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Cell-free circulating tumor RNAs
in plasma as the potential
prognostic biomarkers in
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Background: Cell free RNA (cfRNA) contains transcript fragments from multiple

cell types, making it useful for cancer detection in clinical settings. However, the

pathophysiological origins of cfRNAs in plasma from colorectal cancer (CRC)

patients remain unclear.

Methods: To identify the tissue-specific contributions of cfRNAs

transcriptomic profile, we used a published single-cell transcriptomics

profile to deconvolute cell type abundance among paired plasma samples

from CRC patients who underwent tumor-ablative surgery. We further

validated the differentially expressed cfRNAs in 5 pairs of CRC tumor

samples and adjacent tissue samples as well as 3 additional CRC tumor

samples using RNA-sequencing.

Results: The transcriptomic component from intestinal secretory cells was

significantly decreased in the in-house post-surgical cfRNA. The HPGD,

PACS1, and TDP2 expression was consistent across cfRNA and tissue samples.

Using the Cancer Genome Atlas (TCGA) CRC datasets, we were able to classify

the patients into two groups with significantly different survival outcomes.

Conclusions: The three-gene signature holds promise in applying minimal

residual disease (MRD) testing, which involves profiling remnants of cancer
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cells after or during treatment. Biomarkers identified in the present study

need to be validated in a larger cohort of samples in order to ascertain

their possible use in early diagnosis of CRC.
KEYWORDS

cell-free circulating tumor RNAs, colorectal (colon) cancer, CRC prognostic
biomarkers, RNA sequencing (RNA-seq), transcriptome (RNA-seq)
1 Introduction

Colorectal cancer (CRC) is the third leading cause of cancer-

related mortality and morbidity in the world1 (1–4). One of the

major factors affecting the survival of patients with CRC is the high

frequency of recurrence after curative surgery, which is estimated to

be 22.5% at 5 years. Approximately 11% of patients survive for 5

years after recurrence (5). Even though advances in cancer therapy

have been made in recent decades, metastatic cancer and recurrence

still pose a serious threat to the survival of CRC patients (6).

Therefore, the identification of post-treatment biomarkers that

reflect the potential of CRC recurrence is required to improve the

survival of patients.

Genomic alterations associated with oncogenic drivers have

traditionally been detected with invasive tissue biopsy, which is

highly dependent on the amount of tumor tissue recovered in the

biopsy and the initial analysis of the tissue for diagnosis (7). Liquid

biopsy, through the use of circulating tumor molecules isolated

from blood, has shown to be a promising minimally-invasive

approach to detect, monitor, and evaluate the genetic profile of

cancer patients (8). Currently, tumor-derived circulating cell-free

DNA (ctDNA) analysis has been shown to predict cancer

progression. However, there is only a limited amount of ctDNA

shed into the circulation, and have different characteristics from

patient to patient, which is hard to determine the tumor tissue of

origin in cancer patients (9, 10). Although the circulating cfDNA

methylation approach in plasma was effective in detecting and

localizing cancer with higher specificity (11, 12), these methods may

be ineffective without extensive deep sequencing coverage, and their

sensitivity and specificity may not be adequate (9, 10). According to

our previous study, cfRNA could serve as a potential diagnostic

biomarker for patients with colorectal adenoma (13, 14). Therefore,

additional circulating cell-free RNA (cfRNA) biomarkers may be

required to complement detection by ctDNA to detect cancer,

especially at the earliest stages or monitoring the outcome of

surgery (10).

Plasma cfRNA is released from cells through active secretion,

necrosis, and apoptosis (15, 16). Plasma cfRNA can reflect localized

tumor sites as well as systemic tumor responses (17). In this study,

we have performed a comprehensive profiling of the transcriptome

in both pre-surgical and post-surgical cfRNAs, as well as the paired
02
CRC tumor samples and CRC tumor-adjacent samples, in order to

examine the mutational landscape in cfRNAs upon removal of

tumor tissue. We deconvolved the relative abundance of cell types

in plasma samples using published single-cell RNA-seq datasets and

examined whether tissue after surgical might lead to a decrease in

the ratio of intestinal cell-associated RNAs in plasma. Novel cfRNA

expression biomarkers that showed consistent gene expression

changes across in-house plasma samples, tissue samples, and the

CRC samples in TCGA were identified. Survival analysis was used

to evaluate the prognostic performance of these potential

biomarkers and quantitative reverse transcription polymerase

chain reaction (qRT-PCR) was conducted to validate these

biomarkers in plasma from an independent cohort of 36 cancer

patients. The biomarkers we identified could play an important role

in the early diagnosis and prognosis of CRC.
2 Materials and methods

2.1 Subject recruitment

A total of 45 CRC patients were recruited from the Prince ofWales

Hospital (PWH) between May 2020 and January 2022 with the

approval from the joint Chinese University of Hong Kong- New

Territories East Cluster Clinical Research Ethics Committee (CUHK-

NTEC CREC; Ref No: 2019.542). Only individuals unrelated to each

other were included. Diagnosis of CRC was based on the histological

confirmation of colon adenocarcinoma. Patients with hereditary CRC

and inflammatory bowel disease were excluded in this study. Each

patient was invited to donate tissues (CRC tumor samples and CRC

tumor-adjacent samples) and blood (pre-surgery on the day before

surgery and post-surgery on the 5th-7th day after surgery) for research

purposes with written informed consent before the operation. After the

surgical removal of the tumor, the tissues were immediately preserved

in RNAlater™ Stabilization Solution (Cat# AM7020, Thermo Fisher

Scientific, USA) at 4°C overnight in order to make sure the RNAlater

can penetrate into the tissue. Then the tissues were stored at -80°C. The

tumor-adjacent samples were cut 3 to 4 cm from the tumor. Plasma

isolation was performed within 3 hours after the anti-coagulated blood

collection using the VACUETTE® TUBE 2 ml K2E K2EDTA

(Cat#454024, Greiner Bio-one, Austria). The blood was firstly

centrifuged for 1,600 g, 10minutes at 4 °C. The upper layer plasma

without disturbing the buffy coat was collected to the other tube, then

re-centrifuged for 16,000 g, 4 °C for 10minutes to remove residual cell
frontiersin.org
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pellet. After that, plasma was collected and preserved by 2ml TRIzol™

LS Reagent (Cat#10296028, Thermo Fisher Scientific, USA) before

storage at −80 °C.
2.2 Extraction of cfRNAs from blood

Eight pairs of pre- and post-surgical cfRNA that were prepared

for sequencing were extracted from 2-4 ml plasma by using 10ml

TRIzol™ LS Reagent (Cat#10296028,Thermo Fisher Scientific,

USA). The cfRNA was extracted by using QIAamp cfRNA/

cfDNA extraction kit (Cat#55184, Qiagen, Germany) following

the manufacturer’s instruction and eluted in 30ul water. The

RNA quality was assessed by the TapeStation using High

sensitivity RNA assay (Cat#5067-5579, Agilent, USA). The RNA

quantity was measured by Qubit™ RNA High Sensitivity (HS)

(Cat# Q32852, Invitrogen™, USA) (Supplementary Table S1).
2.3 Total RNA extraction from tissues

The tissues were shredded by a homogenizer. CRC tumor

samples and CRC tumor-adjacent samples from eight patients

that were prepared for sequencing were extracted from the

AllPrep DNA/RNA kit (Qiagen). The RNA quality was assessed

by the TapeStation, using High sensitivity RNA assay (Cat#5067-

5579, Agilent, USA). The RINs for all tissue RNA were> 2. The

RNA quantity was measured by Qubit™ RNA High Sensitivity

(HS) (Cat# Q32852, Invitrogen™, USA).
2.4 Ribosomal RNA (rRNA) depletion and
library construction for tissue RNA

rRNA depletion was performed on the extracted total RNAs

from tissue and subsequent library prep following the NEBNext®

rRNA Depletion Kit v2 (Human/Mouse/Rat) (Cat#7400L, New

England BioLabs, England)’s protocol, which depletes both

mitochondrial (12S and 16S) and cytoplasmic (5S, 5.8S, 18S,

and 28S) rRNA species. cDNA synthesis was performed by using

Maxima First Strand cDNA Synthesis Kit for RT-qPCR, with

dsDNase (Cat#1671, Thermo Scientific™, USA). End-repair, A

tailing, adaptor ligation, and library amplification were

performed by using the KAPA HyperPlus kit (Cat#KK8512,

Rocha, USA). Completed libraries were quantified by each

library by Qubit™ 1X dsDNA High Sensitivity (HS) assay kit

(Cat#Q33231, Invitrogen™, USA) and the insert size estimation

was measured by TapeStation, using D1000 ScreenTape assay

(Cat#5067-5582, Agilent, USA).
2 http://www.bioinformatics.babraham.ac.uk/projects/fastqc/

3 https://www.gencodegenes.org/pages/biotypes.html

4 https://portal.gdc.cancer.gov
2.5 Library construction for plasma cfRNA

In order to compare the genetic composition of cfRNA before

and after surgery, rRNA depletion was not performed in cfRNA as

part of the whole transcriptome study (10).
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cfRNAs were converted to the cDNA by using SMARTer®

Universal Low Input RNA Kit for Sequencing (Cat#634940,

Takara Bio, Japan). End-repair, A tailing, adaptor ligation, and

library amplification were performed according to the protocol of

the NEBNext® Ultra™ II DNA Library Prep Kit for Illumina®

(Cat# E7645S, New England BioLabs, England). Completed

libraries were quantified by each library by Qubit™ 1X dsDNA

High Sensitivity (HS) assay kit (Cat#Q33231, Invitrogen™, USA)

and the insert size estimation was measured by TapeStation, using

D1000 ScreenTape assay (Cat#5067-5582, Agilent, USA).
2.6 RNA sequencing

The Illumina sequencing adaptors were ligated onto the

fragments. Constructed libraries were sequenced (300 cycles)

using Illumina NextSeq550 (Illumina Inc), according to the

manufacturer’s instructions. The Binary Base Call (BCL) files

were converted to FASTQ files using the Illumina BCL Convert

(v3.7.5). Raw-seq reads quality was assessed using FastQC

(v0.11.9)2 (18). Adapters and low-quality bases (Q<20 in 4bp

sliding window) were trimmed using fastp (v0.20.1) (19).

Specifically, seven bases SMARTer adapter from both ends of the

reads will be trimmed for plasma cfRNA only. Clean RNA-seq reads

were then mapped to the human genome from the Genome

Reference Consortium (GRCh38) using STAR aligner (v2.7.7a)

with the 2-pass mode (20). Alignments were quantitated using

HTSeq (v0.13.5) (21) overlapping with the annotations in

GENCODE human release 35. The definition of the biotypes was

referenced to GENCODE3 (22). Gene expression estimation in

terms of Fragments Per Kilobase of transcript per Million

mapped reads (FPKM) and differential expression analysis was

performed by the R (v4.0.5)/Bioconductor package DESeq2

(v1.30.1) (23). Reactome Pathway Database (24) annotation was

performed using the Database for Annotation, Visualization, and

Integrated Discovery (DAVID v2021) (25).
2.7 Public dataset collections

2.7.1 TCGA dataset
Gene expression data and the corresponding clinical

information of 453 patients with CRC (colon adenocarcinoma

(COAD) and rectum adenocarcinoma (READ))4 were

downloaded from the TCGA data portal (26), including 453 CRC

tumor samples and 42 CRC tumor-adjacent samples. The

identification of the differentially expressed genes (DEGs) was

performed using the R/Bioconductor package DESeq2 (v1.30.1).
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2.7.2 CRC single-cell datasets
Single-cell 3’ mRNA sequencing data from 23 colorectal cancer

patients with the annotation to the cell types including B cell,

epithelial cell, mast cell, myeloid cell, stromal cell, and T cell were

downloaded from the Gene Expression Omnibus (GEO) database

(GSE132465) (27).

2.7.3 Tabula Sapiens
Tabula Sapiens version 1.0 was used to determine the origin of

cells of plasma transcriptome. Tabula Sapiens is a human cell atlas

of nearly 500,000 cells from 24 organs. The single cell signature used

in CIBERSORTx referred to the deconvolution of cell-free RNA

tutorial (28) (https://github.com/sevahn/deconvolution/tree/

master/deconvolve_cfrna_tutorial).

2.7.4 Cell type abundance determination
The single-cell datasets were used to deconvolute the cell type

proportion of bulk tissues and plasma using CIBERSORTx (29).

The top 1,000 variated genes in CRC single-cell dataset and Tabula

Sapiens dataset were used as the single-cell signatures. All

parameters were set as default, except for the permutation was set

as 1,000 in the cell fraction imputation step.

2.7.5 Reference-guided de novo assemblies
Reference-guided de novo assemblies were assembled and

quantitated using StringTie (v2.1.4) (30) after mapping to the

human genome from the GRCh38 using HISAT2 (v2.2.1) (31),

overlapping with the annotations in GENCODE human release 35.

Gffcompare (v0.11.2) (32) was used to compare with the reference

annotation. The transcripts with the classification code of i, x, y, and

u were defined as novel transcripts, otherwise, the transcripts were

defined as known transcripts. Differential expression analyses were

performed by the R/Bioconductor package ballgown (v2.22.0) (33).

The transcripts that (1) not overlapped with regulatory regions in its

5kb upstream and downstream regions from the transcription start

site, and (2) with abs(log2Fold-Change) of the expression less than

1 were filtered out as transcripts with low confidence. Regulatory

regions were obtained from ORegAnno (v3.0) (34). CPC 2.0 (35)

was used to predict the coding potential for the assembled

transcripts. AnnoLnc2 (36) was used to predict the expression of

the novel transcripts in human samples. We used lncPro to predict

the interaction between novel transcripts and proteins (37).
2.8 qRT-PCR validation

Plasma samples from 36 patients were used to validate the

expression of the candidate genes. The cfRNA was extracted from 1-

4.5 ml TRIzol™ LS Reagent (Cat#10296028, Thermo Fisher

Scientific, USA) preserved plasma by using miRNeasy Serum/

Plasma Kit (Cat#217184, Qiagen, Germany). RNA quantity was

measured by Qubit™ RNA High Sensitivity (HS) (Cat# Q32852,

Invitrogen™, USA). A majority of the extracted RNAs were below

the limit of detection (LOD) of the Qubit™ RNA High Sensitivity
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(HS) (Cat# Q32852, Invitrogen™ , USA) (LOD<10ng)

(Supplementary Table S2). Reverse transcription reactions were

performed following the manufacturer’s instructions using

PrimeScript RT Master Mix (Takara) in 10 μL reactions.

Otherwise, 30ng RNA was input for reverse transcription.

The primers (Supplementary Table S3) for the candidate genes

were designed based on the gene sequences gained from the

GeneBank, National Centre for Biotechnology Information, NCBI

and validated for the absence of self and cross dimers, secondary

structures as well as primer efficiency and specificity. Melting curve

plot of RT-PCR products showed that no unspecific amplification

was detected (Supplementary Figure S1).

qRT-PCR assays were performed using the SsoAdvanced

Universal SYBR Green Supermix (Cat# 1725270, Bio-Rad, USA)

in ABi ViiA7 Real-Time PCR System (ThermoFisher Scientific) in a

20 mL reaction volume according to the manufacturer’s

instructions. The thermal cycling condition was 30 seconds at 95°

C for initial activation, followed by 45 cycles of 15 seconds at 95°C

and 60 seconds at 60°C.

GAPDH was demonstrated as useful housekeeping gene to

normalize the data, in order to determine the relative target gene

expression in cfRNA samples (38). The gene expression was

normalized to GAPDH among the same patient by delta-delta Ct

method as following. The expression level of GAPDH was detected

as stable among samples (Supplementary Figure S2).

DCt=Ct(PACS1=HPGD=TDP2)−Ct(GAPDH)

DDCt=DCt−DCt(pre−surgical cfRNA)

Fold change expression  = 2−DDCt
2.9 Survival analysis

451 TCGA CRC samples were split into training and test

datasets: 70% of samples of the dataset were randomly selected as

training dataset (N=315) and 30% as test dataset (N=136). Gene

expression was standardized by removing the mean and scaling to

unit variance before analysis. We generated a protective score for

each sample – the accumulative weighted gene expression of the

HPGD, PACS1, and TDP2 by the first principal component. Linear

regression was used to fine-tune the protective score. Then samples

with a protective score>0.5 were classified as a low-risk group,

otherwise as a high-risk group. AUC was used to evaluate the model

performance. Survival curves were estimated by the Kaplan-Meier

method and compared with a log-rank test.
2.10 Statistics

The correlation between gene expression in CRC tumor

samples vs TCGA tumor samples and pre-surgical cfRNA vs CRC

tumor samples was described using the linear regression model. The
frontiersin.org
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significance of the overlapping between significantly upregulated

genes in pre-surgical plasma and upregulated protein-coding genes

in TCGA tumor samples was described using the hypergeometric

test. P values from the Wilcoxon rank-sum method indicated

significance levels for differences in cell type proportion across

sample groups. Gene expression detected using qRT-PCR was

compared between post- and pre-surgical cfRNAs using the

paired T-test. The error bars represented mean ± standard

deviation (SD).

We used the Python library SciPy (v1.5.2) to perform the

statistical analysis. We used adjusted p-value< 0.001 and abs

(log2Fold-change) >1 to identify DEGs in in-house CRC tumor

samples and CRC tumor-adjacent samples, as well as TCGA tumor

samples and tumor-adjacent samples; p-value<0.05 to identify

DEGs and DETs in pre- and post-surgical cfRNAs. Gene

expression detected using qRT-PCR was compared between post-

and pre-surgical cfRNAs using the paired T-test.
2.11 Study approval

Each patient was invited to donate tissues (CRC tumor samples

and CRC tumor-adjacent samples) and blood (pre-surgical and

post-surgical cfRNA) for research purposes with written informed

consent before the operation. This study was approved by the joint

Chinese University of Hong Kong- New Territories East Cluster

Clinical Research Ethics Committee (CUHK-NTEC CREC; Ref

No: 2019.542).
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2.12 Data availability

The raw RNA-seq data of the plasma and tissue samples in this

study are available in the NCBI Sequence Read Archive (SRA)

database under the accession code PRJNA891435.
3 Results

A total of 45 rectal and colon adenocarcinoma patients were

recruited in this study (62.2% men; age: 70.5 ± 8.8 years,

Supplementary Table S4). cfRNA-seq was performed for 8

patients with matching pre- and post-surgical plasma samples

(pre-surgical cfRNA and post-surgical cfRNA) (75% men; 71.6 ±

7.0 years), and bulk RNA-seq was performed using the 5 pairs of

CRC tumor samples and CRC tumor-adjacent samples as well as 3

additional CRC tumor samples (87.5% men; age 70.5 ± 5.7 years,

Figure 1A). The remaining 36 plasma samples (58.3% men; age 70.1

± 9.3 years) were used in downstream qRT-PCR validation for the

biomarkers discovered in this study.
3.1 Genetic characterization of plasma
cell-free and tissue transcriptome

To characterize the expression landscape of CRC, RNA-seq was

performed using the entire yield of extracted cfRNAs and tissue

RNAs (see Methods). We systematically profiled the genetic
B

C

A

FIGURE 1

Analytical characterization of cell-free RNA and tissue transcriptome. (A) Experimental design of the study, Created with BioRender.com. (B) Relative
intensity across different fragment lengths of plasma and tissue transcriptomes in a patient with CRC. Pie charts showed the percentage of gene
expression in each biotype. (C) Correlation between gene expression of the top expressed genes in in-house tumor samples and TCGA datasets, and
plasma and tissue datasets. The top 500 expressed genes in TCGA and in-house tissue were selected, respectively.
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composition of the plasma cell-free and tissue transcriptome

(Figure 1B; Supplementary Tables S5, S6). By comparing pre-

surgical and post-surgical cfRNAs, we identified that the

percentage of noncoding RNAs decreased significantly (T-test: p-

value=1.42e-03) after surgery (39, 40), while the percentage of

rRNAs increased significantly (T-test: p-value=1.20e-02). The

genetic composition of tissue, however, has no significant

variation between in-house CRC tumor samples and CRC tumor-

adjacent samples as expected (Supplementary Table S6). This

suggests that surgical removal of CRC tissue samples may affect

the corresponding cfRNA abundance in plasma.

To examine the level of concordance between in-house CRC

tumor sample RNA-seq profiles and published CRC RNA-seq data,

we compared the gene expression level between 8 in-house CRC

tumor samples and 453 TCGA CRC tumor samples (see Methods).

A positive correlation (R2 = 0.55, p-value=1.53e-89) was observed in

the top 500 expressed genes in the TCGA dataset (Figure 1C).

Interestingly, the expression between in-house CRC tumor samples

and pre-surgical cfRNA was also positively correlated (R2 = 0.31, p-

value=9.05e-43). The correlation coefficient is higher than it

between in-house CRC tumor-adjacent samples and pre-surgical

cfRNA (R2 = 0.23, p-value=1.17e-30), as well as between in-house

CRC tumor samples and post-surgical cfRNA (R2 = 0.27, p-

value=4.67e-36; Supplementary Figure S3). The concordance

between the in-house CRC tumor samples and pre-surgical
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cfRNA leads us to the hypothesis that the patients’ cfRNA could

be derived from subpopulations of cells within the tumor (41),

additional analysis is therefore necessary to delineate the tissue

origin of cfRNA in plasma as to identify biomarkers for CRC

in blood.
3.2 Cell type abundance suggested a
decrease of intestinal cell-originating RNAs
in plasma after surgery

Given the correlation between in-house CRC tumor samples

and pre-surgical cfRNA, we hypothesize that a portion of the

cfRNA in plasma could be originating from the cancer tissue. We

performed a single-cell deconvolution analysis to predict the

relative ratio of contributing cell types based on their specific

expression signatures. Firstly, we used CIBERSORTx to predict

the cell type proportion of all in-house CRC tumor and CRC tumor-

adjacent samples using the published CRC single-cell RNA-seq

dataset (GSE132465). A marginal increase in myeloid cells was

observed in CRC tumor samples than in CRC tumor-adjacent

samples (Figure 2A; log2Fold-change=7.35; p-value=5.4e-02),

consistent with the role of myeloid cells in providing growth

factors and metabolites for tumor growth (42). B Cells, however,

were depleted in the tumor samples when compared to CRC tumor-
B

C D

A

FIGURE 2

Cell type proportion in tissue and cfRNA. (A) Deconvoluted cell type proportion of in-house bulk CRC tumor samples and CRC tumor-adjacent
samples. Box plot showed myeloid and B cell fraction distribution from CRC patients. (B) Deconvoluted cell type proportion of 42 TCGA bulk tumor
and normal samples. Each stacked bar of the left and middle panels represented matched tumor and normal tissue from a single participant. Box
plots showed myeloid and B cell fraction distribution from 42 CRC patients in TCGA. (C) Heatmap of expression for CRC tissue-highly expressed
genes in plasma samples. (D) Box plots showed intestinal secretory cells, erythrocytes, erythroid progenitors, and leukocyte fraction distribution from
pre- and post-surgical plasma samples. P values from the Wilcoxon rank-sum method indicated significance levels for differences in cell type
proportion across sample groups. “**” represented P<0.01; “*” represented P<0.05. NS, not significant.
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adjacent samples (log2Fold-change=-1.91; p-value=2.3e-02), which

is expected for the inhibition role of B cells in tumor development

(43). These results were also observed in the TCGA dataset

(Figure 2B; p-value=2.6e-05 in myeloid cells; p-value=1.1e-08 in B

cells) and showed high consistency with the findings from the

single-cell RNA-seq data (27).

After demonstrating consistent cell-type specific expression

signature between the in-house tissue sample RNA-seq data and

TCGA dataset, we hypothesize that the proportion of cfRNA

secreted by intestinal cells should be decreased in post-surgical

cfRNA samples. Principal component analysis (PCA) based on the

top 500 DEGs showed discriminating between the pre- and post-

surgical plasma samples (Supplementary Figure S4). We detected 50

significantly upregulated genes that expressed across all the samples

(FPKM>1) in pre-surgical cfRNA samples, 7 of them overlapped

with the 2,379 upregulated protein-coding genes in TCGA tumor

samples (Figure 2C; Hypergeometric test: p-value=3.63e-03). To

determine if the up-regulated genes in pre-surgical cfRNA could be

contributed by the intestinal-related cell, we further used the

comprehensive human single-cell atlas - Tabula Sapiens (44) to

deconvolute the cellular composition of the plasma samples (10).

Consistent with the hypothesis, the proportion of intestinal

secretory cells was significantly decreased after the surgery (p-

value=7.2e-03) when compared to pre-surgical plasma samples

(Figure 2D). We observed an insignificant change in the

expression signature of erythrocyte, erythroid progenitor, and

leukocytes between pre- and post-surgical samples (Figure 2D),

which agrees with a previous study that demonstrated relatively

stable expression of these cell types in plasma (28). Taken together,

cfRNAs can reflect the intestinal tumor load, which has the

potential to be the non-invasive biomarkers for CRC.
3.3 Identification of CRC non-invasive
differential expression (DE) biomarkers

To identify potential blood-based DE biomarkers for CRC

patients, we further performed a de novo assembly-based DE

analysis to identify transcripts, potentially novel transcripts, that

show consistent DE pattern across pre- and post-surgical cfRNA

samples, as well as in-house CRC tumor samples and CRC tumor-

adjacent samples (Figure 3A).

A total of 106,802 transcripts were assembled, the average

length of which is 453 bp (see Methods, Supplementary Figure

S5). We detected 409 differentially expressed transcripts (DETs)

with more than 1 exon in the assembled transcripts. 268 out of the

409 transcripts were found to be known transcripts – overlapping

with the GENCODE human release 35, and the remaining 141

transcripts were defined as novel transcripts (see Methods). Among

the known transcripts, RNU2-1 which was previously shown to be

released from tissue to plasma among CRC patients (45), has been

shown to be decreased in the post-surgical cfRNA (Supplementary

Figure S6A; p-value=0.04, log2Fold-Change=-0.55). A lowered

expression was also observed in in-house CRC tumor-adjacent

samples (log2Fold-Change=-0.93) and TCGA tumor-adjacent
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samples (log2Fold-Change=-0.81; Supplementary Figure S6A). By

selecting highly confident novel transcripts based on fold differences

and TSS proximity (34) (see Methods), 10 transcripts were further

shortlisted (Supplementary Table S7). Interestingly, we identified a

significant decrease of the novel MCF2L-intronic-AS in post-

surgical cfRNA (Supplementary Figures S6B, C; p-value=8.31e-03,

log2Fold-Change=-1.03) located within the intronic region at

antisense strand of MCF2L. This novel transcript was predicted as

a non-coding transcript with a coding probability of 0.03 by using

CPC 2.0 (35) and shown to be expressed in colon adenocarcinoma

cell lines by AnnoLnc2 (36). The transcript was predicted to interact

with a common set of proteins as MCF2L-AS1 – a known antisense

non-coding RNA of MCF2L. MCF2L-AS1 showed distinctly higher

expression in CRC compared to matched normal specimens (46),

and its deficiency dramatically impeded cell proliferation, invasion,

and migration capacities of CRC (47). MCF2L-intronic-AS may

serve the consistent role as MCF2L-AS1 according to interacting

with the common proteins. In sum, these significantly depleted

post-surgical cfRNAs could be contributed by the reduced intestinal

secretory cells after surgical removal of the CRC tissue.

To identify genes with the same DE patterns in (i) CRC tumor

tissue and tumor-adjacent tissue and (ii) pre- and post-surgical

cfRNA samples (Figure 3A), we further performed DE analysis

between CRC tumor and tumor-adjacent and identified 1,942 DE

genes. Among these 1,942 genes, 11 genes were shown to be

overlapping with the 409 DETs in cfRNAs. CDCA7, CELSR3,

PACS1, SNTB1, and TBC1D31 showed consistent upregulation in

CRC tumor samples and pre-surgical cfRNA, while GFI1B, HPGD,

SH3BGRL2, SIAE, PKHD1L1, and TDP2 showed downregulation in

CRC tumor samples and pre-surgical cfRNA. We further prioritize

these genes based on their biomolecular functioning using

Reactome Pathway Database (24). Only HPGD, PACS1, and

TDP2 showed involvement in biological pathways, including

metabolism, infection, and DNA repair-related pathways

(Supplementary Table S8).
3.4 Independent external validation of
HPGD, PACS1 and TDP2 expression
showed high concordance in CRC

We set out to validate the expression of the three cfRNA

biomarkers – HPGD, PACS1, and TDP2 identified in our in-

house cfRNA and CRC tissue samples using an independent

cohort of pre- and post-surgical cfRNA samples (N=36) and

published TCGA CRC tumor and tumor-adjacent samples

(N=453). HPGD has a significantly lower expression in in-house

CRC tumor samples (p-value=4.63e-07, log2Fold-Change=-2.70)

and pre-surgical cfRNA (p-value=1.67e-02, log2Fold-Change=-

0.74). The loss expression of HPGD was reported in several

colorectal carcinoma cell lines (48) and microscopic colon

adenomas (49). We also observed a similarly low HPGD

expression in TCGA tumor samples (p-value=6.67e-38, log2Fold-

Change=-2.86) and the independent in-house pre-surgical cfRNA

cohort (p-value=2.25e-02, log2Fold-Change=-0.58) (Figure 3B;
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Supplementary Table S9). Especially, the 9 out of 36 patients with

N0 stage in the independent in-house cfRNA cohort showed a lower

expression in pre-surgical cfRNA (p-value=2.53e-02, log2Fold-

Change=-0.61; Supplementary Figure S7), implying a role of

HPGD in early detection of CRC. The expression of PACS1 and

TDP2 was also examined in both the TCGA CRC RNA-seq data and

the independent pre- and post-surgical cfRNA cohort. PACS1
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expression is shown to be consistently higher in both in-house

and TCGA CRC tumor samples, as well as pre-surgical cfRNA

(Figure 3C). TDP2, however, is shown to be lowly expressed in the

in-house tumor samples, TCGA CRC tumor samples, and pre-

surgical cfRNA (Figure 3D). In summary, these results confirmed

the monitoring potential of HPGD, PACS1, and TDP2 in

individuals with CRC.
B

C

D

A

FIGURE 3

(A) Schematic diagram showed the consistent DEGs identification across cfRNAs, in-house CRC tissue samples, and TCGA samples. Gene expression of
HPGD (B), PACS1 (C), and TDP2 (D) in cfRNAs, in-house CRC tissue samples, TCGA samples, and in-house qRT-PCR cfRNA data across sample groups.
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3.5 Detection of survival outcome
difference in TCGA CRC patients based on
the linear combination of HPGD, PACS1,
and TDP2 expression
We next explored whether the expression of HPGD, PACS1 and

TDP2 can guide the patient classification based on their survival

time. We used a linear regression model to investigate the

association between the survival time of TCGA CRC patients and

the expression of HPGD, PACS1, and TDP2 (see Methods). In order

to evaluate the fitted model’s accuracy in predicting the risk for

CRC patients, we randomly split the TCGA CRC dataset into

training (N=315) and test datasets (N=136) and used the receiver

operating characteristic (ROC) and the area under the curve (AUC)

to assess the model performance (see Methods). The AUC for the

training dataset is 0.838 and 0.831 for the test dataset, indicating the

good performance of the model (Figure 4A). HPGD (beta

coefficients = -0.05, 95% confidence interval (CI): -0.09 to -0.02,

p = 1.25e-03) and PACS1 (beta coefficients=-0.06, 95% CI: -0.09 to

-0.03, p = 6.34e-05) were identified as significant risk factors in the

model, while TDP2 (beta coefficients = 0.15, 95% CI: 0.11 to 0.19,

p=3.61e-13) as a significant protective factor (Figure 4B). The linear

combination of HPGD, PACS1 and TDP2 expression was used to

assess patient survival probability (see Methods). A significant

difference was detected for the training dataset (Log-rank p-value:

4.75e-02) and test dataset (Log-rank p-value: 2.95e-02) (Figure 4C).

The median survival time for a low-risk group (N=110) in the test

dataset was 1.65 years compared to 1.36 years for the high-risk

group (N=26) (Figure 4C). Taken together, the linear combination
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ofHPGD, PACS1, and TDP2 expression showed an association with

the survival probability of the CRC patient, suggesting the

prognostic ability of these potential biomarkers.
4 Discussion

Identifying blood-based prognostic markers for minimally

invasive cancer detection has been a major focus in the diagnostic

area. ctDNA profiling is now being routinely applied clinically for

both companion diagnosis and screening forminimal residual disease

(MRD) among cancer patients. However, the detection of ctDNA for

MRD is challenging as only a minute amount of ctDNA are present

in blood at earlier cancer stages, especially in post-surgical setting (7,

10, 50). The cfDNA concentration may fall below the detection limit

of the NGS-based ctDNA test, resulting in a very low or even zero

mutation allele frequency (MAF) for the mutations (51). More

importantly, it is difficult to determine the tumor tissue of origin

(TOO) in cancer patients and differentiate informative cfDNA

mutations from benign variants such as clonal hematopoiesis (7).

Therefore through the amplification of tumor-derived RNA signal,

we have shown that the detection of the expressed cfRNA in blood is

technically feasible and may help circumvent the existing limitation

in ctDNA detection, which will increase cancer detection sensitivity

(7, 10). To our knowledge, this is the first study that compared the

plasma transcriptomes derived both pre-operatively and post-

operatively. Together with paired transcriptome derived from

tumor tissues and adjacent normal tissues from CRC patients, we

investigated the transcriptional landscape in both blood and tissue

upon the surgical removal of CRC tissue.
B

C

A

FIGURE 4

Assessment of the linear regression model using the 451 TCGA CRC samples. (A) ROC curve of the training and test datasets. (B) Beta coefficients
and 95% CI of HPGD, PACS1, and TDP2. (C) Kaplan-Meier estimates of overall survival in the training and test datasets according to the linear
combination of HPGD, PACS1, and TDP2 expression.
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Previous studies have shown that the cellular components within

the tumor immune microenvironment (TIM) are important

regulators of primary tumor progression, organ-specific metastasis,

as well as a therapeutic response (52, 53). By using published CRC

and healthy individual single-cell RNA-seq profiles, we showed that

the CRC tumor micro-environment has a marked surge of immune

cells, including both myeloid cells and B cells. This agrees with the

finding that tumor-infiltrating cells play a critical role in tumor

development and treatment response (53), myeloid cells were also

previously found to be abundantly present within the TIM among

immune cells (54). Interestingly, when examining the cell type

contribution among the cfRNA transcriptome profiles, we detected

more intestinal secretory cell signatures in pre-surgical cfRNA than

post-surgical cfRNA, which have only been reported in the CRC

tumor tissue in the previous study (55).

Three significant cfRNA biomarkers HPGD, PACS1, and TDP2

were identified through our comprehensive analysis and qRT-PCR

validation experiments. The reduction of HPGD promotes the

expression of COX-2, including Ras-activated protein kinase

(MAPK) and extracellular signal-regulated kinase (ERK) (56, 57),

phosphoinositide 3-kinase (PI3K)–Akt signaling, epidermal growth

factor receptor (EGFR) (58) and Wnt/b-catenin (59). The PACS-1

promotes chromatin organization by increasing the acetylation of

chromatin (60) and its deficiency results in replication stress and

gross chromosomal aberrations (56). TDP2 is a DNA repair enzyme

that regulates DNA topology by creating double-strand breakage

with free 5’ phosphate for re-ligation (61–63). Since HPGD is a

tumor suppressor gene, as expected, it is freshly expressed in the

normal colonic mucosa (59). Interestingly, HPGD showed as a

significant risk factor in the linear regression model when its

expression combined with PACS1 and TDP2 expression.

Importantly, the model based on the expression of the three

genes showed a high AUC (>0.83) of the ROC curve in both

training and test datasets. Taken together, linear combination of

HPGD, PACS1, and TDP2 expression was associated with survival

probability, which provides support evidence to potential

prognostic biomarkers for CRC. Surprisingly, our research

identified a significant decline in MCF2L-intronic-AS expression

following surgery, which is identical to MCF2L-AS1 expression.

Because potentially interact with the common proteins, MCF2L-

intronic-AS may play a role in regulating the progression of CRC,

which may include promoting cell proliferation, migration,

invasion, epithelial-to-mesenchymal transition (EMT), and cell

apoptosis (46, 47, 64). There are no studies that have reported the

presence of MCF2L-intronic-AS in plasma; therefore, further

investigations must be conducted to validate the dysregulation

pattern of MCF2L-intronic-AS.

In the genetic characterization analysis of plasma cfRNA,

upregulated expression was observed in rRNA in post-surgical

cfRNA samples when compared to pre-surgical cfRNA samples.

Two mitochondrially encoded ribosomal RNAs, MT-RNR2 and

MT-RNR1 are dominant for the increasing expression in the post-

surgical cfRNA samples (MT-RNR2: log2FC=2.60, p-value=1.41e-

03; MT-RNR1: log2FC=2.73, p-value=1.06e-03), which may play an
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important role on aiding in the repair of damage during surgery

(65). Meanwhile, although no noncoding RNA was observed as a

dominant one in the reduction in post-surgical cfRNAs, non-coding

RNAs have been reported as drivers of malignant transformation

that promote the development of cancers (66). On the other hand,

some CRC biomarkers identified from previous studies, such as

CTNNB1 (14), S100A4 (67), and EPAS1 (68) were also detected in

this study with similar dysregulation patterns, but there was an

insufficient sample size in this study that led to these biomarkers

being statistically insignificant. While this study shows encouraging

results and suggests that the adoption of cfRNA could be useful in a

monitoring operation response, future studies with a larger number

of replicates per condition should be performed. We acknowledge

as a limitation of the present study the small sample size related to

cfRNA analysis which did not allow associating the candidate

biomarkers to CRC stages as well as investigating on their impact

in MRD detection. In conclusion,HPGD, PACS1, and TDP2 in CRC

plasma samples were demonstrated as potential prognosis

biomarkers of CRC, we hope that our results will enable future

studies in incorporating cfRNA in the detection, monitoring, and

diagnosis of premalignant CRC.
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