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To date, colorectal cancer is still ranking top three cancer types severely

threatening lives. According to cancer stem cell hypothesis, malignant

colorectal lumps are cultivated by a set of abnormal epithelial cells with stem

cell-like characteristics. These vicious stem cells are derived from intestinal

epithelial stem cells or transformed by terminally differentiated epithelial cells

when they accumulate an array of transforming genomic alterations. Colorectal

cancer stem cells, whatever cell-of-origin, give rise to all morphologically and

functionally heterogenous tumor daughter cells, conferring them with

overwhelming resilience to intrinsic and extrinsic stresses. On the other hand,

colorectal cancer stem cells and their daughter cells continuously participate in

constructing ecological niches for their survival and thrival by communicating

with adjacent stromal cells and circulating immune guardians. In this review, we

first provide an overview of the normal cell-of-origin populations contributing to

colorectal cancer stem cell reservoirs and the niche architecture which cancer

stem cells depend on at early stage. Then we survey recent advances on how

these aberrant niches are fostered by cancer stem cells and their neighbors. We

also discuss recent research on how niche microenvironment affects colorectal

cancer stem cell behaviors such as plasticity, metabolism, escape of immune

surveillance as well as resistance to clinical therapies, therefore endowing them

with competitive advantages compared to their normal partners. In the end, we

explore therapeutic strategies available to target malignant stem cells.

KEYWORDS

colorectal cancer stem cell, immunosuppressive tone, cancer niche, colorectal cancer,
oncogenic mutation
The theory of cancer stem cells

According to the cancer stem cell hypothesis, all cancer daughter cells emanate from

self-renewal cancer stem cells (1). Although controversies exist, this theory was first

demonstrated in the study of leukemia (2). The isolation and identification of cancer stem

cells in solid tumors was first obtained from breast cancer with a surface marker of CD44+

CD24low Lineage- B38.1+ ESA+ (3). Subsequently, more cancer stem cells were identified in
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different tumor types such as brain cancer (4), prostate cancer (5),

colon cancer (6) and pancreatic cancer (7). A growing number of

studies implicate that cancer stem cells play an important role in

tumor initiation, metastasis, drug resistance and recurrence.
The cell of origin of colorectal cancer

In physiological state, human intestinal epithelial cells have high

cell turnover rate due to confrontation with constant aggressions

from the lumen. In every 4-5 days, most of the epithelial cells in the

intestinal tract will be replenished by new functional epithelia given

rise by intestinal stem cells (ISCs). Therefore, on the one hand, the

proliferation of intestinal stem cells makes it possible to accumulate

gene mutations. On the other hand, rapid cell turnover of the

intestinal epithelial cells also prevents the epithelial cells from

accumulating mutations, leading to the hypothesis that long-lived

ISCs are the most likely tumorigenesis cell. At present, the debate on

the cells of origin of CRC mainly consists of two hypotheses:

“bottom-up” (8) and “top-down” (9) histogenesis of colorectal

tumors. The former hypothesis suggests that tumorigenesis begins

in intestinal stem cells or lineage precursors in the crypt and then

spreads up the crypt, the latter hypothesis suggests that

differentiated cells located at the top of the crypt acquire stem-

like characteristics via mutation, extending downwards and

laterally (Figure 1).

A plethora of studies using genetic mouse models have

illustrated that mutations in a single gene of the Wnt signaling

pathway in stem cells are sufficient to form adenomas in mice. For

example, targeted deletion of Apc in Lgr5+ ISC over-activates Wnt

signaling, leading to rapid adenoma formation (10). The loss of Apc
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in Lrig1+ quiescent intestinal stem cells leads to tumors in the distal

colon (11). In addition, the activation of Wnt signalling in Bmi1+ or

CD133+ ISCs forms small intestinal adenomas in mice (12, 13).

However, it is important to emphasize that there are some

differences in tumor development in mouse models versus CRC

patients, suggesting that additional factors must be taken into

account when describing the origin of CRC. In mouse models of

CRC with relevant genetic mutations, adenoma formation is mostly

in the small intestine and rarely progresses to full cancer (14) and

the development of human colorectal cancer is strongly influenced

by environmental factors such as chronic inflammatory conditions

(15, 16), whereas in genetic mouse models these factors are not

usually included.

To recapitulate human CRC progression, targeted mutations of

the most commonly mutated colorectal cancer genes such as APC,

SMAD4, P53, KRAS and/or PIK3CA were introduced in cultured

human intestinal stem cells using CRISPR/Cas9 technology in vitro

(17, 18). Combination of these mutations allows human intestinal

stem cells to grow in absence of stem cell niche factors, while the

APC/P53 double knockout organoids are sufficient to acquire

chromosomal instability, leading to the appearance of aneuploidy,

a hallmark of tumor progression (17, 18). In addition, the quadruple

mutations enables human intestinal stem cells to develop xenografts

with invasive carcinoma features (17, 18). The above results further

confirm that human intestinal stem cells carrying oncogenic

mutations can initiate oncogenesis.

Mutations in mismatch repair (MMR) genes, primarily in MutS

homolog 2 (MSH2) and MutL homolog 1 (MLH1), cause

microsatellite instability (MSI) and predisposition to early onset

of CRC (19). To study roles of MMR deficiency in intestinal stem

cell transformation, Keysselt et al. examined intestinal epithelial
FIGURE 1

The cell of origin of colorectal cancer. A single gene mutation of the Wnt signaling pathway(such as Apc deletion) in intestinal stem cells prompts
them to transform into cancer stem cells. Bhlha 15+ and ATOH1+ precursor cells can also transform malignantly upon DSS challenge, initiating
bottom-up tumorigenesis. Apc mutation plus dysregulation of multiple signaling pathways (such as NFkB, SMAD, YAP) or under long-lasting
inflammatory milieu may induce dedifferentiation of terminally differentiated cells (enterocytes and tuft cells), initiating top-down tumorigenesis.
(Created in BioRender.com).
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specific Msh2 knockout mice. Organoids derived from Msh2-

deficient mice exhibited inheritable transient cyst-like growth

even in absence of R-spondin, suggestive of hyperactivated Wnt

signaling in the stem cells. Even before detectable polyps, tumor

precursor cells increased inMsh2-/- mice, which can form MSI-high

organoids with temporary spherical shape in vitro similar to tumor-

like organoids. Thus MMR-deficiency predisposes ISCs to

on co g en i c mu t a t i o n a c c umu l a t i o n and r e a d y f o r

transformation (20).

Additional oncogenic mutations targeted to multiple signaling

pathways under repairable inflammation (21) are required to the

de-differentiation of non-stem cells. These dedifferentiated cells

then gain stem cell-like characteristics and initiate oncogenesis.

For example, loss of Apc in long-lived Dclk1+ tuft cells is not

sufficient to drive colon carcinogenesis. However, dextran sodium

sulfate (DSS)-induced colitis facilitates the formation of colon

cancer in these Apc-mutated cells (22). After DSS induction, the

YAP/Wnt signaling pathway is activated, further promoting the

transformation of Bhlha15+ secretory cell precursors into cancer-

initiating cells in mouse colon (23). Similarly, in the azoxymethane-

DSS CRC model, DSS triggering inflammation promotes colonic

ATOH1+ IECs to acquire cancer stem cell-like properties thus

facilitating the development of colitis-associated tumors (24).

Genetic mouse studies illustrate that constant activation of

multiple pathways (e.g. Wnt and NF-kB signaling) in terminally

differentiated intestinal epithelial cells can also forcefully drive them

to form intestinal adenomas (25). Both Apc deletion and K-ras

hyperactivation synergistically cause Car1-expressing differentiated

colonic epithelial cells to obtain cancer stem cell properties and

initiate top-down tumorigenesis (26). Recent studies have shown that

activated Wnt signaling when accompanied by SMAD4 deletion

drives dedifferentiation and adenoma formation in differentiated

intestinal epithelial cells (27). The mutation of the Apc along with

TGFb type 1 receptor (Tgfbr1/Alk5) does not lead to the adenoma

formation. However, the combination of two mutations can promote

dedifferentiation of intestinal epithelial cells with KrasG12D/+

mutation, thus accelerating oncogenesis (28).

In addition, changes in the intestinal microenvironment can

also trigger the transformation of differentiated cells. For example,

the BMP antagonist GREM1 is originally expressed by

mesenchymal cells at the base of the crypt to maintain a low

concentration of BMP at the base of the crypt, thus maintaining

the stemness of intestinal stem cells (29). But when the intestinal

epithelial cells express GREM1 abnormally due to gene duplication,

these cells acquire stemness and form ectopic crypts due to blockage

of differentiation-promoting BMP signal (30). After accumulation

of necessary somatic mutations, these ectopic crypts eventually

progress to polyps (30).
The microenvironment of
colorectal CSCs

To maintain colorectal CSCs in CRC, various cell types and

even microbes are recruited or reprogramed to cooperate within
Frontiers in Oncology 03
CSCs to construct ecological niches. Within these niches, colorectal

CSCs can utilize a variety of resources to self-renew and give rise to

al l mal ignant daughter ce l ls while avoiding immune

attacks (Figure 2).
Colorectal CSCs outcompetition of
wildtype stem cells

Studies have demonstrated that cancer stem cells gain a

competitive advantage over normal stem cells to achieve the

spread of mutant clones. Both Apc loss and K-Ras activation in

ISCs endorse them a clonal advantage over surrounding stem cells

in the mouse intestine, while P53 mutations endow a condition-

dependent advantage, especially in colitis-associated colon cancer

(31, 32). In addition, recent studies have reported that stem cells

carrying pro-tumor mutations produce multiple factors that affect

the proliferation and differentiation of neighboring stem cells, thus

increasing the crypt fixation of mutated stem cells by reducing the

number of normal stem cells at the base of the crypt and promoting

the initiation of cancer (33). Yum et al. reported that intestinal stem

cells containing oncogenic mutations (e.g. Apc, KRAS and PI3K)

could promote the differentiation of normal stem cells by secreting

factors that activate the BMP signaling pathway and inhibit the

WNT signaling pathway. Similarly, PI3K mutant stem cells induced

the secretion of the WNT inhibitor BMP by nearby PDGFRlow

CD81+ stromal cells, which together affect Wnt signaling in the

microenvironment (34). Van Neerven et al. discovered that Apc

mutant ISCs outcompeted neighboring wildtype stem cells by

secreting WNT antagonists (Notum, Wif1 and Dkk2), forcefully

triggering wildtype undergo differentiation. (35). Lithium chloride,

GSK3b inhibitor, treatment could prevent this outcompetitive effect

in wildtype stem cells, thereby making wild-type ISCs insensitive to

WNT antagonists and preventing adenoma formation (35). In

consistence, Flanagan et al. also described that the expression of

Notum was highest among multiple secretory WNT antagonists in

Apc mutant cells. Inhibition of NOTUM impaired the ability of

mutant cells to expand and form intestinal adenomas, suggesting

that targeting NOTUM can restore the competitiveness of wild-type

cells (36).
The interactions between colorectal CSCs
and endothelial cells

In solid tumors, vasculature is an essential component of the

microenvironment of cancer stem cells, which provides necessary

nutrients, oxygen and other substances for the growth of solid

tumors, while taking away tumor metabolites. It is also the main

pathway for tumor to communicate with the tissues and organs of

the whole body. In human colorectal cancer, cancer stem cells were

found to be always present near tumor vessels (37, 38), indicating a

close relationship between CSCs and tumor vessels. Three main

hypotheses are proposed for tumor angiogenesis. one hypothesis is

that tumors form blood vessels by inducing the sprouting,
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proliferation and migration of the existing vessels. Studies on stem

cell-like glioma cells have revealed that CSCs can secrete vascular

endothelial growth factor (VEGF) and stromal-derived factor 1

(SDF1) to promote endothelial cell proliferation, migration and

tubular structure formation (39, 40). A recent study found that

GATA6 transformed stem-like HCT-116 and HT-29 cells could

promote the migration, proliferation, invasion and tube formation

of human umbilical vein endothelial cells (HUVECs) in vitro by

elevated secretion of IL-8 and VEGF-A due to the EGFR/AKT-

mediated activation of NF-kB (41). The second hypothesis suggests

that tumor recruits bone-marrow-derived endothelial precursor

cells (EPCs) to differentiate into endothelial cells that participate

in neovascularization (42). Wei et al. found that colon cancer stem

cells promoted proliferation, migration and tube formation of EPCs

by secreting vascular endothelial growth factor (VEGF) in vitro,

suggesting that colorectal CSCs are more likely to promote tumor

neovascularization by recruiting EPCs in vivo. Meanwhile,

tumorigenic assays in nude mice showed that EPCs increased the

tumorigenic and metastatic capacity of CSCs through

vasculogenesis (37). The third hypothesis tumor vasculogenesis is

that cancer stem cells can differentiate into vascular endothelial cells

(43–45) and pericytes (46) that make up and function as blood

vessels in tumors. A recent study detected blood endothelial cells

expressing human cell-specific nuclear antigen NuMA, CD31, and
Frontiers in Oncology 04
VEGFR2 in xenografts derived by colorectal CSCs, indicating that

CSCs are capable of generating vascular endothelial cells and

constitute functional blood vessels in cancer tissues (47).

Vascular endothelial cells not only play a supportive role in

vessels, but also influence the CSC phenotype by secreting soluble

factors. Dr. Ellis lab uncovered that vascular endothelial cells could

release soluble Jagged-1 via ADAM17 cleavage to activate Notch

signaling in CD133+ colorectal CSCs to maintain cancer stem cell

phenotype (38). Recently the same group also reported that

endothelial cells secrete soluble factors activating cancer cell

HER3/AKT signaling to promote these cells survival (48).
The interactions between CSCs and
nervous system

The role of the enteric nervous system (ENS) in promoting the

growth and metastasis of colorectal cancer has been reviewed (49,

50). Perineural invasion (PNI) and neoneurogenesis are considered

to be the two major factors that play a role in CRC. PNI is defined as

tumor invasion of nerve structures and spread along the nerve. The

severity of PNI is associated with poorer survival and has been

identified as an independent prognostic factor of outcomes (51).

Cancer cells induce neurogenesis in tumors by secreting signaling
FIGURE 2

Colorectal CSCs niche components. Colorectal CSCs niche contains different types of cells and microbes, as well as the soluble substances they
produce, supporting the self-renewal ability of cancer stem cells. Cancer stem cells can gain a competitive advantage over normal stem cells by
promoting differentiation. Mutations drive intestinal stem cells to transform into cancer stem cells. Besides, colorectal cancer stem cells promote
endothelial cell proliferation and migration, thereby participating in the generation of blood vessels. In addition, cancer stem cells give rise to
neurons, thus promoting tumor development. (Created in BioRender.com).
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molecules and neurotrophic factors (52–54). Lu et al. found that

human colorectal cancer stem cells could guide the construction of

ganglia in and around tumor masses when forming xenograft

tumors in the peritoneal cavity of immunodeficient nude mice

(55). In addition, these cancer stem cells gave rise to neurons with

synaptic markers as well as with sympathetic and parasympathetic

neuronal markers in vitro (55). Disruption of CSCs neural

differentiation potential inhibited the growth of their transplanted

tumors in immunodeficient animals (55).

Enteric nerve cells and enteric glial cells, which make up the

enteric nervous system, can influence colorectal cancer

development and metastasis by regulating the activity of CSCs.

Tph2 critical for 5-hydroxytryptamine (5-HT) biosynthesis is

increased in CRC tissues. Zhu et al. have demonstrated that

enteric serotonergic neurons secrete 5-HT to promotes CSC self-

renewal and tumorigenesis. Mechanistically, 5-HT receptor

HTR1B/1D/1F is highly expressed on the surface of colorectal

CSCs. Once binding to its receptor, 5-HT will license the

interaction of HTR with AXIN1 protein and affect the membrane

translocation of AXIN1 protein, which further activate the Wnt/b-
catenin signaling by inhibiting the assembly of the b-catenin
degradation complex (56). Screening of factors inducing Tph2

expression leads to identification of isovaleric acid from gut

microbiota metabolome. Mechanistic studies further reveal that

isovaleric acid can interrupt inhibitory NuRD transcriptional

complex to dock on Tph2 promoter, thus initiating Tph2

expression (56). Enteric glial cells (EGCs) produce more PGE2

induced by IL-1a/b derived from malignant epithelial cells. The

production of PGE2 can enhance the tumorigenicity and expansion

of CSCs via the Ep4/EGFR/ERK1 pathway. It is also suggested that

chronic inflammatory stress or elevated local cytokine levels

contributes to the phenotypic remodeling of EGCs, which may be

an early event in colon carcinogenesis and promote CSC-derived

tumor formation (57).
The interactions between CSCs and
cancer-associated fibroblasts

In solid tumors, CAFs are the most indispensable stromal cells

(58). Single cell RNA profiling has revealed that CAFs contain

functionally heterogenous subpopulations (59–61). CAFs deposit a

large amount of extracellular matrix protein (ECM) such as collagen

and fibronectin involved in construction of tumor architecture. The

dense ECM can inhibit the penetration of immune cells and even

anti-tumor drugs. CAFs also secret matrix metallopeptidases to

continuously remodel tumor mass, promoting cancer cell invasion.

In addition, CAFs secret various cytokines involved in angiogenesis,

immune evasion, and CSC maintenance (62, 63).

Roulis et al. have identified a population of pericryptal Ptgs2-

expressing fibroblasts by single-cell RNA-Seq. These Ptgs2

expressing fibroblasts can process arachidonic acid into highly

labile prostaglandin E2 (PGE2), which induces dephosphorylation

and nuclear translocation of Hippo pathway effector Yap through

the receptor Ptger4-mediated signaling pathway, therefore

promoting the proliferation of Sca-1+ reserve stem cells and
Frontiers in Oncology 05
driving tumor initiation (64). In human colon cancer, a

significant increase in the number of IL-17A expressing CAFs

after chemotherapy promote the self-renewal ability, resistance to

chemotherapy and invasiveness of CD44high/+ cancer stem cells

(65). Additionally, CAFs isolated from human CRC tumors can

secrete hepatocyte growth factor (HGF), osteopontin (OPN) and

SDF-1 to increase CD44v6 expression in colorectal CSCs, thereby

initiating tumor migration and metastasis (66). The expression of

CD44v6 is not only related to tumor metastasis, but also to drug

resistance of cancer stem cells. After FOLFOX chemotherapy, CAFs

secrete factors such as periostin, IL-17A andWNT3A to activate the

WNT3A/b-catenin signaling pathway, which not only leads to the

persistent tumorigenic ability of CSCs, but also induces the

expression of CD44v6 in CSCs and promotes the resistance of

CSCs to FOLFOX (67). In the hypoxic tumor microenvironment,

TGF-b2 derived from CAFs cooperates with hypoxia-induced

production of HIF-1a to induce the expression of hedgehog

transcription factor GLI2 in CSCs, promoting the self-renewal

ability and robust resistance to chemotherapy in CSCs (68).

Additionally, CAFs can promote cancer progression by affecting

the plasticity of cancer cells. In T2-T3 stage CRC, CD90+ CAFs are

the main source of IL-6 in the tumor microenvironment and can

promote the expression of stem cell markers ALDH and Lgr5 in

cancer cells, thereby promoting cancer development (69). CAFs can

also promote the stem cell-like characteristics of CRC cells by

transferring exosomal lncRNA H19 to colorectal cancer cells,

which activates the expression of b-catenin via acting as a

competing endogenous RNA sponge for miR-141 (70).

Of note, studies have reported that a subpopulation of CAFs can

function as tumor suppressors (63, 71, 72). McAndrews et al.

demonstrated that in aSMA+ CAF-depleted tumors, the

expression of CSC markers Lgr5, CD44, DCLK1 increased in

comparison to control group. Further analyses showed that

aSMA+ CAFs in colorectal cancer inhibited the proliferation of

Lgr5+ CSCs and promoted the differentiation of CSCs through

BMP4/TGFb1 signaling pathway, exerting tumor suppressive

effects and inhibiting the CRC progression (73).
The interactions between CSCs and
mesenchymal stem cells

MSCs belong to the pluripotent stem cells and have multiple

differentiation potentials to give rise to many lineages, such as

adipocytes, osteocytes and chondrocytes (74). They can be recruited

to the site of tissue injury or inflammation through endocrine

signaling and perform tissue repair functions (75, 76). Cancer is also

known as the wound that never heals (77). It has been proved that

MSCs can be recruited to the tumor sites and transform into

tumor-associated MSCs (TAMSCs) or differentiate into CAFs to

affect the progression of the cancer (78, 79).

In colorectal cancer, CD133+/CD44+ colon cancer stem cells

have a stronger capacity of bone marrow derived mesenchymal

stem cells (BM-MSCs) recruitment compared with CD133-/CD44-

colon cancer cells due to IL-8/CXCR2 chemotaxis (80). Recruited

MSCs are involved in maintaining and promoting CSC stemness.
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MSCs can secrete IL-6 to promote stem cell marker CD133

expression in colorectal cancer cells through activation of the

JAK-STAT3 signaling pathway (81). Similarly, MSC-like cells

isolated from human colon cancer can also secrete IL-6 and

enhance the expression of stem cell marker CD44 in HCT-116

and HT-29 cells through the Notch signaling pathway (82). In

addition, IL-1 derived from cancer cells induces PGE2 secretion of

BM-MSCs. The resulting PGE2 cooperating with IL-1 paracrine

signaling further promotes BM-MSCs to release IL-6, IL-8 and

GRO-a, causing the accumulation of b-catenin in cancer cells and

the formation of ALDHhigh CSCs associated with increased capacity

for cancer cell metastasis and invasion. (83). Jiménez et al. have also

demonstrated that conditioned medium from human mesenchymal

stem cells (CM-MSCs) enriches and maintains a subpopulation of

colonic cells with the expression of CSCmarkers and ALDH activity

(84). BM-MSCs also interact with cancer stem cells through

exosomes. A recent study has shown that miR-142-3p in

exosomes derived from BM-MSCs increased the number of CSCs

in colon cancer via activation of Notch signaling by interfering with

Numb target genes (85).
Colorectal cancer immunogenicity
affects immune response types

CRCs with MSI-high and microsatellite stable (MSS) have

different tumor microenvironments. The density of CD8+

cytotoxic T cells in tumor glands is significantly increased in

MSI-high patients compared to MSS (86–91). Similarly, Th1 cells

are generally enriched in MSI-high CRCs (88–90). Two IFNG+

Th1-like cell clusters are identified and only CXCL13+BHLHE40+

Th1-like cells were preferentially rich in patients with MSI-high

tumors (92). In contrast, Th17 infiltration is significantly increased

in patients with MSS tumors (89). In MSI-high CRC tissues, more

CD20+ B cells occur in the tumor’s invasive margin (IM) compared

to MSS tumors (89). Using the CIBERSORT algorithm, Lin et al.

further demonstrate that most anti-tumor immune cells such as

CD8+ T cells, activated memory CD4+ T cells, follicular T helper

cells, NK cells, M1 macrophages and neutrophils cells increase in

the tumor microenvironment of MSI-high CRCs, but Treg cells

significantly decrease. By contrast, in MSS/MSI-L CRC, Treg cells

significantly upregulate, suppressing the killing function of T

cells (90).
Tumor-associated macrophages

Tumor-associated macrophages (TAMs) are active infiltrative

inflammatory cells in the tumor microenvironment (93, 94). In

colorectal cancer, TAMs are mainly derived from monocytes, which

arise from bone marrow or tissue resident-derived precursors and

monocytic myeloid-derived suppressor cells (M-MDSC). The roles

of TAMs in colorectal cancer have been well reviewed elsewhere

(95, 96). The specific interactions between CSCs and TAMs have

been explored. For example, colonic CSCs induce milk-fat globule-
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epidermal growth factor-VIII (MFG-E8) expression in TAMs,

which in turn promotes tumorgenicity and chemoresistance of

CSCs by STAT3 and Sonic Hedgehog signaling pathways (97).

Chemotherapy-resistant cancer stem cells (CSCs-R) tend to secret

more pro-inflammatory substrates, shaping the tumor

microenvironment different from untreated cancer stem cells.

CSCs-R promote macrophage colony-stimulating factor (M-CSF)

production via interferon regulatory transcription factor 5 (IRF5)

dependent manner, which induce CD14+ monocytes to differentiate

into M2 TAMs (98).

Reciprocally, TAMs facilitate differentiated tumor cells to

acquire CSCs-like characteristics through secreting various

mediators contributing to tumor proliferation and metastasis. The

secretion of IL-6 by transformed M2 TAMs promotes cancer cells to

express more YAP1, K-Ras, b-catenin, NF-kB, and mTOR and thus

enhances the percentage of cancer stem-like cells (99). TAM can

also regulate the stemness of tumor cells by affecting metabolism.

TAMs isolated from colorectal cancer patients secrete transforming

growth factor-b (TGF-b), promoting cancer cell glycolysis.

Glycolysis activates the HIF1a/Tribbles pseudokinase 3 (TRIB3)

signaling pathway, leading to activation of the b-catenin/Wnt

signaling pathway and ultimately enhancing stem cell-like

phenotype and cell invasion in colorectal cancer (100).
Myeloid-derived suppressor cells

MDSCs are a heterogeneous class of myeloid cells composed of

two main subgroups: polymorphonuclear myeloid-derived

suppressor cells (PMN-MDSCs) and monocytic myeloid-derived

suppressor cells (M-MDSCs) (101, 102). In most cancer types,

PMN-MDSCs account for more than 80% of all MDSCs (103)

and have a closely relationship with tumor-associated neutrophils

(TAN) in the tumor environment (104, 105). M-MDSCs recruited

to the tumor can differentiate into TAMs (106).

MDSCs in colorectal cancer can inhibit cytotoxicity of CD8+ T

cells and NK cells by secreting TGF-b, NO and ROS, interrupt B

cells from producing antibodies against tumor-associated antigens

(TAA), induce Treg cells, and exert immunosuppressive effects in

other ways (107). CXCR2-positive MDSCs are recruited into the

tumor microenvironment via chemokines CXCL1 and CXCL2

mainly expressed in tumor colonic epithelial cells, which is

critical for colitis-associated tumor formation and progression

(108). PMN-MDSCs promote the stemness of CSCs in colorectal

cancer via exosomal delivery of protein S100A9. S100A9 can

activate NF-kB and STAT signaling pathways, thus affecting

colorectal carcinogenesis and recurrence. Notably, these

influences are amplified by HIF-1a under hypoxic conditions (109).
Dendritic cells

Dendritic cells (DCs) are one of critical anti-tumor cell types by

presenting processed neoantigens to T cells and thus facilitating

activation and expansion of antigen specific T cells. However, in
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advanced CRC tissues DCs are castrated. Colorectal cancer stem

cells can perform immune escape by inhibiting the antigen

presentation ability of DCs. Zhong et al. show that TGF-b1
derived from spheres of high-stemness colorectal cancer cell lines

CMT93 and CT26 down-regulates the surface expression of major

histocompatibility complex Class II of bone marrow derived DCs

(BMDCs) and inhibits the stimulation of T cells by BMDCs (110).

In addition, CSCs can sabotage DC activation. The more CD133+

CSCs are present in the tumor samples, the less DCs are activated

after stimulation (111). Meanwhile, tolerogenic DCs in the tumor

microenvironment also enhance the stemness of cancer cells. For

example, CXCL1 secreted by tumor-associated dendritic cells

(TADCs) increases the CSCs of colon cancer by promoting

CD133 expression and acetaldehyde dehydrogenase activity (112).
Regulatory T cells

Regulatory T cells are widely accepted as a subset of cells that

exert immunosuppressive properties through multiple inhibitory

mechanisms, particularly via secreting IL-10 and TGF-b to inhibit

T cell response (113–115). Kryczek et al. also have revealed that IL-

22 derived from CD4+ T cells could increase the stemness and

tumorigenic potential of colorectal cancer cells by activation of

STAT3 and expression of the histone 3 lysine 79 (H3K79)

methyltransferase DOT1L, which correlates with the induction of

the core stem cell genes NANOG, SOX2 and Pou5F1 (116). CSCs

can recruit and activate Treg cells through various factors in several

types of cancer such as melanoma (117) and breast cancer (118). In

addition, tumor-infiltrating Tregs can arise from circulating naive

CD4+ T cells that differentiate into Treg cells in cancer tissues (119).

Tumor associated Treg cells promote the dedifferentiation of non-

CSCs via TGF-b, thereby resulting in an increasing number of

CD44+ cancer stem cells in CRC tissue (120). However, another

report suggests that aSMA+ CAFs promote the differentiation of

colorectal cancer stem cells through the BMP4/TGFb1 signaling

pathway, thereby inhibiting Lgr5+ CSCs (73). Therefore, the effect

of TGF-b from different sources on cancer stem cells seems

controversial. More studies will be needed to verify the effect of

TGF-b on CRC CSCs.
Cytotoxic NK and CD8+ T cells

Compared to colorectal non-CSCs, CSCs are more sensitive to

the killing function of NK cells because of their high expression of

ligands for natural cytotoxicity receptor (especially NKp30 and

NKp44) and low expression of MHC class I molecules (121).

However, the complex formed by PCNA and HLA-I interactions

on the extracellular surface of tumor cells is identified as an

inhibitory ligand for NKp44, thus preventing activation of

cytotoxic NK cells (122). PCNA+ colorectal cancer cells (HCT

116) exhibit the higher expression of CSC markers CD44 and

CD133 and stemness genes such as NANOG, SOX-2 and Oct-4

(123). Thus, colorectal CSCs displaying PCNA with MHC-I on
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their surfaces may present a possible strategy to evade the killing

effect of NK cells.

CD8+ cytotoxic T cells are more specific anti-tumor killers.

However, CD133+CD44+ colorectal CSCs express high levels of

immune regulatory molecules such as PD-L1 (124), equipping

CSCs to demolish cytotoxic cell activities. In addition, the high

level of IL-4 is present on the membrane of colorectal CSCs, which

will activate IL-4 signaling in T cells through cell-to-cell contact and

inhibit T cell proliferation and cytotoxicity (125). Moreover, IL-4 also

inhibits the anti-tumor activity of TH1 cells (125) while stimulates

TH2 response for tissue repair, further promoting tumorigenesis.
The roles of gut microbiome in CSCs

The critical roles of gut microbiome in the initiation,

progression, metastasis and immune escape of digestive cancers

have been well reviewed elsewhere (126–128). Here, we briefly

focused on the effect of microbiome on colon stem cells. Various

microbes in gut microbiome can promote dedifferentiation and

reprogramming of intestinal epithelial cells, thereby contributing to

CSCs formation (129). Previous studies have identified that

genotoxic pks+ Escherichia coli, enterotoxigenic Bacteroides

fragilis, Streptococcus gallolyticus and Fusobacterium nucleatum as

pro-tumorigenic microbes. Recent mechanistic studies further

reveal a variety of approaches by which these microbes induce

CSCs. For example, genotoxic pks+ Escherichia coli can synthesize

colibactin, alkylating genomic DNA on adenine residues in

intestinal epithelial cells and therefore accelerating mutagenesis

and transformation (130). Enterotoxigenic Bacteroides fragilis

promotes CSCs by increasing histone demethylase JMJD2B (131).

Fusobacterium nucleatum can stimulate fatty acid oxidation for

CSC self-renewal and proliferation. In addition, this microorganism

can also license Notch activation in non-CSCs, thus facilitating the

acquisition of stem cell characteristics (132). Moreover, Ternes et al.

have revealed that formats, one of Fusobacteriummetabolites, could

activate aryl hydrocarbon receptor signaling and therefore increase

the expression of stem cell markers ALDH, CD44, and OCT4 (133).
Tumor microenvironment determines
immunotherapy outcome

As previously mentioned, CRC CSCs recruit and educate

immunosuppressive neighbor cells, collectively constructing

immunotolerant ecological community favoring tumor cell

growth and immunotherapy resistance (Figure 3). For example,

CAFs are associated with poorer efficacy of T-cell-based

immunotherapies for CRC (134). Patients with low risk scores for

CAFs have a greater response to PD-L1 inhibitors and significant

clinical benefit (135). CAFs secret WNT2, which inhibits DC-

mediated anti-tumor T-cell responses via the SOCS3/p-JAK2/p-

STAT3 signaling cascade. Anti-WNT2 monoclonal antibody

significantly restores anti-tumor T-cell responses and enhances
frontiersin.org

https://doi.org/10.3389/fonc.2023.1135364
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Che and Yu 10.3389/fonc.2023.1135364
anti-PD-1 efficacy by increasing active DCs (136). Similarly,

MDSCs mediate tumor immune evasion and resistance to

immune checkpoint inhibitors (137). The efficacy of immune

checkpoint inhibitors is enhanced when the number of MDSCs is

reduced (138).

Immunosuppressive cells in CRC tissues can synergistically

create immune exclusion microenvironment, hindering

immunotherapy. Qi et al. reported that tumor-specific FAP+

fibroblasts and SPP1+ macrophages cooperatively constructed

immune-excluded desmoplasic structure and curtailed T cell

infiltration. Patients with high FAP or SPP1 expression gained

less therapeutic benefit from treatment against PD-1 (139).

Likewise, Gyori et al. found that CSF1R+ TAMs and Foxp3+ Treg

cells were the main compensatory cellular components of the

immunosuppressive niches (140). When one cell type is

selectively ablated, another cell type will increase compensatively

(140), indicative of elasticity of CSC niches. Thus, interruption of

key connections among CSCs and accessory cells within

immunosuppressive ecosystem may provide new direction for

cancer therapy.

In addition to key immunosuppressive cells and molecules,

intestinal microbes in CRC microenvironment can actively

influence the efficacy of immunotherapy. The roles of microbiome

in cancer progression, immunosurveillance and therapy have been

well reviewed elsewhere (141–143). To date more approaches by

which the gut microbiome affects chemoradiotherapy have been

revealed. For example, Bacteroides vulgates can mediate nucleotide

synthesis and promote the DNA repair of tumor cells, thus reducing

the efficacy of chemoradiotherapy (144).
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Effect of radiotherapy and
chemoradiotherapy on tumor
microenvironment

Radiotherapy can not only kill tumor cells, but also induce

immune cells and reshape the tumor immune microenvironment in

various ways (145, 146). One of benefits radiotherapy reverses the

immunosuppressive tumor microenvironment is the abscopal

effect. This effect is described as the clinical phenotype that

radiotherapy at one site may lead to regression of metastatic

cancer at distant sites beyond the radiotherapeutic field. The

underlying mechanism is that irradiated tumor cells release

neoantigens (tumor-associated antigens, TAAs) (147) and

cytokines (148), altering microenvironment immune tone and

induce tumor-specific immune responses to eliminate primary

and metastatic tumors. A systematic review on pan-cancer

demonstrates that radiotherapy leads to the increased CD3+ or

CD8+ lymphocyte density and increased PD-L1 expression (149).

several studies have also reported that both tumor-associated

fibroblasts (150) and macrophages (151) with immunosuppressive

effects are activated after radiotherapy.

Recently, chemoradiotherapy is recommended for locally advanced

rectal cancer, which is beneficial for improving cure rates and

maintaining function (152). A recent report comprehensively

evaluates the dynamic changes of the tumor immune

microenvironment in patients receiving chemoradiotherapy (153). In

this study, they found that chemoradiotherapy significantly increased

the density of CD3+ T cells, CD8+ T cells and dendritic cells, while
FIGURE 3

The interactions of CSC with immune cells and inhibitory effect on T cells. Immune cells (such as macrophage, MDSC, Treg and CD4+ T cells) secret
factors or exosomes to promote stemness and increase the number of CSCs. CSCs also inhibit the function of immune cells. For example,
colorectal CSCs secret IL-4 to inhibit T cell proliferation and TGF-b1 to reduce the antigens presentation of DC cells. PCNA and HLA-I interactions
on the surface of CSCs is identified as an inhibitory ligand for NKp44 on NK cells, thus preventing cytotoxic activation. Meanwhile,
immunosuppressive cells in the microenvironment inhibit T cells, promoting the immune escape of CSCs. (Created in BioRender.com).
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decreased the density of CD4+FoxP3+ regulatory T cells, indicating that

chemoradiotherapy promotes a more immune-active TIME. On the

other hand, they found that chemoradiotherapy also induced

immunosuppressive effect by polarizing tumor-associated

macrophages from pro-inflammatory M1 macrophages to

immunosuppressive M2 macrophages and reducing B cell density.

Therefore, in order to reduce the immunosuppressive effect, the

radiotherapy or chemoradiotherapy treatment combined with

inhibition of immunosuppressive molecules may bring more benefits

for patients. For example, Ji et al. verified that radiotherapy combined

with anti-CD25/CTLA4 monoclonal antibody could reduce Tregs,

PD1+CD8+ and PD1+CD4+ T cells and effectively mount the anti-

tumor response, inhibiting the growth of local and distal unirradiated

tumors (154). Besides, the combination of radiotherapy and

immunotherapy also boosts the abscopal effect (155). A recent report

has demonstrated that radiotherapy combined with immune cytokine

L19-IL2 resulted in 75% tumor remission and 20% abscopal effect in a

colon cancer cell model with T-cell inflammation, highlighting that the

proper combination of radiotherapy and immunotherapy can

transform CRC ecological landscape from immune resistant into

immune responsive (156).
Conclusions and perspective

CRC still ranks on top of life-threatening disease worldwide.

Early endoscopic detection and removal of polyps has significantly

decrease CRC-related death. However, it is a huge challenge for

managing CRC of middle and advanced stages. Colorectal CSCs

arise from normal stem cells, lineage precursors and even

differentiated cells when they receive enough oncogenic

modifications on the genome. These genetic modifications not

only bring CSCs into unrestrained cell cycles, but also open

windows for CSCs to continuously evolve and generate

heterogeneous populations of malignant progenies. Under

pressures, the most fit clones will be selected and gradually

cooperate with various cell types to establish immunosuppressive

niches for CSC survival and thrival. Unfortunately, majority of CRC

patients did not benefit from immune checkpoint inhibitors,
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suggesting that these immunosuppressive niches are refractory to

be disrupted. Advancement of single cell and spatial multiomics and

algorithms is accelerating studies to untangle the complex

communication networks within niches and identify keystone

interactions. Disruption of the keystone interactions between

CSCs and niche accessary cells may provide novel strategies for

ICI therapy resistant patients.
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