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Pilar López-Larrubia,
Spanish National Research Council
(CSIC), Spain

REVIEWED BY

Kathleen Schmainda,
Medical College of Wisconsin,
United States
Ying Zhuge,
National Institutes of Health (NIH),
United States

*CORRESPONDENCE

Daniel T. Ginat

ginatd01@gmail.com

SPECIALTY SECTION

This article was submitted to
Cancer Imaging and
Image-directed Interventions,
a section of the journal
Frontiers in Oncology

RECEIVED 29 December 2022
ACCEPTED 07 February 2023

PUBLISHED 17 February 2023

CITATION

Hooper GW and Ginat DT (2023) MRI
radiomics and potential applications
to glioblastoma.
Front. Oncol. 13:1134109.
doi: 10.3389/fonc.2023.1134109

COPYRIGHT

© 2023 Hooper and Ginat. This is an open-
access article distributed under the terms of
the Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that
the original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

TYPE Mini Review

PUBLISHED 17 February 2023

DOI 10.3389/fonc.2023.1134109
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applications to glioblastoma

Grayson W. Hooper1 and Daniel T. Ginat2*

1Landstuhl Regional Medical Center, Department of Radiology, Landstuhl, Germany, 2University of
Chicago, Department of Radiology, Chicago, IL, United States
MRI plays an important role in the evaluation of glioblastoma, both at initial

diagnosis and follow up after treatment. Quantitative analysis via radiomics can

augment the interpretation of MRI in terms of providing insights regarding the

differential diagnosis, genotype, treatment response, and prognosis. The various

MRI radiomic features of glioblastoma are reviewed in this article.
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1 Introduction

MRI is routinely used to formulate a differential diagnosis at the initial presentation of

patients with glioblastoma, help guide treatment planning, and follow up treatment

response. However, the interpretation of MRI findings in these situations can be

challenging. With respect to oncologic imaging, radiomics can provide useful insights

regarding tumor characteristics. Specifically, radiomics involves extracting quantitative

information from the images, such as texture features, often using artificial intelligence.

Reproducible radiomic features of particular tumor types can serve as imaging biomarkers.

In this article, various types of radiomic analysis pertaining to glioblastoma depicted on

MRI are reviewed.

Glioblastoma is a heterogeneous neoplasm both in imaging appearance and internal

genotype. Tissue biopsy from one part of the tumor may not reflect histology in another

(1). While this may not have much practical implication beyond explaining treatment

failure now, it certainly will in the future. The heterogeneity of glioblastoma is a topic of

significant research, as identification of its variable internal constituents will be vital in

development of effective therapeutics. This article reviews the role that quantitative MRI

may have through the use of radiomics for characterizing glioblastoma heterogeneity and

differentiating glioblastoma from other entities.
2 Diagnosis and differential considerations

The appearance of glioblastoma on MRI can sometimes be difficult to distinguish from

other neoplasms and even non-neoplastic conditions, such as lower-grade gliomas,

primary CNS lymphoma, tumefactive multiple sclerosis (MS), and various infections.

Even using advanced MRI techniques such as arterial spin labeling, magnetic resonance
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spectroscopy (MRS), and perfusion imaging, tissue sampling is

typically performed for definitive diagnosis.

Through the computational analysis of MRI at the pixel level,

radiomics may help establish a certain diagnosis. Radiomics uses

statistical methods to extract useful information from medical

images that is otherwise generally beyond human perception.

This information, called features, comes in two varieties: semantic

and agnostic. Semantic features are the bread and butter of the

radiologist. They are common descriptors of radiologic findings

such as size and morphology, which guide management, and which

have been correlated to gene expression (2, 3). Agnostic features are

aptly named—they are esoteric mathematical derivations that

reflect patterns beyond human perception. As previously

mentioned, features are prone to variation, highlighting the need

for standardization in order to identify stable ones (4). However,

many features are also useless, being redundant or irrelevant, which

contribute only noise to a model. Through a series of filtration

methods, which are well-described by Papanikolaou and colleagues,

features can be curated to form a radiomics model (5). However, the

model must still be externally validated and statistically correlated

to a clinical endpoint. It must be reproducible and answer a clinical

question. Only then can it be a useful signature.

Most radiomics studies are retrospective, which is useful for

building and testing models; however, they are limited in their

clinical application. Regardless, there have been promising advances

in delineating glioblastomas from other disease processes. For

example, Conte and colleagues showed that 100 primary semantic

and agnostic features based on T2-weighted images were able to

delineate glioblastoma from tumefactive MS with a 0.83 accuracy

and 0.86 area under the ROC curve for the best set of

hyperparameters (6). Another retrospective study utilized

multiparametric MRI sequences, including T1, T2, and

postcontrast imaging in order to delineate glioblastoma from

primary CNS lymphoma. In this study, regions encompassing the

solid tumor component as well as the tumor and the peritumoral

edema were selected. Of the 127 total features available, just 15 were

selected, which still rendered an area under the curve of 0.979, a

sensitivity of 0.938, and a specificity of 0.944 (7).

A study by Kunimatsu et al. compared the T1 postcontrast

textural features of glioblastoma to primary CNS lymphoma. Their

principal component analysis revealed that only four of these

features—entropy, median, run length non-uniformity, and run

percentage—were the predominant features of the dataset, which

could explain the variance of the feature set (8). In doing so, this

study suggested specific features for future analysis that may be

helpful in delineating the two disease processes and address the

problem of overfitting.

Another potential scenario with important clinical management

implications is differentiating glioblastoma versus a solitary

intracranial metastasis, which can also demonstrate edema,

heterogeneity, and ring-enhancing features identical to

glioblastoma. It is here too that radiomics has shown significant

promise. Many of these models utilize similar textural analysis

algorithms to accomplish the task (9–11). Indeed, a 2022 meta-

analysis involving seventeen studies encompassing 1,717 total

patients has shown the pooled sensitivity and specificity of
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radiomics in differentiating glioblastoma from metastasis are both

84 percent (12). In addition to MRI, more recent studies have

shown that multimodality, integrative models have improved

diagnostic accuracy. Zhang and colleagues showed that an

integrated model including contrast-enhanced T1, T2-weighted

images, diffusion-weighted images, ADC maps, and 18F-FDG

PET obtained areas under the curve of 0.98 and 0.93, sensitivities

of 0.925 and 0.835, and specificities of 0.987 and 0.849 for the

training and validation sets (13).

Given that MRI has excellent tissue contrast and can provide

diverse information about water diffusivity, blood flow, the state of

the blood brain barrier, and cellularity, it follows that radiomic

analysis of these data could provide further valuable information.

Multiple studies have shown promise in differentiating low-grade

gliomas from high-grade ones using textural analysis (14–17).

Others have shown that radiomic phenotyping of glioblastoma

improved survival prediction (18, 19). Yet others have

demonstrated potential use in predicting treatment outcomes and

assessing pseudoprogression in high-grade gliomas (20, 21). These

are remarkable results considering that the analyzed features are

mostly beyond human perception.
3 Treatment planning

Surgery, temozolomide, and radiotherapy are the current

standard of care for treating patients with glioblastoma.

Unfortunately, the mean survival time of these patients remains

about 15 months. There are multiple ideas as to why glioblastoma is

so lethal and resilient. One contributing factor may be the cancer

stem cell, which facilitates a mesenchymal transformation that

allows the tumor to better infiltrate the brain. These cancer stem

cells may also adapt to temozolomide therapy directly. The second

idea is the tumor microenvironment. Glioblastoma is comprised of

approximately 40% non-malignant cells, which act as a support

network. These cells are immunosuppressive and generate a

vascular-proliferative environment to help the tumor grow.

Another consideration is the heterogeneity of the tumor in

general. The phenotypes and genotypes of glioblastomas vary

throughout their architecture and change as the disease

progresses and as treatments are applied. Radiomics may play an

important role here in characterizing the tumor both phenotypically

and ultimately genotypically (radiogenomics), which would permit

a tailored and dynamic therapeutic response. However, first

biomarkers must be identified.

There are several critical mutations and molecular alterations in

glioblastomas, which may be actionable biomarkers of the disease

and are the subjects of intense research. The first of these is

mutation of the epidermal growth factor receptor (EGFR), which

is seen in about 60% of primary glioblastomas and results in a more

aggressive tumor phenotype (2). In a 2017 study, Zinn and

colleagues quantified the mutually exclusive and significant (false

discovery rate 0.05) MRI texture features of EGFR, TP53, and PTEN

mutations (22). They also analyzed the upregulated genes that were

unique to each mutation versus their wildtype comparisons. The

biofunctions of the mutated gene clusters were linked to
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predominant functions, showing TP-53-angiogenesis, PTEN-

invasion, and EGFR-immune response. Consensus clustering

demonstrated similar correlation matrices of the radiomic

features of mutants versus wildtype mutations and the

corresponding gene expressions. These findings suggesting a link

between radiomic texture features and biologic function and could

prove important in treatment planning, though specific compounds

targeting EGFR have not yet proven effective. Early tyrosine kinase

inhibitors targeting EGFR have shown little clinical efficacy in

glioblastoma patients, though research is ongoing, including

preclinical trials in third generation EGFR irreversible inhibitors

(23, 24).

Another mutation significant to the pathogenesis of gliomas,

including glioblastoma, is isocitrate dehydrogenase-1 (IDH-1) on

chromosome 2. Glioblastoma can arise de novo or develop from

lower grade gliomas through sequential mutations (25). Wildtype

glioblastoma is far more common than mutational, and is

considered the more aggressive form, which responds poorly to

current therapies and has a dismal five-year prognosis.

Glioblastomas with IDH-1 mutations account for 73% of tumors

and are reported to have a slightly better prognosis due to their

enhanced response to radiotherapy and temozolomide (26).

Regardless, IDH-1 mutants and wildtype tumors have different

metabolic profiles, suggesting that each type may have unique

therapeutic vulnerabilities (27). One such potential vulnerability is

seen in the IDH1R132H mutational subtype, which has significantly

improved prognosis versus other gliomas, and overexpresses

microRNA mIR-128. This microRNA suppresses glioma cell

proliferation in vitro, possibly accounting for the survival benefit

in vivo, and making it a potential therapeutic target (28). Therefore,

imaging differentiation of this mutation remains a valuable goal.

Multiple studies have had varying degrees of success in the use of

radiomics for identifying IDH mutations (29–31). Of further note,

IDH-1 mutation also has other diagnostic implications, as IDH-1

mutants produce 2-Hydroxyglutarate, which can be detected on

MRS (32).

O6-methylguanine–DNA methyltransferase (MGMT) is a

DNA-repair enzyme that repairs damage caused by alkylating

agents. Production of this enzyme is inhibited by methylation of

its promoter region; therefore, methylation status can predict a

patient’s response to temozolomide therapy (33). Indeed, MGMT

methylation status is the dominant predictor of increased survival

in patients with glioblastoma, even showing significant value in

patients with unresectable disease (34). Consequently, utilizing MRI

to assess this gene’s methylation status would have prognostic and

treatment value. Sasaki and colleagues used T1 precontrast, T1

postcontrast, and T2-weighted images to analyze the radiomics

features of 201 preoperative patients with glioblastoma. Despite

being able to stratify low and high-risk patients based on 22 features

correlated with prognosis, this study did not display sufficient

accuracy for the prediction of MGMT methylation status (35). A

similar study by Chen et al. (though focused on diffuse gliomas) was

able to predict methylation status of the tumors utilizing deep

learning and features extracted from postcontrast T1 and ADC

imaging (36).
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4 Post-therapeutic assessment

Complete surgical excision of glioblastomas is extremely rare

and they almost invariably recur, often in the surgical bed.

Therefore, routine monitoring of patients is essential.

Unfortunately, it can be difficult to differentiate true disease

progression from radiation-associated pseudo-progression on

routine MR imaging and its negative predictive value is not

sufficient for clinical use (37). This is a significant problem as

pseudo-progression occurs in up to a third of patients according to

a 2017 meta-analysis (38). Advanced MR techniques, to include

perfusion-weighted imaging and MRS have proven useful in

supplementing routine sequences with a combined accuracy of

about 90 percent (39). Indeed, a recent meta-analysis of 30

studies showed that dynamic susceptibility contrast (DSC) MRI

and DWI had the best sensitivity and specificity in differentiating

true progression from pseudoprogression in high-grade gliomas

(40). Radiomics again may prove useful in this setting. Two studies

have investigated algorithmic assessment of routine MR images (41,

42). These showed diagnostic accuracies of around 70%, performing

better than the neuroradiologists. Similarly, another study that

integrated Ktrans and relative cerebral blood volume metrics

from PWI sequences attained an accuracy of about 91% (43).
5 Limitations of radiomics

There are unique challenges in the application of radiomics to

MRI. Unlike CT where attenuation in Hounsfield Units is directly

correlated to tissue density, the signal obtained fromMRI is unitless

and can variably reflect tissue properties. MRI field strength, pulse

sequences, as well as manufacturer differences have been shown to

affect radiomics features (44, 45). Motion artifact on MRI can also

be significant as the sequences take longer to obtain. Additionally,

magnetic field inhomogeneity from intrinsic and extrinsic sources

can affect image acquisition. Consequently, there is a greater

potential for imaging variability in MRI than CT, which could

affect the robustness of imaging features. Various computational

postprocessing techniques can be used to normalize MRI imaging

data. These techniques have been shown to improve the prognostic

value and stability of radiomics features in the setting of

glioblastoma, though only 8% (113/1404) remained stable in a

multicenter study (46).

Radiomics is also prone to multiple forms of error intrinsic to

high level statistical analysis. Specifically, feature-based radiomics

requires the selection and analysis of a region-of-interest. This is not

only prone to human variability if it is not assisted by artificial

intelligence, but it may also result in overfitting, which occurs if

excessive high-dimensional data is applied to a small cohort. The

result is a model that is “self-assessing” in that it corresponds to a

single set of data but is otherwise useless in predicting outcomes

elsewhere. Indeed, a 2022 study by Gidwani and colleagues revealed

two marked shortcomings in contemporary radiomics literature:

improper data partitioning and unproductive feature association.

The first resulted in data leakage during the training, validation,
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and/or testing phases of these studies. The second resulted in

feature self-association and overfitting. When these errors were

applied to randomly generated features based on real-world data

sets, they discovered a spurious combined 1.4 factor performance

boost to radiomics models, indicating random chance after

correction (47). Consequently, future radiomics studies must be

large and multicenter with careful attention to features selection

and data partitioning in order to mitigate this issue and create

reproducible models (48). In deep learning radiomics, also known

as deep radiomics, convoluted neural networks (CNNs) or

autoencoders search for relevant patterns/features in a dataset

without image segmentation. Therefore, the dataset must be large

to prevent overfitting, though transfer learning in which a neural

network is trained on an outside dataset, can be used to mitigate this

shortcoming (49). Unfortunately, deep learning also has the “black

box” shortcoming in which the AI presents information that is

uninterpretable, which cannot be linked to findings of

clinical relevance.

As mentioned, radiomics thrives or fails based on the

reproducibility of its features. Certainly, when the success of the

analysis is incumbent upon data reviewed at the pixel level, it is

essential that imaging acquisition, segmentation, and analysis

techniques are standardized. Unfortunately, most studies to his

point have been small and retrospective, which have been valuable

in early proof-of-concept of the field but insufficient for clinical

validation. As a result, more recent attempts at reference value

standardization have been undertaken. The Image Biomarker

Standardization Initiative (IBSI) is one such example in which

multiple teams established reference values for 169 radiomics

features utilizing a phantom and publicly available lung cancer

imaging. These values were then validated on multimodality

imaging of soft tissue sarcomas with 167 of the features

demonstrating good or excellent reproducibility (50).

Certainly, radiomics does have significant challenges. But such

an emerging technology could prove invaluable to the field of

neurooncology. The concept of a virtual biopsy is alluring,

especially with the heterogeneity of glioblastoma. Indeed, as

contemporary molecular genetics works to elucidate gene

expression in glioblastomas and reveal potential sites for targeted

therapy, it is essential that medical imaging synchronously works to

reveal these biomarkers. Radiogenomics in this case would

accomplish two tasks. The first, of course, to better characterize

the glioblastoma. The second would be to link the radiomics

features to a biologic basis. Liu and colleagues accomplished this

in patients with low-grade gliomas, showing that T2-weighted

radiomics features of progression-free survival were significantly

associated with apoptosis, immune response, cell proliferation, and

vascular development (51). A 2020 paper by Franco and colleagues

outlined a future study that aims to use machine learning to analyze

magnetic resonance spectroscopy (MRS) metabolite profiles in

order to predict tumor types (52). Thus, by linking the abstract

semantic features of radiomics to a tangible biologic basis, such

endeavors could in turn improve understanding and acceptance of

the technology. Nonetheless, radiomics remains a largely
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experimental field that has not been routinely adopted for clinical

use. This is due to difficulty reproducing results and a lack of

understanding between the radiomics signatures and the underlying

biology, which undermines trust (53).
6 Future direction and conclusion

Radiomics is an evolving field. It is currently in its discovery

phase with a preponderance of retrospective studies serving as

proof-of-concept. As it stands now, radiomics has extraordinary

potential to revolutionize diagnostic medicine. From the macro

level of differentiating tumor types and various non-oncogenic

pathologies to the micro level of tumor histology down to

possibly radiogenomics, the use of computers to supplement the

human eye will grow.

Ultimately, the computational analysis of MRI via radiomics

and artificial intelligence is promising for characterizing

glioblastoma, particularly using multimodality combinatorial

models. However, radiomics is limited by the lack of

standardization, which hinders reproducibility. Therefore, it is

imperative that routine techniques in both imaging acquisition

and segmentation are established. Radiomics also must explain

the biologic underpinnings of its features in order to gain trust and

move towards clinical translation (54). Studies such as that of Zinn

and colleagues hint at such explanations and add unique value to

the credibility of this growing field. Nevertheless, more prospective

examinations of radiologic imaging correlation to controlled genetic

gain of function are warranted.
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