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Objectives: To explore the predictive value of gadoxetic acid-enhanced

magnetic resonance imaging (MRI) combined with T1 mapping and clinical

factors for Ki-67 expression in hepatocellular carcinoma (HCC).

Methods: A retrospective study was conducted on 185 patients with

pathologically confirmed solitary HCC from two institutions. All patients

underwent preoperative T1 mapping on gadoxetic acid-enhanced MRI.

Patients from institution I (n = 124) and institution II (n = 61) were respectively

assigned to the training and validation sets. Univariable andmultivariable analyses

were performed to assess the correlation of clinico-radiological factors with Ki-

67 labeling index (LI). Based on the significant factors, a predictive nomogram

was developed and validated for Ki-67 LI. The performance of the nomogram

was evaluated on the basis of its calibration, discrimination, and clinical utility.

Results: Multivariable analysis showed that alpha-fetoprotein (AFP) levels >

20ng/mL, neutrophils to lymphocyte ratio > 2.25, non-smooth margin, tumor-

to-liver signal intensity ratio in the hepatobiliary phase ≤ 0.6, and post-contrast

T1 relaxation time > 705 msec were the independent predictors of Ki-67 LI. The

nomogram based on these variables showed the best predictive performance

with area under the receiver operator characteristic curve (AUROC) 0.899, area

under the precision-recall curve (AUPRC) 0.946 and F1 score of 0.912; the

respective values were 0.823, 0.879 and 0.857 in the validation set. The Kaplan–

Meier curves illustrated that the cumulative recurrence probability at 2 years was

significantly higher in patients with high Ki-67 LI than in those with low Ki-67 LI

(39.6% [53/134] vs. 19.6% [10/51], p = 0.011).

Conclusions: Gadoxetic acid-enhanced MRI combined with T1 mapping and

several clinical factors can preoperatively predict Ki-67 LI with high accuracy, and

thus enable risk stratification and personalized treatment of HCC patients.
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1 Introduction

Hepatocellular carcinoma (HCC) is the third leading cause of

cancer-related deaths worldwide (1). Although the prognosis of

HCC patients has improved with advances in imaging and surgical

techniques, the high rates of intrahepatic recurrence after surgical

resection still remain a major challenge, and two thirds of the

patients experience recurrence within 5 years (2, 3). Various factors

affect intrahepatic recurrence, including microvascular invasion,

degree of differentiation, satellite focus and related gene expression,

and tumor cell proliferation (4).

The Ki-67 labeling index (LI) is an indicator of cell

proliferation, which correlates to the biological behavior of

tumors, treatment efficacy and prognosis (5, 6). Previous studies

have shown that high Ki-67 LI is associated with poor overall

survival (7–9) and recurrence-free survival (RFS) (9, 10). Currently,

the Ki-67 LI of tumors is evaluated on the basis of postoperative

immunohistochemical examination. Non-invasive estimation of the

preoperative Ki-67 LI of HCC tissues may help predict patient

prognosis and guide treatment decision-making. There are reports

that texture analysis based on gadoxetic acid-enhanced magnetic

resonance imaging (MRI) can preoperatively predict Ki-67 LI in

HCC patients, and is superior to subjective MRI characteristics (11–

13). In addition, radiomic score is also a reliable imaging biomarker

of Ki-67 expression (14–18). However, both texture analysis and

radiomics are not conducive to clinical application due to the

complexity of the process, and the poor generalization and

resolvability of the model (19, 20). T1 mapping is a non-invasive

method for the quantification of T1 value in tissues. Moreover, it is

directly proportional to the concentration of gadolinium contrast

agent in tissues, and can reflect the uptake of gadoxetic acid more

accurately (21). Some recent studies have shown that T1 mapping

can be used to evaluate the degree of HCC differentiation (22, 23),

histological grade of liver fibrosis (24, 25) and microvascular
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invasion (26). However, to our knowledge, the quantitative

evaluation of Ki-67 LI in HCC using T1 mapping has not been

well established.

Notably, the previous studies focused more on the image

characteristics without identifying the importance of clinical

characteristics on predictive performance. As we know, clinical

characteristics such as biochemical and tumor biomarkers also

played an important role in HCC diagnosis and prognosis (27–

31). In addition, neutrophil-lymphocyte-ratio (NLR), platelet-

lymphocyte-ratio (PLR), g-glutamyl transpeptidase-lymphocyte

ratio and other lab test data were found related to poor prognosis

and had indications of therapeutic effects in HCCs (27, 29, 31).

Accordingly, whether clinical characteristics can identify the Ki-67

LI in HCC remains unclear. The aim of this study was to investigate

the predictive value of gadoxetic acid-enhanced MRI combined

with T1 mapping and clinical indicators for preoperative Ki-67 LI

in HCC.
2 Materials and methods

2.1 Study populations

A retrospective study was conducted following approval by the

hospital ethics committee, and patients were exempted from signing

informed consent. The flow chart of data collection and research

design is shown in Figure 1. The data of patients was retrieved from

the First People’s Hospital of Zhaoqing (Institution I) and Central

People’s Hospital of Zhanjiang (Institution II). The inclusion

criteria for the patients were as follows (1): pathologically

confirmed solitary HCC, (2) underwent gadoxetic acid-enhanced

MRI within 2 weeks before surgery, including T1 mapping in the

pre-enhanced and 20-minute hepatobiliary phase (HBP) after

gadoxetic acid injection, and (3) availability of complete clinical
FIGURE 1

Study flowchart. HCC, hepatocellular carcinoma.
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and pathological data. The exclusion criteria were as follows: (1)

alternative treatments such as radiofrequency ablation or

transcatheter arterial chemoembolization (TACE) instead of

resection surgery, (2) presence of more than one tumor or

satellite nodules, (3) presence of macrovascular invasion or

extrahepatic spreading, and (4) suboptimal MR image quality.

The MR images of 124 patients from institution I were used as

the training set to establish the predictive model for Ki-67 LI. The

predictive performance of the model was evaluated on the 61 cases

from institution II (validation set).
2.2 Clinicopathological analyses

Preoperative laboratory indicators included alpha-fetoprotein

(AFP), alanine aminotransferase, aspartate aminotransferase,

glutamyl transpeptidase, alkaline phosphatase, albumin, direct

bilirubin, total bilirubin, serum creatinine, prothrombin time and

international normalized ratio, neutrophil count, and platelet count.

HCC was diagnosed on the basis of morphological criteria defined

by the World Health Organization. The tumor tissue sections were

immuno-stained using monoclonal mouse anti-human Ki-67

antibody (Beijing Zhongshan Golden Bridge Biotechnology

Company, Beijing, China), and the Ki-67 LI was evaluated by

calculating the frequency of Ki-67-positive cells. The samples with

≤10% positively stained cells were classified as Ki-67 LIlow, and

those with >10% positive cells as Ki-67 LIhigh according to previous

studies (11, 13, 32).
2.3 MRI protocol

MRI was performed at institution I and institution II using 3.0T

(Magnetom Aera; Siemens Healthcare) and 3.0T (Magnetom Trio

A Tim; Siemens Healthcare) MR scanners respectively. The

scanning range covered the region from the top to the lower edge

of the liver with an 8-channel phased-array coil as the receiver coil.

Gadoxetic acid-enhanced MR images, including the pre-enhanced,

enhanced arterial phase (AP, 20–40s), portal phase (PVP, 50–70s),

transitional phase (TP, 100–120s), and 20 min HBP images were

obtained. Gadoxetic acid (Primovist; Bayer Schering Pharma,

Berlin, Germany) was injected into the cubital vein at the flow

rate of 1 ml/s and the dose of 0.025 mmol/kg, and then flushed

using 20 ml normal saline. A more detailed description of the MRI

methods and specific sequences and parameters of MRI scans are

shown in Supplementary Materials 1.1 and Table S1.
2.4 Imaging analysis

Preoperative MRI images were retrospectively analyzed on the

Picture Archiving and Communication System (PACS). The

semantic and quantitative MRI features were evaluated by two

abdominal radiologists independently (both with 8 years of

experience in liver imaging, respectively) who were blinded to the

clinical and pathological information. Discrepancies were resolved
Frontiers in Oncology 03
by consensus after reevaluating the images. Quantitative

characteristics were obtained by averaging the two estimates. MRI

features included tumor size, tumor margin, hemorrhage, necrosis,

fat component, target sign, washout, rim arterial phase

hyperenhancement, corona enhancement, intratumor arteries,

radiologic capsule, and peritumoral hypointensity on HBP. All

quantitative measurements were performed manually on the

PACS. The region of interest (ROI) was placed as far as possible

in the area with obvious enhancement of lesion to avoid necrosis,

hemorrhage, fat, and artifacts. The area of ROI was about 1.0~1.5

cm2. The same lesion was measured three times with the same ROI,

and the average was calculated. The signal intensity (SI) of the

tumor and surrounding normal liver parenchyma were measured in

the Pre, AP, PVP, EP and HBP images, and the tumor-to-liver

contrast ratio (TLR), tumor enhancement index (TEI), relative

tumor enhancement (RTE) and relative enhancement ratio (RER)

were calculated. The pre-contrast and post-contrast T1 relaxation

time were measured before and 20 minutes after the administration

of the contrast medium (recorded as T1Pre and T1HBP respectively),

and reduction rate of T1 relaxation time (DT1%) was calculated.

The detailed description of semantic and quantitative MRI features

is in the Supplemental Materials 1.2.
2.5 Follow-up

All patients were regularly followed up with imaging evaluation

once every three months for the first two years after surgery. The

recurrence was noted as new intrahepatic lesions and/or

extrahepatic metastasis, with the following detailed criteria: 1)

new intrahepatic lesions with typical imaging features of HCC, or

confirmed by histopathology or with tumor staining during

postoperative TACE; 2) extrahepatic metastasis confirmed by

typical imaging features or histopathological analysis.
2.6 Statistical analysis

Student’s t-test was used to compare normally distributed

continuous variables, while the Mann-Whitney U test was used for

the non-normally distributed variables. The Chi-square test was used

to compare binary categorical variables. The interclass correlation

coefficient (ICC) of quantitative data between the two observers was

calculated. To identify the independent predictors for high Ki-67 LI

without multicollinearity (variance inflation factor, VIF < 5),

multivariate backward logistic regression analysis was performed.

Receiver operating characteristic (ROC) curves were plotted to

determine the cut-off values of the continuous variables for

predicting Ki-67 LI by calculating the maximum Youden index.

The area under the ROC curve (AUROC) was calculated to

evaluate the predictive performance, and DeLong’s test was used to

compare the AUROC values between two models. Due to the

imbalance between the data of Ki-67 LIlow and Ki-67 LIhigh

patients, the F1 score and the area under the precision-recall curve

(AUPRC) were also calculated to compare the predictive

performances. The discriminatory abilities of the models were
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quantified by net reclassification index (NRI), where NRI > 0

indicates positive improvement of the new model over the old one.

The calibration curves of the nomogram were assessed by the

Hosmer-Lemeshow test for consistency. Decision curve analysis

(DCA) was performed to evaluate the clinical utility of the

nomogram by quantifying the net benefit under different threshold

probabilities. All statistical analyses were performed using the SPSS

software (version 23.0, IBM Corp.) and R software (version 4.1.3,

http://www.r-project.org). A p-value < 0.05 was considered

statistically significant.
3 Results

3.1 Clinicopathological features of the
training and validation sets

A total of 124 patients from institution I were included in this

study, of which 35 had low Ki-67 LI and 89 had high Ki-67 LI.

Furthermore, 61 patients were included from institution II, and the

Ki-67 LI was respectively low and high in 16 and 45 patients. The

clinicopathological features of the training and validation sets were

similar (Table 1). Univariate analysis of clinical factors in the

training set showed that ALT (p=0.043), NLR (p=0.036), PLR
Frontiers in Oncology 04
(p=0.045) and AFP (p=0.024) were significantly associated with

Ki-67 LI (Supplementary Table S2), and thus incorporated into the

logistic regression model. The results indicated that AFP >20 ng/mL

(p<0.001, OR=6.764, 95% CI: 2.225-23.792) and NLR >2.25

(p=0.038, OR=3.527, 95% CI: 1.023-16.274) were independent

factors of high Ki-67 LI.
3.2 MRI features of HCCs related to
Ki-67 LI

Univariable analysis of semantic features in the training set

showed that non-smooth tumor margin (p<0.001), hemorrhage

(p=0.031) and necrosis (p=0.035) were more frequent in the Ki-67

LIhigh group compared to the Ki-67 LIlow group (Supplementary

Table S3). Furthermore, the tumor size, TLRTP, TLRHBP, TEIHBP,

T1Pre and T1HBP were also significantly different between the two

groups (Table 2), of which T1HBP showed the best predictive

performance for high Ki-67 LI, with an AUROC of 0.726, and

sensitivity and specificity of 73.25% and 71.69% respectively

(Supplementary Table S4). Furthermore, the ICC values of

quantitative features in the training and validation sets were all

above 0.75 (0.76 ~ 0.89; (Supplementary Table S5), indicating that

the two radiologists were consistent in their analysis.
TABLE 1 Baseline clinical characteristics of the training and validation sets.

Characteristic Total (n = 185) Training set (n = 124) Validation set (n = 61) p value

Age (years) 45 [42, 67] 56 [50, 68] 56 [45, 65] 0.264

Sex (male) 168 (90.8%) 110 (88.7%) 58 (95.1%) 0.511

HBsAg 0.081

Negative 30 (16.2%) 17(13.7%) 13 (21.3%)

Positive 155 (83.8%) 107 (86.3%) 48 (78.7%)

ALT (U/L) 31.00 [22.50, 51.00] 36.00 [21.50, 57.35] 32.50 [22.50, 54.00] 0.677

AST (U/L) 40.50 [24.50, 45.55] 40.00 [24.00, 46.50] 42.50 [22.00, 55.75] 0.846

GGT (U/L) 55.00 [38.50, 108.65] 52.00 [35.50, 106.25] 53.70 [32.45, 125.50] 0.613

ALP (U/L) 82.50 [68.55, 102.50] 81.00 [70.00, 106.00] 85.00 [67.50, 108.55] 0.327

ALB (g/L) 40.35 [35.30, 43.47] 38.80 [37.58, 42.25] 36.50 [35.50, 42.70] 0.162

TBIL (µmol/L) 14.62 [12.00, 16.32] 13.62 [10.34, 16.56] 14.50 [12.60, 18.61] 0.665

SCr (U/L) 75.20 [66.15, 87.50] 75.60 [67.00, 86.85] 76.00 [68.28, 87.30] 0.548

PT (s) 11.60 [11.40, 12.50] 11.80 [11.60, 12.60] 11.95 [11.40, 12.58] 0.756

INR 0.673

≤1.0 76 (41.1%) 49 (39.5%) 27 (44.3%)

>1.0 109 (58.9%) 75 (60.5%) 34 (55.7%)

NLR 2.01 [1.44, 3.45] 2.43 [1.83, 3.42] 2.05 [1.58, 3.72] 0.403

PLR 103.45 [70.55, 148.65] 112.96 [83.15, 144.27] 102.83 [71.30, 156.22] 0.761

AFP (ng/mL) 24.35 [4.24, 132.41] 18.55 [7.39, 92.32] 28.53 [5.53, 545.00] 0.206
fron
Continuous variables are presented as median [inter-quartile range, IQR]. Categorial variables are presented as number (percentage). p-values represent the result of comparison of the training
set with the test set.
HBsAg, hepatitis B surface antigen; ALT, alanine aminotransferase; AST, aspartate aminotransferase; GGT, glutamyl transpeptidase; ALP, alkaline phosphatase; ALB, albumin; TBIL, total
bilirubin; SCr, serum creatinine; PT, prothrombin time; INR, international normalized ratio; NLR, neutrophil to Lymphocyte ratio; PLR, platelet to Lymphocyte ratio; AFP, alpha fetoprotein.
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3.3 Development and validation of
predictive models for Ki-67 LI

After excluding SI-based quantitative parameters with high

collinearity (VIF > 5), TLRHBP with the highest Youden index

was selected for constructing the predictive model. Multivariable

logistic regression showed that AFP > 20ng/mL (p=0.022,

OR=3.863, 95%CI: 1.218 ~12.245), NLR > 2.25 (p=0.005,

OR=9.159, 95%CI: 1.962 ~ 42.753), non-smooth tumor margin

(p=0.013, OR=4.776, 95%CI: 1.393 ~ 16.374), TLRHBP ≤ 0.6

(p=0.003, OR=6.993, 95%CI: 1.962 ~ 24.927) and T1HBP >705

msec (p<0.001, OR=10.673, 95%CI: 2.614 ~ 43.583) were

independent predictors of high Ki-67 LI in HCC tumors

(Table 3, Figure 2).

We constructed models based on clinical data, imaging data and

combined data. The combination model showed better diagnostic

performance compared to the clinical and imaging models in both

training and validation sets. The AUROC of the combined model in
Frontiers in Oncology 05
the training and validation sets was 0.899 and 0.823 respectively,

compared to 0.792 and 0.748 for the imaging model, and 0.765 and

0.711 for the clinical model (Table 4, Figure 3). The diagnostic

performance of the combined model had significantly improved

relative to the clinical model (p=0.008) and the imaging model

(p=0.035) according to DeLong’s tests, whereas the imaging model

had no significant difference compared to the clinical model

(p=0.714). Precision-recall curve also showed that the

combination model had the largest AUPRC (0.946) and F1 score

(0.912) in the training set, and the respective values in the external

validation set were 0.879 and 0.857. Compared to the clinical model

and imaging model, the NRIs of the combined model were 21%

(p=0.023) and 13% (p=0.038) in the training set, and 27% (p=0.018)

and 11% (p=0.046) in the validation set respectively, indicating that

the combined model had better efficacy.

The nomogram and decision curves revealed substantial clinical

benefit of the combined model in predicting HCC with high Ki-67

LI (Figure 4). The DCAs for the clinical, imaging, and combined
TABLE 2 Comparison of quantitative MRI parameters between Ki-67 LIlow and Ki-67 LIhigh groups in the training set.

Low Ki-67 LI
(n = 35)

High Ki-67 LI
(n = 89) p value ICC

Tumor size (cm) 3.15 [2.26, 4.36] 5.24 [2.62, 5.51] 0.002* 0.88

TLRAP 1.33 ± 0.25 1.38 ± 0.42 0.667 0.82

TEIAP 1.63 ± 0.31 1.73 ± 0.42 0.632 0.85

RTEAP 0.72 ± 0.41 0.80 ± 0.43 0.914 0.76

RERAP 0.84 [0.35, 1.05] 0.72 [0.42, 1.02] 0.445 0.80

TLRPVP 0.78 [0.83, 1.24] 0.84 [0.71, 1.13] 0.265 0.84

TEIPVP 1.23 [1.03, 1.42] 1.13 [0.95, 1.40] 0.232 0.77

RTEPVP 0.85 [0.52, 1.14] 0.70 [0.33, 1.11] 0.244 0.84

RERPVP 1.42 [0.89, 2.46] 1.04 [0.64, 1.84] 0.065 0.76

TLRTP 0.89 [0.78, 1.07] 0.78 [0.65, 0.95] 0.025* 0.83

TEITP 1.12 ± 0.23 1.17 ± 0.34 0.558 0.82

RTETP 0.74 ± 0.31 0.72 ± 0.36 0.830 0.80

RERTP 1.11 [0.75, 1.43] 0.95 [0.62, 1.23] 0.065 0.79

TLRHBP 0.67 ± 0.14 0.53 ± 0.16 0.004* 0.86

TEIHBP 0.78 ± 0.12 0.65 ± 0.15 0.026* 0.85

RTEHBP 0.37 [0.23, 0.54] 0.26 [0.14, 0.58] 0.314 0.87

RERHBP 0.45 [0.26, 0.68] 0.37 [0.24, 0.56] 0.058 0.81

T1Pre (msec) 1243.07 ± 257.41 1385.36 ± 239.28 0.047* 0.83

T1HBP (msec) 744.17 ± 162.74 845.21 ± 156.42 0.007* 0.82

DT1% 0.41 ± 0.14 0.38 ± 0.13 0.247 0.78
*p<0.05. Continuous variables are presented as median [inter-quartile range, IQR] or mean ± standard deviation. Categorial variables are presented as number (percentage).
AP, arterial phase; PVP, portal venous phase; TP, transition phase; HBP, hepatobiliary Phase; TLR, tumor to liver contrast ratio; TEI, tumor enhancement index; RTE, relative tumor
enhancement; RER, relative enhancement ratio; Pre, pre-enhancement; T1Pre: pre-contrast T1 relaxation time; T1HBP, T1 relaxation time in the hepatobiliary phase; DT1%, reduction rate of T1
relaxation time; ICC, intraclass correlation coefficient.
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FIGURE 2

A 49-year-old male with mildly elevated AFP (36 ng/mL) and NLR 1.87. Smooth tumor margin and TLRHBP was 0.68 (A). T1HBP was 682 ms (B). The tumor
had low Ki-67 LI (10%, IHC ×400) (C). A 65-year-old male with elevated AFP (124 ng/mL) and NLR 2.35. Non-smooth tumor margin and TLRHBP was 0.55
(A). T1HBP was 786 ms (B). The tumor had high Ki-67 LI (40%, IHC ×400) (C). AFP, alpha-fetoprotein; NLR, neutrophils to lymphocyte ratio; TLRHBP, tumor-
to-liver contrast ratio in the hepatobiliary phase; T1HBP, T1 relaxation time on the hepatobiliary phase; LI, labeling index; IHC, immunohistochemistry.
TABLE 4 Comparison of the imaging, clinical and combined models.

Models Data sets ACC SEN SPE PPV NPV AUROC AUPRC F1 Score

Clinical Training 0.755 0.792 0.667 0.851 0.571 0.765 0.877 0.820

Validation 0.696 0.732 0.600 0.833 0.450 0.711 0.836 0.779

Imaging Training 0.794 0.833 0.700 0.869 0.636 0.793 0.885 0.851

Validation 0.786 0.829 0.667 0.872 0.588 0.748 0.875 0.849

Combined Training 0.873 0.931 0.733 0.893 0.815 0.899 0.946 0.912

Validation 0.804 0.805 0.800 0.917 0.600 0.823 0.879 0.857
F
rontiers in Oncolo
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ACC, accuracy; SEN, sensitivity; SPE, specificity; PPV, positive predictive value; NPV, negative predictive value; AUROC, the area under the receiver operator characteristic curve; AUPRC, the
area under the precision-recall curve.
TABLE 3 Univariable and multivariable logistic regression analysis for predictors of Ki-67 LI in the training set.

Characteristics
Univariable Multivariable

OR (95% CI) p value OR (95% CI) p value

AFP > 20 ng/mL 5.977 (2.484 ~ 14.383) <0.001 3.863 (1.218 ~ 12.245) 0.022

ALT > 40 U/L 2.763 (1.193 ~ 6.399) 0.018

NLR > 2.25 3.133 (1.180 ~ 8.318) 0.022 9.159 (1.962 ~ 42.753) 0.005

PLR > 138.5 4.031 (1.234 ~ 13.172) 0.021

Tumor size > 5 cm 3.911 (1.548 ~ 9.879) 0.004

Non-smooth tumor margin 5.526 (2.373 ~ 12.868) <0.001 4.776 (1.393 ~ 16.374) 0.013

Necrosis 2.444 (1.052 ~ 5.679) 0.038

Hemorrhage 3.488 (1.068 ~ 11.398) 0.039

TLRHBP ≤ 0.6 6.645 (2.809 ~ 15.717) <0.001 6.993 (1.962 ~ 24.927) 0.003

T1Pre > 1280 msec 3.268 (1.452 ~ 7.352) 0.004

T1HBP > 705 msec 4.644 (2.017 ~ 10.695) <0.001 10.673 (2.614 ~ 43.583) <0.001
AFP, alpha-fetoprotein; ALT, alanine aminotransferase; NLR, neutrophil to lymphocyte ratio; PLR, platelet to lymphocyte ratio; TLRHBP, tumor-to-liver signal intensity ratio in the hepatobiliary
phase; T1Pre: pre-contrast T1 relaxation time; T1HBP, T1 relaxation time in the hepatobiliary phase; OR, odd ratio; CI, confidence interval.
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models in the training set are shown in Supplementary Figure S1.

The calibration curves showed good agreement between predicted

and observed probabilities of HCC with high Ki-67 LI in both the

training (p=0.582) and validation (p=0.265) sets (Figure 5).
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3.4 Early recurrence after hepatectomy

All patients had completed the early recurrence follow-up, and

recurrence data was available for 63 patients within two years after
A B

FIGURE 3

Comparison of ROC curves for predicting Ki-67 LI in HCC. ROC curves of combination model (Model 1), imaging model (Model 2) and clinical model
(Model 3) in the training (A) and validation (B) sets. ROC, receive operating characteristics.
A

B

FIGURE 4

The nomogram and decision curve to predict Ki-67 LI in HCC. The nomogram (A) was developed based on the combination model. Predictor points are
shown on the uppermost point scale that corresponds to each variable. The points for all variables are added in the bottom scale and translated into the
probability of high Ki-67 LI. Decision curve (B) analysis of the prediction model for external validation set. The X-axis is the probability threshold. Y-axis
represents the net benefit, which is calculated by gaining true positives and deleting false positives. AFP, alpha-fetoprotein; NLR, neutrophils to lymphocyte
ratio; TLRHBP, tumor-to-liver contrast ratio in the hepatobiliary phase; T1HBP, T1 relaxation time on the hepatobiliary phase; LI, labeling index.
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hepatectomy. The Kaplan–Meier curves illustrated that the

cumulative recurrence probability at 2 years was significantly

higher in patients with high Ki-67 LI than in those with low Ki-

67 LI (39.6% [53/134] vs. 19.6% [10/51], p = 0.011; Figure 6).
4 Discussion

We successfully developed and validated a nomogram to predict

Ki-67 LI in HCC based on gadoxetic acid-enhanced MRI combined

with T1 mapping and clinical indicators. The model demonstrated

good predictive efficiency and clinical utility, and can facilitate

personalized risk stratification and treatment decision-making for

patients with HCC.

TLRHBP was identified as an independent factor of high Ki-67

expression in HCC, which is consistent with previous studies (32,

33). The quantitative parameters, including TLRHBP, TEIHBP and

TLRTP, were based on the SI from either HBP or TP, which may

better represent the Ki-67 LI of HCC given the rationale of

gadoxetic acid (32). Among these quantitative parameters derived

from either HBP or TP, TLRHBP had the highest diagnostic

performance for Ki-67 LI. The reason why HCCs with higher Ki-

67 LI tend to demonstrate lower relative tumoral SI probably is that

normal hepatocytes gradually turn into actively proliferated and
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uncontrolled malignant tumor cells with higher Ki-67 LI during

multistep hepatocarcinogenesis, while at the same time, the

expression of organic anion transporting polypeptide (OATP)

usually decreased, hence resulting in less uptake of gadoxetic acid

(34, 35). However, the correlation between Ki-67 LI and OATP may

need to be investigated further. T1HBP derived from T1 mapping

showed the best diagnostic performance among all quantitative

parameters, possibly due to the fact that T1 relaxation time is

inversely proportional to the concentration of gadolinium contrast

agent. As more gadolinium enters the tumor tissue in the HBP, it

effectively shortens the T1 relaxation time. Furthermore, T1

relaxation time is an absolute value, which is not affected by

scanning sequence parameters (26). However, SI is a relative

value that is affected by technical factors and does not have a

linear relationship with the concentration of the contrast agent.

Thus, T1 relaxation time is more accurate and reliable than SI.

In addition to TLRHBP and T1HBP, other independent predictors

of high Ki-67 LI included serum AFP levels, NLR, and non-smooth

margin. AFP is a marker of HCC and is associated with Ki-67 LI.

Elevated serum AFP in HCC patients is correlated to poor

differentiation, microvascular invasion and tumor recurrence (34,

36), which is consistent with the biological behavior of HCCs with

high Ki-67 LI. Furthermore, Besides, our study found that NLR was

an independent factor of high Ki-67 expression in HCC. The
A

B

FIGURE 5

Calibration curves of the nomogram for the training (A) and validation (B) sets to predict Ki-67 LI in HCC.
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possible resolution is that changes in NLR affect the levels of some

proinflammatory mediators associated with oncogenic effects, thus

accelerating tumor cell proliferation and invasion (37). Although

there is epidemiological evidence that inflammation is a risk factor

for many human cancers (36, 37), the underlying mechanisms are

unclear. Finally, non-smooth tumor margins, necrosis, and

hemorrhage were more common in the Ki-67 LIhigh group, which

is consistent with previous studies (12, 13, 38).

We constructed predictive models for Ki-67 LI based on clinical,

imaging and combined data, and found that the combined model had

the best predictive performance. This suggests that combining clinical

information and imaging features can provide complementary

information and improve predictive performance. Some studies

have established models based on texture analysis (11–13) or

radiomics (14–16), which have also achieved good results in

predicting Ki-67 LI in HCC. However, obscure algorithms and

complicated operations limit their clinical applications. In addition,

most of these studies were conducted on single-center data without

an independent external validation set, thus limiting the

generalizability of the results. An external dataset is necessary to

ensure clinical translatability of such models. In our study, the

combination model showed robust performance in the external

validation set with different MRI scanners and parameter settings.

There are some limitations in our study that ought to be

considered. First, the retrospective design of the study may have

introduced selection bias. We focused on single resectable HCC
Frontiers in Oncology 09
tumors due to the difficulty in obtaining surgical specimens of

multiple lesions and those with macrovascular invasion, which

limits the extrapolation of our results to different populations.

Thus, future studies should explore the correlation between MRI

features and Ki-67 expression in multiple tumors. Second, the small

sample size may affect the robustness of this model, which will have

to be further optimized through large-scale and multicenter studies.

Third, we did not calculate the T1 relaxation time ratio of tumor to

liver parenchyma since the presence of liver cirrhosis might have

influenced the results.
5 Conclusions

Gadoxetic acid-enhanced MRI combined with T1 mapping and

several clinical factors can preoperatively predict the Ki-67 LI of HCC,

and therefore guide treatment and prognostic assessment.

Nevertheless, the clinical utility of our prediction model in

combination with clinico-radiological features will have to be

validated in future randomized trials to guide individualized therapy.
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