expansion to the liver will contribute to early detection

and prevention. Future research should focus on elucidating the

origin of CRCLM based on the molecular mechanisms and clinical

characteristics – this elucidation could thus guide clinical precision

treatment. Targeted treatments to specific regulatory molecules, such

as IPO5, make personalized cancer therapy possible. Many oncogenic

cellular processes can intervene effectively, which is the promise of

accuracy in eradicating cancer and better patient care. Defining high-

risk factors for developing CRCLM, stratification of high-risk

individuals and minimization of the controllable risk factors are

essential to prevent CRCLM and further reduce CRC mortality.
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SUPPLEMENTARY FIGURE 1

Descriptive mutational analysis (A) The distribution of genetic variation in

percent according to the putative effect across all samples. Each column
represents a patient. (B) The distribution of genetic variation in percent

according to the single nucleotide variation effect across all samples. Each

column represents a patient. (C) The distribution of genetic variation in
percent according to PolyPhen2 across all samples. Each column

represents a patient. (D) The distribution of genetic variation in percent
across all samples after stratification for chromosome localizations. Each

column represents a patient.

SUPPLEMENTARY FIGURE 2

Descriptive mutational analysis between SmCRC and MmCRC patients (A)
The distribution of genetic variation in percent according to the putative

effect between SmCRC and MmCRC patients. Each column represents a
group either of SMCRC or MmCRC group of patients. (B) The distribution of

genetic variation in percent according to the single nucleotide variation effect
between SmCRC and MmCRC patients. Each column represents either of

SMCRC or MmCRC group of patients. (C) The distribution of genetic variation

in percent according to PolyPhen2 between SmCRC and MmCRC patients.
Each column represents either of SMCRC or MmCRC group of patients. (D)
The distribution of genetic variation in percent between SmCRC and MmCRC
patients after stratification for chromosome localizations. Each column

represents either of SMCRC or MmCRC group of patients.

SUPPLEMENTARY FIGURE 3

Mutational signatures (A) Mutational signature analysis in all samples. Each
row is represented by a patient. (B) The distribution of mutational signatures

in percent across all samples. Each column represents a patient.
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SUPPLEMENTARY FIGURE 4

Densities of structural variants (A) The density of genomic sizes of structural
variants in all patients. (B) The density of genomic sizes of structural variants in

SmCRC patients. (C) The density of genomic sizes of structural variants in

MmCRC patients.

SUPPLEMENTARY FIGURE 5

Genomic distribution of differentially methylated regions (A) The principal

component analysis among metastasis (M) and adjacent liver tissue (H). (B)
The Circos-Manhattan plot shows the CpG sites differentially methylated in
CRCLM tissue compared to adjacent liver tissue, the x-axis shows the location

in genome, and y-axis is -log(p-value). (C) The distribution of differentially
methylated CpG sites in percent in relation to the position in gene. Profile of

all sites, significantly hypermethylated and significantly hypomethylated, is
shown. (D) The distribution of differentially methylated CpG sites in percent in

relation to the CpG island position. Profile of all sites, significantly

hypermethylated and significantly hypomethylated, is shown.

SUPPLEMENTARY FIGURE 6

Functional pathway enrichment analysis in KEGG (A) Emapplot of the gene set

enrichment analysis (GSEA) of the significantly deregulated pathways in the
Frontiers in Oncology 15
Reactome terms (adj. p-value < 0.05, all 27 terms), (B) The overrepresentation
analysis (ORA) of significantly up-regulated genes (adj. p-value < 0.05; all 15

terms), (C) The overrepresentation analysis (ORA) of significantly down-

regulated genes (adj. p-value < 0.05; all 17 terms).

SUPPLEMENTARY FIGURE 7

Descriptives of miRNAs based results and KEGG based enrichments (A) The
alignment of miRNA and other small non-coding RNAs (sncRNAs) sequences

for each patient. Each column represents metastasis (M) and adjacent liver
tissue (H), and the y-axis represents the number of reads to the sncRNAs

groups. (B) The KEGG enrichment analysis of the top 10 differentially up-
regulated miRNAs. (C) The KEGG enrichment analysis of the top 10

differentially down-regulated miRNAs.
SUPPLEMENTARY FIGURE 8

The Reactome IPO5 gene interaction Emapplot of the overrepresentation

analysis (ORA) of the interacted pathways in the Reactome terms for IPO5
gene extracted from DepMap (adj. p-value < 0.05, top 50 terms).
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