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Cancer immune exclusion:
breaking the barricade for a
successful immunotherapy

Sofia Bruni, Marı́a Florencia Mercogliano,
Florencia Luciana Mauro, Rosalia Inés Cordo Russo
and Roxana Schillaci*

Laboratorio de Mecanismos Moleculares de Carcinogénesis. Instituto de Biologı́a y Medicina
Experimental (IBYME-CONICET), Buenos Aires, Argentina
Immunotherapy has changed the course of cancer treatment. The initial steps were

made through tumor-specific antibodies that guided the setup of an antitumor

immune response. A new and successful generation of antibodies are designed to

target immune checkpoint molecules aimed to reinvigorate the antitumor immune

response. The cellular counterpart is the adoptive cell therapy, where specific

immune cells are expanded or engineered to target cancer cells. In all cases, the key

for achieving positive clinical resolutions rests upon the access of immune cells to

the tumor. In this review, we focus on how the tumor microenvironment

architecture, including stromal cells, immunosuppressive cells and extracellular

matrix, protects tumor cells from an immune attack leading to immunotherapy

resistance, and on the available strategies to tackle immune evasion.
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1 Introduction

The tumor microenvironment (TME) is an heterogenous milieu composed not only by

cancer cells, but also by different cell types that can contribute to tumoral escape of immune

surveillance and dampening of responses to immunotherapy. These cells include myeloid-

derived suppressor cells (MDSCs), tumor-associated macrophages (TAMs), tumor

infiltrating lymphocytes (TILs), cancer associated fibroblasts (CAFs), blood vessels and

the extracellular matrix (ECM), composed of collagen and proteoglycans (1, 2).

Immunotherapy is a field that has been rapidly developing over the past few decades,

and immune checkpoint blockade (ICB) has demonstrated a tremendous contribution

towards novel therapeutic targets and effective drugs that are now used as standard therapy

for several cancers, which show in most cases durable responses and extensions of survival

curves. However, it is known that responses are patient-dependent and resistance events
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hamper their clinical benefit. One of the resistance mechanisms

proposed for ICB is the inability of lymphocytes to infiltrate the

tumor, also known as immune exclusion. This phenomenon can be

due to activated oncogenic pathways (3), hypoxia (4–8),

degenerated blood vessels (9, 10), cytokines and chemokines

released by tumor (11), stromal cells, immune infiltration of

immunosuppressive cells (12) and ECM that limit lymphocyte

access to the tumor nest. In this review, we summarize the

different mechanisms by which physical barriers may promote

immune exclusion and potential therapies to overcome it.
2 Immune exclusion

With the advent of ICB and adoptive cell therapy (ACT),

treatment of solid and hematologic malignancies has been

revolutionized. However, not all patients benefit from these

therapies. It is imperative to elucidate which are the mechanisms

of immune resistance that limit the efficacy of immunotherapy (13).

A predominant phenomenon observed in cancers that do not

respond to immunotherapy is the absence of dialogue between

the immune cells and the tumor (14). Immune exclusion is a

complex phenomenon in which T cells are recruited to the tumor

periphery by chemoattraction and antigenic stimuli that promote

their persistence, but existing barriers prevent T cells from

infiltrating tumor nests and killing cancer cells. The presence of

TILs on the tumor core has been proved to have prognostic value in

different cancer types (15–21). Therefore, the impairment of these

immune cells in reaching the tumor nests and mounting an efficient

immune response against the tumor is an issue of clinical relevance.
2.1 Tumor immunophenotypes

Clinical studies have defined immune profiles that can predict

responses to immunotherapy. According to this, three basic

immune profiles can be identified: immune inflamed, immune

excluded and immune desert phenotypes (14). The immune

inflamed tumors are characterized by the presence of CD4+ and

CD8+ T cells and myeloid cells in the tumor parenchyma. Immune

cells are close to, or in contact with tumor cells. For this reason, they

usually respond to ICB therapies. However, not all patients respond,

indicating that immune cell infiltration is not sufficient to induce an

effective immune response probably caused by T cell exhaustion

(22). Therapies with ICB have shown promise in melanoma (23),

non-small-cell lung cancer (NSCLC) (22, 24) and urothelial cancer

(25, 26), which are examples of the inflamed subtype. The immune-

excluded tumors present no infiltration of CD8+ T cells to the

tumor core, but have accumulation of them around tumor margins,

and are resistant to multiple types of treatment (27). This

immunophenotype encompasses the most harmful malignancies,

including pancreatic ductal adenocarcinoma (PDAC) (28, 29),

breast (30–33) and ovarian cancer (34). The immune desert

tumors are characterized by a lack of T cells in the tumor stroma

(35–38). Although myeloid cells may be present, few or no CD8+ T

cells are present resulting in a non-inflamed TME. As expected,
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such tumors rarely respond to ICB therapies (37). This

immunophenotype likely reflects the absence of pre-existing

antitumor immunity, suggesting that tumor-specific T cell

generation is the rate-limiting step (14). An example of this

immunophenotype is glioblastoma, which is further characterized

by a lack of tumor antigens, defects in antigen presentation, and a

high accumulation of immunosuppressive cells (39). Both the

immune desert and the immune excluded phenotypes can be

considered non-inflammatory tumors. ICB therapies have shown

promise in immune-inflamed tumors, however, such success is not

extended to immune-excluded or desert tumors (40, 41). Therefore,

therapies promoting the conversion of these latter two

immunophenotypes into inflamed tumors could help reduce

resistance to ICBs and provide a new treatment option (27, 42).
2.2 Clinical relevance of TILs

A study carried out by Kather et al. in 177 samples of patients

with cancers of different histology, evaluated the topography of

immune infiltration using immunohistochemistry. Samples were

classified according to the number of cells per mm (2) into three

spatial compartments: outer invasive margin (0–500 mm outside the

tumor invasion front), inner invasive margin (0–500 mm inside

the tumor invasion front), and in the tumor core (>500 mm inside

the invasion front). It was found that there was a correlation

between the infiltration of the tumor core and the internal

invasive margin (43). In this way, different types of tumors were

grouped into 3 topographies: high density outside of the tumor with

a low density inside the tumor, which can be described as “immune

excluded”, low density inside and outside represents “cold” tumors,

and high density inside the tumor is classified as “hot” regardless of

cell density outside the tumor. A similar approach was carried out

by Galon et al. They observed that the infiltration of CD8+ T cells

within tumor nests combined with their peri-tumoral presence

predicts improved survival of patients with colorectal cancer

(CRC) with higher accuracy than the classical TNM staging (44).

Moreover, limited observations in head and neck squamous cell

carcinoma suggests that immune-excluded cancers are

transcriptionally indistinguishable from the immune inflamed

ones. Therefore, the distinction between these phenotypes is

mainly due to the spatial resolution and localization of the

immune cell populations (43, 45).

In large cohorts of early triple-negative breast cancer (TNBC)

patients, mostly treated with standard adjuvant therapy, a higher

total CD8+ and CD4+ TILs count is significantly associated with

favorable outcomes (46–48). However, carrying out a more

exhaustive analysis and sub-classifying tumors with different

patterns of immune infiltration could be of help when evaluating

prognosis. A recent report identified four distinct subtypes of

tumors based on their surrounding TME, immunodesert (ID);

restricted margin (MR); restricted stroma (RS) and fully inflamed

(FI), by integrating gene expression signatures with spatial patterns

of CD8+ T cell localization in intratumoral and stromal matched

samples of treatment-naive TNBC. Both MR and ID tumors were

characterized by low CD8+ infiltration (with the first showing CD8
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+ accumulation at the margins) and these patients were associated

with a poorer disease prognosis. In contrast, FI and SR tumors were

characterized by abundance of CD8+ T cells, with SR tumors

showing stromal-restricted CD8+ infiltration, and FI showing

CD8+ T cell infiltration within the stromal and epithelial

compartments. Both FI and SR patients were associated with a

more favorable prognosis (49).

While in the previously cited works the authors have focused

mainly on making topographic distinctions to classify tumors with

different patterns of immune infiltrate, other authors have opted to

use gene expression profiles as a prognostic marker that could

potentially be included in the clinical practice. ICB effectiveness can

be affected by the degree of CD8+ T cell infiltration (50), mutation

or neo-antigen load (23), PD-L1 level (51), antigen presentation

defects (52), interferon signaling (53), mismatch repair defIciency

(54), tumor aneuploidy (55) and intestinal microbiota (56).

However, none of these factors are enough to achieve accurate

outcome predictions (51). Predicting tumor response to ICB

requires an understanding of how tumors escape the immune

system. There are two distinct mechanisms of tumor immune

escape (38, 57). Some tumors have a high level of CD8+ T cell

infiltration, but these cells are dysfunctional. In other tumors,

immunosuppressive factors may exclude T cells from infiltrating

tumors (58). Jiang et al. developed a computational framework,

called Tumor Immune Dysfunction and Exclusion (TIDE), to

identify factors that underlie these two mechanisms of tumor

immune escape. TIDE integrated and modeled data from 189

human cancer studies and validated an accurate gene signature to

model tumor immune escape that could serve as a reliable surrogate

biomarker to predict ICB response. TIDE predicted the outcome of

melanoma patients treated with first line anti-PD1 or anti-CTLA-4

more accurately than other biomarkers, such as PD-L1 level and

tumor mutation burden (59). Finally, other authors have resorted to

computational tools to study the TME. In recent years,

computational imaging approaches originating from artificial

intelligence have achieved success in automatically quantifying

radiographic characteristics of tumors (60–62). Radiomics is an

emerging field within medical research that aims to use advanced

imaging analysis to study tumors and potentially predict treatment

outcomes based on radiological features. Jazieh et al. demonstrated

that a radiographic image-based biomarker on baseline CT scans is

significantly associated with progression-free survival and overall

survival (specifically prognostic within individual PD-L1 categories)

in patients with NSCLC treated with durvalumab (anti PD-L1

monoclonal antibody) after chemoradiotherapy (CRT) or CRT

alone by using radiomic texture patterns within and outside the

NSCLC tumor cells (63).

Clinical distinction between the above-mentioned tumor

immunophenotypes is highly important for the design of next-

generation immunotherapy agents and the possibility of a tailored

medicine (64). To determine the prevalent mechanisms of immune

exclusion and address them to expand the effectiveness of

immunotherapy approaches must be of first priority for

researchers and physicians. Among those mechanisms, we can

mention physical barriers that will be discussed in the next

section of this review, and also metabolic and functional barriers
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(65) that prevent T cell infiltration to the tumor core and cancer

cells elimination (45).
3 Physical barriers within the TME

3.1 Extracellular matrix

It is well known that the ECM plays a crucial role in the

interaction of cells within a tissue (66) and, for this reason, it is of

high importance during tumor development and progression (67).

Interactions between the ECM and the tumor go in both directions:

the ECM determines the morphology of the cells, their

differentiation and migration, and regulates cell-cell interactions.

On the other hand, cells actively remodel the composition and

geometry of the ECM in favor of tumor progression (68–71). ECM

dysregulation during cancer progression is mainly carried out by

stromal cells, including CAFs and immune cells (72, 73).

Nevertheless, epithelial cells and mesenchymal stem cells may

also be involved at late stages of cancer development (74, 75).

How the ECM changes along tumor establishment and progression

is well reviewed elsewhere (67, 76). The ECM also has

immunostimulants and, hence, potential antitumoral effects. In

this sense, it has been reported that ECM components such as

biglycan, heparan sulfate or versican can modulate leukocyte (77)

and dendritic cells recruitment (78), have an active role in

inflammation (79), T cell activation and macrophage recruitment

(80), among others. In this review we will focus on the pro-tumoral

effects of different components of the ECM and their impact on the

efficacy of immunotherapies, since the immunostimulant effects

have been reviewed elsewhere (81–84).

The components of the ECM can be divided into two categories:

the liquid part, that include cytokines and chemokines, and the

polymeric scaffold. The latter contains different types of polymers

such as polysaccharides, like hyaluronan and chondroitin sulfate,

biglycan and perlecan, and fibrous proteins, like collagen and

fibronectin that provide structure to the matrix and participate in

cell-cell interactions (67). The ECM plays a key role in the

establishment of anti-tumor immune escape mechanisms since it

allows the diffusion of signaling (such as cytokines and

chemokines), the recruitment of immune cells into the tumors, as

well as the interaction between specific ligands and receptors. There

are large body of evidence that have described how the ECM

components contribute to immune exclusion, like the

contribution of chemokines and cytokines, barrier molecules,

collagen and hyaluronic acid and the tumor-associated

vasculature, that is discussed in the section below and

summarized in Figure 1.
3.1.1 Chemokines, cytokines and barrier
molecules

Chemokines released from cells immersed in the TME account

for recruitment and extravasation of different immune cell

populations. However, the TME can modify chemokines

posttranslationally to allow differential cell infiltration and to
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promote immune exclusion. One example is the production of

reactive nitrogen species by MDSCs, which induces nitration of

chemokine (C-C motif) ligand 2 (N-CCL2) (85). CCL2 is secreted

by different cell types, like T cells, monocytes, and also tumor cells,

and works as a chemoattractant for myeloid cells, activated CD4+

and CD8+ T cells, and NK cells (86–89). Moreover, CCL2 has the

ability to trigger granule release from both NK and CD8+ T cells

(90). The authors prove that nitration of this cytokine results in T

cells being trapped within the stroma surrounding human prostate

and colon cancer cells (85). In contrast, N-CCL2 attracts MDSCs

and TAMs to the tumor core tissue, potentially contributing to the

differential recruitment to the TME of these immunosuppressive

immune cell types. Interestingly, drugs that inhibit nitration of

CCL2 proved to enhance TILs accumulation in preclinical models,

and resulted in improved efficacy of adoptive cell therapy. Another

important contributor to the composition and abundance of the

ECM is the cytokine transforming growth factor-b (TGF-b). This
molecule is secreted mainly by CAFs, but it can also be produced by

myeloid cells and tumor cells (91–94). TGF-b has several key

functions as a major regulator of the ECM homeostasis. For

example, it stimulates CAFs to produce structural collagen fibers.

Also, this cytokine induces the synthesis of enzymes involved in

degradation or crosslinking of collagens (95), thus regulating

fibrosis and stiffening of the ECM. Collagen not only acts as a

physical barrier to T cell infiltration, but it can also act as a ligand

for a vast number of receptors present in tumor and immune cells.

One example is the leukocyte-associated immunoglobulin-like

receptor-1 (LAIR-1), an immune checkpoint that is expressed on

the surface of immune cells. When collagen XVII fibers present in

the ECM surrounding the tumor binds to LAIR-1, the signal

transduction results in inhibitory signals that cause T cell

exhaustion and impairment of NK cell, monocyte and dendritic

cell activation and proper function (96). Recently, it has been

proved that T cell exclusion and poor response to ICB therapies

is associated with a gene signature of TGF-b activation (97–99).
Frontiers in Oncology 04
Particularly in metastatic urothelial immune-excluded tumors that

show no response to atezolizumab, the authors found that there was

an enrichment of a fibroblast TGF-b gene signature, and that the

expression of this gene signature was directly linked to T cell

trapping in the collagen-rich stroma surrounding the tumor (97).

Moreover, they demonstrated that the co-inhibition of TGF-b and

PD-L1 transformed tumors from excluded to inflamed, adding to

the idea that TGF-b signaling restricts T cell infiltration to the TME

and hampers efficient antitumor immune responses. Also, TGF-b
secreted by stromal cells is able to induce the expression of the

vascular endothelial growth factor (VEGF) to promote tumor

angiogenesis, and recruit immunosuppressive cells like MDSCs

and Tregs, to further enhance immune escape and impair T cell

infiltration. Furthermore, Horn and collaborators demonstrated

that in two collagen-rich murine carcinomas, MC38 colon and

EMT6 breast, the inhibition of LAIR-1 and TGF-b plus anti-PD-L1

therapy was able to control tumor growth and reshape the collagen-

rich ECM (100). Authors evidenced that the combined treatment

promoted an increased tumor infiltration and activation of CD8+ T

cells, and was also able to repolarize protumoral macrophages to the

antitumoral subtype. Moreover, they proved that this treatment

resulted in high tumor regression rates and long-term protection by

tumor-specific immune cells (100). TGF-b also mediates the

epithelial-to-mesenchymal transition (EMT) (101, 102), which

has been described as another process that raises mechanical

barriers for T cell infiltration in various cancers, such as

melanoma, ovarian and gastric (103–106). Another cytokine that

plays an important role in cancer progression and immune

exclusion is the pleiotropic cytokine TNFa. We have previously

reviewed the participation of TNFa on the progression and

metastasis of different breast cancer subtypes and the antitumor

immune response mounted by different therapies (107), and also

the mechanisms by which TNFa generates resistance to

immunotherapy, such as monoclonal antibodies against cancer

cells or immune checkpoints, and adoptive cell therapy elsewhere
FIGURE 1

Extracellular matrix components present in the TME that play active roles in immune exclusion and immunosuppression. EMT, epithelial-mesenchimal
transition. Created with BioRender.com.
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(108). With regards to immune exclusion, it is known that TNFa
may impair the infiltration of effector T cells by negatively

regulating the formation of high endothelial venules (HEVs)

(109). These HEVs are in close contact with tumor cells and

tertiary lymphoid structures (TLS). It has been proved that

tumors with high density of HEVs and TLS have enhanced

proportion of effector T cells infiltrating the tumor core.

Moreover, this has been proved to correlate with favorable

clinical outcomes (110, 111). TNFa has also been described to

enhance the production of Fas and its ligand FasL on CD8+ T cells

(112, 113), which trigger the apoptosis of neighboring CD8+ T cells

(114). Our team has demonstrated that soluble TNFa (sTNFa)
secretion by HER2+ breast cancer cells induces resistance to the

anti-HER2 therapy trastuzumab, by upregulating the expression of

the transmembrane glycoprotein mucin 4 (MUC4) through

activation of the NF-kB pathway (31, 115). MUC4 belongs to the

membrane-bound family of mucins and has two non-covalently

associated subunits encoded by a single gene (116). The

extracellular subunit, MUC4a, is hyperglycosylated and it favors

metastatic dissemination as it confers antiadhesive properties to the

tumor cells. The transmembrane subunit MUC4b, contains two

EGF-like domains in the extracellular portion that can interact with

HER2, preventing its internalization and therefore enhancing its

signaling (117). As trastuzumab binds to the juxtamembrane region

of HER2 (118), MUC4 with its heavy glycosylation patterns shields

trastuzumab epitope on the HER2 molecule hindering its binding

and therapeutic effect (119). MUC4 has been proved to interact with

HER2 and even to induce its phosphorylation and activation (120).

It also promotes HER2 and HER3 translocation to the cell surface,

increasing the number of available receptors and keeping them

anchored to the membrane during longer periods of time (121). As

a consequence, the signaling cascade of the HER2/HER3

heterodimer through activation of PI3K is enhanced (122),

causing an increase in cell proliferation and survival in HER2-

positive breast cancer (123). In a previous report, we have also

demonstrated that MUC4 has a key role in the immune response

against the tumors, since it generates an immunosuppressive TME

characterized by an increased infiltration of MDSCs, poor NK cells

activation and degranulation and an increased proportion of

protumoral M2-like macrophages (31). Also, we demonstrated

that blocking sTNFa with a dominant negative molecule, INB03,

overcomes trastuzumab resistance and remodels the TME into an

immunocompetent one, characterized by a decrease in MDSCs

proportion, an increase in NK cell activation and degranulation and

an enhanced macrophage infiltration and polarization to the

antitumor M1-like subtype (31). Moreover, we have proved that

MUC4 is an independent biomarker of poor disease-free survival in

HER2+ breast cancer patients treated with adjuvant trastuzumab

(115). Our studies also focused on the role of MUC4 regarding TILs,

since this glycoprotein is heavily glycosylated. We demonstrated

that MUC4 acts as a physical barrier for immune exclusion in

TNBC and HER2+ breast cancer, since tumor samples from

patients with MUC4+ tumors evidenced scarce or null presence

of TILs, while patients with MUC4- tumors evidenced abundant

TILs on their TME (31, 124). Moreover, mucins can interact with

inhibitory receptors like ICAM-1 on T-cells, causing anergy and
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impaired antigen recognition, and with siglecs on antigen-

presenting cells (125, 126). Overexpression of mucins on tumor

cells create steric hindrance for therapies, mask the detection of

tumor-associated antigens and prevent lysis of the tumor cells by

immune cells, generating immune tolerance (126–129). Also, it has

been demonstrated that mucins expressed by tumor cells interact

with leukocytes in the TME and facilitate the colonization of

disseminated cells, since aberrant glycosylation promotes the

expression of ligands for selectins expressed by leukocytes and

platelets, normally used for adhesion (130). Therefore, mucins

form aggregates with these cells and promote metastasis

(121, 131). Particularly, it has been described that MUC4

protects disseminated cells from the immune recognition by

hiding with its glycosylations the corresponding immunogenic

antigens on tumor cells (121), and that, by physically interacting

with platelets and macrophages, it able to enhance survival and

extravasation (132).

Moreover, proteins with known barrier functions have been

described to promote immune exclusion (103). Examples of these

proteins are filaggrin, TACSTD2 and desmosomal proteins like

desmocollin 3, dystonin, desmoplakin, periplakin, plakophilin 3

and junction plakoglobin. In healthy tissues, these proteins are

usually expressed in the outer layer of the skin and play a crucial

role as mechanical barriers that protect our body from pathogens.

However, Salerno and collaborators found that a subset of

metastatic melanomas and ovarian carcinomas express high levels

of genes encoding these proteins. Moreover, they prove that the

expression of genes encoding proteins with barrier functions

correlated with a lack of T cell infiltrates and immune related

signatures in multiple data sets. What is more, overexpression of the

barrier molecules was shown to predict worse survival for

melanoma and ovarian cancer patients across various clinical

subsets (103). Melanoma patients that received adjuvant therapy

and did not have overexpression of barrier molecules showed

improved survival, which may suggest a potential predictive value

for this subset of proteins. Particularly, Chen and collaborators

described by means of cellular experiments that filaggrin is an

oncogene in bladder urothelial carcinoma (BLCA), and that a

knockdown of this barrier protein suppressed BLCA cell

proliferation and promoted apoptosis (133). Furthermore, based

on TCGA data sets the authors proved that BLCA patients

expressing the wild-type isoform of filaggrin presented less overall

survival than patients expressing mutated forms of the barrier

protein, consistent with the fact that higher tumor mutation

burden favors responses to immunotherapy (133). T cell

infiltration to the tumor bed was modulated by filaggrin

mutational state, since patients with wild-type filaggrin showed

significant down-regulation of CD4+ naïve T cells, central memory

T cells, and natural killer T cells, while Th1 cells were significantly

upregulated. Also, these patients showed poorer response

to ICB (133). Another recent study evaluated multiplex

immunofluorescence histology of tumor samples from 65

advanced melanoma patients, and proved that the expression of

another barrier molecule periplakin negatively correlates with

response to pembrolizumab (134). Decreased expression of

periplakin and increased proportion of CD103+ CD8+ T cell
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infiltration correlated with improved survival in these patients, so

authors propose periplakin as a predictive biomarker to ICB.

Moreover, Pai and collaborators proved that the expression of

another barrier molecule, the desmosomal protein dystonin, was

inversely correlated with the Th1-like immune signature in patients

with metastatic melanoma and ovarian cancer (45), and was

associated with worse prognosis in patients with melanoma (103).

Particularly, dystonin expression allowed the authors to identify

tumors with null expression of the Th1-like immune signature,

suggesting no interaction between these immune cells and cancer

cells. Interestingly, dystonin expression identified a subset of

melanoma patients with no CD8+ gene signatures. However, this

was not associated with decreased patient survival, which adds to

the idea that the presence of T cells within a given TME is not

enough to predict prognosis, and that a better approach could be to

study the ratio between lymphoid and myeloid or other cellular

infiltrate to better define prognostic significance (135–137). These

findings raise the attention to barrier molecules as future potential

biomarkers for defining T cell accessibility to the tumor core and,

consequently, ICB responses.
3.1.2 Collagen and hyaluronic acid
Another important component of the ECM is collagen, which

distributes between the cells as fibers. Historically, collagen was

demonstrated to be a passive barrier to resist tumor cell

infiltration and establishment. However, the role of collagen in

cancer progression, immune escape and poorer patient outcome is

now widely studied (138–141). Collagen I, III and IV are the

predominant types in forming the scaffolds of the TME (142–144).

Upon tumor progression, the ECM remodeling of collagen fibers

which can be degraded (145) and later re-depositioned (143, 146),

can promote tumor infiltration, angiogenesis, invasion and

migration (70, 71, 146, 147). How collagen can be a double-

edged sword in tumor progression, both inhibiting and promoting

tumor progression at different stages of cancer development has

been exhaustively reviewed elsewhere (148). In this section, we

will focus on the role of collagen fibers as a contributor to

immune exclusion.

A recent article from Kuo-Sheng Hsu and collaborators has

proven that the survival of cancer cells depend on the uptake of

collagen I into their associated stroma (149). Also, evidence

indicates that breast tumors with dense collagen depositions

correlate with a worse patient’s outcome (150). Moreover, it has

been shown that collagen XIII expression is increased in human

breast cancer samples compared to normal mammary gland tissue,

and increased levels of collagen XIII mRNA correlate with short

distance recurrence free survival (151). One of the mechanisms

contributing to collagen I-mediated tumor growth promotion is its

ability to mediate immune cell exclusion (152). It has been

demonstrated that interaction of collagen fibers and immune cells

account for inhibition of their antitumor activities (153), and

Salmon et al. revealed that the stromal ECM, particularly

fibronectin and collagen fibers, influences antitumor immunity

against human lung tumors by controlling the localization and

migration of T cells (154). Movement of cells towards and within
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the ECM is prevented through an unusually dense and stiff

composition. Salmon stated that it was the higher density of the

ECM in the tumor islets that caused T cells to preferentially migrate

to the tumor stroma rather than infiltrate the islets. Other

researchers also highlight that the remodeling of the ECM that

increases tumor stiffness can mechanically activate pathways that

lead to tumor progression and dampen T cell infiltration to the

tumor islets (155–158). Particularly, studies have demonstrated that

T cells are impaired to infiltrate from the stroma to the tumor core

of PDAC when the ECM density is high (159, 160). Moreover, it has

been stated that tumor fibrosis (accumulation of collagen type I and

III fibers in the tumor ECM) is associated with a variety of

malignancies (142, 143, 161) and particularly correlates with

worse prognosis in breast cancer (162). Also, tumor fibrosis not

only increases metstasis risks in different tumor types (163, 164),

but it is also necessary for the successful establishment of metastasis

foci (165, 166). When fibrosis is highly extensive, for example in

PDAC, the scar-like ECM acts as a physical barrier to cytotoxic T-

cell infiltration into tumors (167). Collagen type I is the most

abundant type of collagen fiber present in the ECM (168).

Researchers proved that loose areas of fibronectin and collagen

usually facilitate T cell infiltration, while dense and stiff ECM reduce

T cell velocity and migration (167). In line with this, it has been

proved that central fibrosis in tumors exclude immune cells from

CRC metastases (169). One of the collagen receptors, the discoidin

domain receptor 1 (DDR1), has also been studied in this regard. The

different roles of DDR1 in cancer promotion are summarized in

Table 1. This receptor has an intracellular domain with tyrosine

kinase activity (170), which is triggered by collagen binding and

participates in different downstream signal transduction (170, 171),

but has no impact on tumor growth (152). In contrast, researchers

have found that it is the extracellular DDR1 collagen-binding

domain (ECD), the one required for tumor growth in

immunocompetent hosts (152). As it happens with collagen,

DDR1 also has paradoxical and context-depending roles in

cancer. Some authors have described DDR1 as a tumor

suppressor, as it induces apoptosis of basal-like breast cancer cells

in 3D collagen I matrices (172–174) and in luminal breast cancer

cells in young collagen 1-enriched ECM (175). However, when

collagen 1 ages, DDR1 no longer promotes apoptosis and the tumor

keeps growing. On the other hand, several publications suggest that

DDR1 overexpression at protein levels has shown to be associated

with cancer progression (176–179) and metastases (180), and the

increase of DDR1 mRNA levels was proved to be associated with

worse overall survival in all subtypes of breast cancer patients, and

particularly in TNBC (152). Regarding invasion, Juin et al.

demonstrated that DDR1 plays a key role in the formation and

matrix-degradation ability of F-actin invadosomes, promoted by

collagen I fibrils (181). Bravo-Cordero and colleagues proved that

the DDR1/STAT1 axis favors dormancy by triggering collagen III

expression. However, changes in the alignment of collagen III fibers

to a more linear orientation may awake tumor cells from dormancy

and reactivate proliferation and metastasis (182). Sun and

collaborators demonstrated that DDR1 knockout (KO) tumors

were impaired to grow in immunocompetent mice, but were

capable of growing in immunodeficient hosts. However, depleting
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CD8+ T cells allowed DDR1 KO tumors to grow at the same rate as

wild-type ones in immunocompetent mice (152). Moreover, the

authors proved that DDR1 KO tumors exhibited an increase in

CD4+ and CD8+ activated T cells, compared to DDR1 wild-type

tumors. What is more, when representative tumor samples

from each experimental group were analyzed by multiplex

immunofluorescence staining, authors found that CD8+ T cells

were largely restricted to the tumor margins of DDR1 wild-type

tumors, a phenomenon that was also evident by other researchers in

similar mouse models of TNBC (183). Strikingly, DDR1 KO tumors

showed an increased infiltration of CD8+ T cells on the tumor core,

suggesting that DDR1 is a key factor of the TME that physically

restricts T cell infiltration. Adding to this, it has been proved that

both mRNA and protein levels of DDR1 negatively correlate with

genes that define anti-tumour immunity, a gene expression

signature for intratumoral T cell accumulation, CD8+ T cell

signature scores, and the cytolytic effector pathway (59, 184). The

authors found that in TNBC patient samples which have never

received any treatment, the percentage of DDR1 positive cells in

DDR1 high tumors inversely correlated with the abundance of

infiltrating CD8+ T cells, which were circumscribed to the tumor

margin rather than present in the tumor core. In contrast, tumors

classified as DDR1 low did not show evident differences between the

abundance of CD8+ T cells in the tumor core or at the margins.

Moreover, when tumor samples were stratified according to the

immune phenotype, all tumor samples classified as immune-

excluded were DDR1 high and most tumors classified as non-

excluded were DDR1 low, confirming the role of tumoral DDR1 in

immune exclusion. Finally, with respect to the role of DDR1 in the

ECM, it was proved that DDR1-ECD promotes the alignment of

collagen fibers, reinforcing the defenses of tumors against immune

infiltration (152).

ECM alignment also plays a key role in controlling immune

cell migration (154, 185, 186). Particularly, a collagen-alignment

signature could be a prognostic factor for the survival of

patients with breast cancer (187). The migratory capacity of T

cells was impaired in fresh human tumor explants due to the

architecture of collagen fibrils that act both as a guiding path to

lead T cells out of the tumor core and as a physical barrier that

prevents their entrance, leading to a T cell excluded profile (154,

188). Moreover, it has been recently demonstrated that T cell

infiltration inversely correlates with stiffening and high density of

ECM in different preclinical murine models of pancreatic, breast,

and bile duct carcinomas (189). The authors proved that ECM

stiffness measurements correlated with tumor growth and ECM

crosslinking of collagen fibers. They showed that interfering with

collagen crosslinking into fibers by inhibition of the lysyl oxidase

(LOX) enzyme reduces ECM content and tumor stiffness,

improving T cell migration and improving the efficacy of anti-

PD-1 blockade. Combination of anti-PD-1 and LOX inhibition

resulted in an increased accumulation of effector CD8+ T cells in

the tumor and significant delays on tumor progression in a

pancreatic cancer mouse model (189).

Hyaluronan (HA) is a linear glycosaminoglycan, composed of

repeating disaccharide units of D-glucuronic acid and N-acetyl-D-

glucosamine (190). HA is a conspicuous component of the ECM,
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pathological conditions such as morphogenesis, tissue repair,

inflammation and tumorigenesis (191–194). In healthy tissues,

HA presents high molecular weight (HMW-HA) (>1,000 kDa)

and has a structural function. HA fragmentation is critical during

inflammation, tissue-remodeling processes, and cancer. HA

fragments of 200-1000 KDa are called low molecular weight HA

(LMW-HA), and fragments <10 kDa are HA oligosaccharides

(195). HA levels and molecular size mainly depend on a fine tune

between the expression of the enzymes involved in its synthesis

(hyaluronan synthases) and its degradation (hyaluronidases) (196).

Hyaluronan levels are increased in different solid tumors and

associated with tumor aggressiveness and progression, reviewed

elsewhere (197, 198). HA forms a hydrogel-like matrix surrounding

the tumor cells acting as an exclusion barrier and, thereby,

inhibiting the permeation of different drugs (such as

chemotherapeutics or monoclonal antibodies) as well as limiting

the accessibility of cells from the immune system. A HA-rich

matrix confers resistance to anti-HER2 therapy with trastuzumab

in breast cancer cells due to HA-induced masking of HER2 and to

inhibition of NK cells access to the tumors. Depletion of HA levels

by treatment with a pegylated version of hyaluronidase, PEGPH20,

resulted in increased NK cell access and enhanced ADCC (199–

201). The HA role in the immune exclusion of T cells has been

reported in PDAC, which are characterized by HA accumulation.

Indeed, depletion of HA by PEGPH20 in combination with a

whole-cell PDAC vaccine modulated myeloid cell function by

inhibiting the CXCR4 immunosuppressive signaling axis and lead

to enhanced T cell infiltration with a rise of intratumoral effector

memory T cells (202). Another study demonstrated that treatment

with the inhibitor of hyaluronan synthesis 4-methylumbelliferone,

promoted infiltration of inoculated gdT cells into tumor tissue and,

consequently, suppressed the growth of PDAC (203). In both

studies, PDAC stroma remodeling by HA depletion presented an

effective immunosensitizer effect. Despite HA function as an

exclusion barrier, HA exerts immunomodulatory actions by

interacting with receptors including CD44, RHAMM, or TLR4.

HA can modulate both the innate and the adaptive immune

responses and its final effects depend mainly on the molecular

weight of HA, the immune cell type, and the receptor involved.

While native HA appears to be anti-inflammatory and anti-

tumorigenic, HA fragments and oligomers are pro-inflammatory

and pro-tumorigenic (204). The effects of both HMW-HA and HA

fragments on TAM function has been extensively reviewed

elsewhere (205, 206). While the role of HA on TILs remains to

be explored, HA is an important mediator of T cell trafficking. HA/

CD44 interaction is known to facilitate the rolling and

extravasation of T cells to inflammatory sites (207). Furthermore,

HMW-HA, but not LMW-HA, induced the immunosuppressive

actions of regulatory T cells. Indeed, HMW-HA enhanced Foxp3

expression and IL-10 production by Tregs (208, 209). Altogether,

these reports point out a crucial role of HA in the regulation of T

cell recruitment and function in the TME. Further studies aimed to

investigate the levels and the molecular weight of HA polymers

within the TME will help to elucidate their specific cellular

functions in vivo.
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3.1.3 Aberrant vasculature
Tumor vasculature density and molecular signature has also

been shown to have a role in T cell infiltration (210–212). The whole

process of T cell migration into target tissues is reviewed elsewhere

(213, 214); the last stage of leukocyte infiltration is called

transendothelial migration and extravasation. This process usually

takes place in HEVs, and it has been reported that tumors with

higher amounts of HEVs will promote increased infiltration than

tumors with aberrant vasculature formation (210, 211). Tumor-

associated endothelial cells play key roles during tumor

development such as angiogenesis, regulating vessel permeability,

transportation of the immune cells, intravasation and extravasation

of tumor cells during dissemination (12). Leukocyte attachment,

rolling and transmigration into tissues is regulated by endothelial

cells, through the expression of a series of adhesion molecules, for

example the intracellular adhesion molecule (ICAM), the vascular

cell adhesion molecule (VCAM) as well as E- and P-selectin (12).

However, TILs infiltration to the tumor core is affected by a

dysregulation of these receptors on the tumor-associated

vasculature. Aberrant tumor vasculature is characterized by

collapsed blood vessels that are unevenly formed and are often

leaky. These vessels usually induce hypoxia, scarce drug trafficking

and immune infiltration to the tumor core (215). Also, the

endothelium expresses molecules that act as ligands for T cells,

which can either inhibit or stimulate immune cell extravasation

(216). One example of molecules that stimulate cell extravasation is

the extracellular superoxide dismutase 3 (SOD3), an enzyme

expressed within the TME that improves the aberrant functions

of tumor-associated vasculature by stabilizing hypoxia-inducible

factor 2 (HIF2a) that, in turn, induces the expression of vascular

endothelial cadherin (212, 217). This signal transduction cascade

causes a reduction in vascular leakage and increases blood flow

towards the tumor (217). However, SOD3 expression is

downregulated in several tumors, including pancreatic, colorectal,

lung and breast cancer (218–220). Mira and collaborators have

demonstrated that SOD3 enhances effector T cell transmigration

and extravasation through the upregulation of WNT ligands,

induced by HIF2a. WNT ligands cause the increase of laminin

subunit alpha-4 (LAMA4) expression in endothelial cells, a laminin

that participates in the maturation of microvessels (221) and gives

permissive signals in favor of the transendothelial T cell

extravasation (44). Interestingly, SOD3 does not trigger

permissive signals for migration of Tregs or myeloid cells. Since

SOD3 expression is associated with an increased infiltration of CD8

+ T cells and improved outcomes in patients with stage II CRC, the

authors claim that this regulatory mechanism of vascular

normalization could have clinical implications (217). On the

other hand, there are negative signals that inhibit effector T cell

adherence to the tumor endothelium and impair T cell recruitment

and extravasation to tumor sites. This phenomenon is known as

endothelial cell anergy. For example, endothelin B receptor (ETBR)

synthesis has been proved to interfere with the adhesion of T cells to

the endothelium and, consequently, a successful transendothelial

migration and extravasation process. ETBR expression has been

proved to be increased in the endothelium of human ovarian cancer
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and inhibits T cell infiltration to the tumor core. Authors have

demonstrated that this inhibition on T cell infiltration can be

reversed through treatment with the ETBR neutralizing agent

BQ-788 (222). Another overexpressed factor on the tumor-

associated vasculature that has been implicated in TILs exclusion

is Fas ligand (FasL), produced by murine and human tumors, like

ovarian, colon, prostate, breast, bladder, and renal cancer (223). T

cells express Fas receptor on their membrane and, upon FasL

binding, CD8+ T cells undergo apoptosis. However, this effect has

not been observed in Tregs, since they also express c-FLIP on their

cell membrane, a protein capable of inhibiting apoptosis. As a

consequence, if the tumor-associated vasculature expresses high

levels of FasL, although CD8+ T cells may be recruited to the tumor

core they are not able to penetrate successfully, and Tregs are

preferentially recruited instead (223). Authors also analyzed cohorts

of ovarian, colon, bladder, prostate, and renal cancer patients and

found that intraepithelial CD3+ or CD8+ cells correlated with

significant increases in overall survival, and that high percentages

of tumor vessels with FasL+ inversely correlated with intraepithelial

CD3+ cells presence. This was further analyzed and authors found

that the lack of CD3+ cells was mostly due to a lack in intraepithelial

CD8+ TILs, since tumors with FasL+ vessels exhibited abundance

of intraepithelial FoxP3+ cells. This data indicates that tumor

endothelium induces FasL expression and selectively increases

Treg:effector T cell ratio on the tumor core, allowing for CD8+ T

cell exclusion in several solid tumor types (223). In line with this, in

animal models the inhibition of FasL increased significantly the

infiltration of effector T cells and resulted in tumor growth

suppression. The authors described that FasL expression is

regulated by VEGF, prostaglandin E2 (PGE2), and IL-10. They

claim that blocking tumor angiogenesis promotes effector CD8+ T

cell infiltration by limiting their tumor vasculature FasL-mediated

apoptosis. This is relevant particularly for ex vivo activated T cells

used for ACT or endogenous activated T cells for cancer vaccines, as

activated T cells are prone to undergo apoptosis mediated by FasL.

It is known that VEGF and fibroblast growth factor 2 (FGF2) can

cause endothelial cell anergy by downregulating the expression of

ICAM1 and VCAM1 on the endothelium, two key adhesion

molecules for T cell infiltration (224). Moreover, increased

expression of some growth factors like VEGF, platelet-derived

growth factor (PDGFC) and placental growth factor are able to

promote tumor angiogenesis (225, 226). Moreover, it was proved

that VEGF can inhibit endothelium activation induced by NF-kB
signaling, and impair the T cell infiltration, by blocking the

production of chemokines CXCL10 and CXCL11 secreted by

tumor and stromal cells (227). These chemokines correlate to T

cell abundance in the tumor core of lung (228, 229), colorectal (230)

and melanoma (228) patients. Another factor that can influence T

cell infiltration into the tumor nest is the integrin-selectin signature

expressed in the tumor vasculature, since they are key players in the

stages of leukocyte rolling to achieve successful extravasation into

target tissues (231). In this regard, researchers have determined the

role of the ECM, particularly integrins, in the preferential

localization, migration and activation of T cells in lung

adenocarcinomas, TNBC and HER2+ breast cancer tumors (154,
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232). Particularly, integrin subunit alpha 5 (ITGA5) has a crucial

role in promoting cancer cell invasion, metastasis and it was

recently proved to be overexpressed in gastrointestinal tumors

and was associated with worse overall survival and disease-free

survival in colorectal, pancreatic, gastric and liver cancers (233).

What is more, expression of ITGA5 was associated with an

increased infiltration to the tumor core of CD4 + T cells,

macrophages, neutrophils and dendritic cells. Also, ITGA5

expression measured by immunohistochemistry in gastrointestinal

tumor samples was proved to be associated with gene expression

signatures related to immunotolerant populations, such as TAMs,

Th2 cells and protumoral M2-like cells. Authors claim that ITGA5

may have a potential role in polarizing macrophages to the M2

subtype and promoting the activation of tolerogenic lymphocytes

(233). ITGA5 is not only expressed in tumor cells, but it has also

been reported to be expressed in CAFs (234), TAMs (235) and

chimeric antigen-receptor expressing T cells (233). CAFs have a

clear role in regulating the recruitment of immune cells and their

functions with regards to their anti-tumor responses (167, 236),

which will be discussed afterwards in this review. ITGA5 expressed

in the surface of TAMs and T cells can directly regulate recruitment

and alternative activation of immune cells, and its interaction with

other integrins is crucial for the integrin-mediated signaling

pathways, leukocyte migration and cell-matrix adhesion (237).

This data proves, once more, the importance of the interplay

between vasculature and the ECM in immune exclusion and

response to therapy.
3.2 Immunosuppressive cells

Numerous preclinical studies have proposed several stromal cell

types of the TME, like CAFs, MDSCs and TAMs as the key players

for restricting infiltration of T cells in the tumor core (135, 238–

243). In this section we discuss the most recent evidence on the
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mechanisms by which these cells promote immune exclusion and

therapy failure. The main roles of immunosuppressive cells in

immune exclusion are summarized in Figure 2.

3.2.1 Myeloid cell barrier
Thanks to their plasticity, myeloid cells are able to modify their

differentiation conditioned by tumor factors to achieve an

immunosuppressive phenotype that fosters immune evasion.

MDSCs are produced by an abnormal myeloid progenitor

development in the bone marrow induced by high levels of

factors produced by tumors and their stroma, such as G-CSF,

GM-CSF, IL-6, and VEGF, which activate Stat3 and Stat5

favoring their differentiation to the detriment of normal

monocytes, macrophages and dendritic cells (244–247). The

relationship between cytokines and immunosuppressive cells was

clearly depicted in pancreatic cancer and liver metastasis, as tumor-

GM-CSF induces the activation and expansion of MDSCs, which in

turn, suppress T cell function (242, 248). MDSCs enter the

circulation from the bone marrow and infiltrate the primary or

metastatic tumor site in response to gradients of chemokines such

as IL-8, CCL2, and CXCL12 (249–251). Once in the TME, different

factors such as hypoxia, adenosine, the activation of the

endoplasmic reticulum stress response pathway, among others,

increase the immunosuppressive activities of MDSCs (252–254).

Two major subpopulations have been described in humans and

mice: the polymorphonuclear MDSC (PMN-MDSC) and the

monocytic MDSC (M-MDSC). The former is derived from

granulocytic precursors and are similar to neutrophils, while the

latter are derived from monocytic precursors and are similar to

monocytes. In this complex scenario, Long et al. described that

erythroid progenitor cells can switch to the myeloid lineage and

differentiate to erythroid-differentiated myeloid cells (EDMC),

which suppress T cell function and promote anemia (255).

EDMC in the TME together with anemia, are described as

biomarkers of poor response to ICB therapy in several cancer
FIGURE 2

Immunosuppressive cells present in the TME play active roles in immune exclusion and immunosuppression. ICB, immune checkpoint blockade;
ECM, extracellular matrix; MDSCs, myeloid-derived suppressor cells; TAMs, tumor-associated macrophages; CAFs, cancer-associated fibroblasts;
MMPs, matrix metalloproteinases. Created with BioRender.com
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types (255). Recently, immunotherapy has burst in the oncology

arena as a promising approach to exploit the immune system to

combat cancer, focusing mainly on the cytotoxic capacity of CD8+T

cells. On the one hand, the ICB treatment is prone to induce an

active immune response, reinvigorating in vivo exhausted

endogenous T cells. On the other hand, other therapies rely on a

passive strategy by transferring autologous T cells that were

genetically engineered to express chimeric antigen receptors.

MDSCs have been recognized as a barrier that limits ICB

effectiveness (256, 257). MDSCs manage to suppress CD8+ and

CD4+ T cell proliferation and function by depleting nutrients, such

as L-arginin, cysteine and tryptophan, by inducing the production

of nitric oxide (NO) by the inducible nitrous oxide synthase (iNOS),

the production of the immunosuppressive cytokines IL-10 and

TGF-b, and by expressing the inhibitor molecule PD-L1 (258–

262). In addition, in a mouse melanoma model it was demonstrated

that MDSCs impair the infiltration of activated CD8+ T cells (240).

In a meta-analysis, elevated numbers of MDSCs in the circulation

were found to be an independent indicator of poor outcome in

patients with solid tumors (263). In melanoma patients subjected to

ICB treatment, a basal higher level of PMN-MDSC was proved to be

present in progressive disease vs. patients that evidence clinical

benefit. The patients that responded to therapy exhibited an

increase in circulating MDSCs after ICB treatment, suggesting

that MDSCs count could be considered as a prognostic biomarker

of ICB effectiveness (264).

The other myeloid cells in the TME scenario are macrophages.

Macrophages are present in every tissue to maintain their

homeostasis. The tissue-resident macrophages originate from

monocytes from the bone marrow but are also derived from

precursors that seed the tissues upon different waves of

embryonic hematopoiesis and are locally proliferating (265). In

particular, a glioblastoma can have 30% of its tumor mass

composed of bone marrow–derived macrophages and its

abundance is related to tumor grade (266). In a scenario of acute

or chronic inflammation (this latter case, includes cancer) bone

marrow-derived monocytes migrate to the inflamed tissue attracted

by CCL2 and CSF 1, and differentiate to macrophages (267). The

macrophages present in tumors are defined as tumor-associated

macrophages (TAMs) and can also derive from M-MDSCs as
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precursor cells (268). Indeed, the cancer-related inflammation is

promoted by TNFa secreted by TAMs that induces constitutive

activation of NF-kB in tumor cells, which promotes their survival

and invasion (269). The ability of the TME to polarize the recruited

monocytes to TAMs instead of to dendritic cells has been recently

uncovered and is due to the production of retinoic acid by tumor

cells (270). Macrophages are plastic and signals from the TME,

derived from tumor cells, lymphocytes and stroma cells,

condition their fate to acquire either immunosuppressive or

immunostimulant function. The “classically activated”, M1-like or

antitumoral macrophages are originated by interferon (IFN)-g or

microbial stimuli and produce IL-12, which polarize CD4+T cells to

a type I response. In addition, they have cytotoxic activity against

microorganisms and tumor cells. On the other hand, the

“alternatively activated” macrophages, M2-like or protumoral

macrophages differentiate after IL-4/IL-13/IL-10/TGFb stimuli,

have high IL-10 production, downregulate M1-like macrophages´

function and are associated with repair of wound tissues (271, 272).

Macrophage polarization conditioned by TME has been recently

reviewed (273). It is generally accepted that TAMs have an M2-like

phenotype that can promote cancer initiation, progression and

favor metastasis while suppressing the antitumor immune

response (274–276). In particular, TAMs inhibit CD8+ T cell

activation and function in a similar way to that was described for

MDSCs: TAMs promote L-arginine depletion in the TME, secrete

immunosuppressive cytokines, including IL-10 and TGF-b, and
express the inhibitory molecules PD-L1, PD-L2, CD80 and CD86.

This profile hijacks the anti-PD-1/PD-L1 therapies, as has

thoroughly been reviewed elsewhere (277). TAMs also act as a

trap for CD8+T cells. In human lung squamous-cell carcinoma it

has been demonstrated that the exclusion of CD8+T cells from the

tumor nest was not only due to the density of the ECM but also

induced by a long-lasting interaction between TAMs and CD8 T

cells which impairs T cell movement (278). In addition, TAMs

secrete C-chemokine ligand (CCL)-2, CCL-3, and other members of

the CCL family that promote the recruitment of regulatory T cells

(Treg) and type 2 conventional dendritic cell (cDC2) HLA-DRlow

which, upon their interaction in hypoxic conditions, results in a loss

of antigen-presenting capacity of cDC2 (279). TAMs also secrete

angiogenic cytokines such as VEGF-A, TGF-a, TGF-b, EGF, and
TABLE 1 Roles of DDR1 in promoting cancer.

Contribution to cancer Reference

Intracellular domain with tyrosine kinase activity (157, 158)

Extracellular domain promotes tumor growth (139)

Promotes cancer progression and metastases (159–163)

Correlates with worse overall survival in breast cancer patients (139)

Restricts CD8+ T cells to tumor margins (139, 164)

Correlates with immune-excluded tumor signatures (139)

Promotes alignment of collagen fibers in the ECM (139)

Controls linear invadosome formation and matrix invasion (168)

Participates in tumor cell dormancy through collagen III-rich ECM (169)
f
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PDGF that allow aberrant tumor-associated vasculature (274),

which has been described to play a key role in immune exclusion,

as reviewed above. Metastasis is a multistep process that allows

tumor cells to survive and proliferate in distant organs. In this

respect, TAMs secrete matrix metalloproteinases and urokinase that

remodel the TME allowing local invasion of cancer cells that form

adherens junctions to the ECM. Moreover, the M2-like

macrophages are an important component of the tumor

microenviromment of metastasis (TMEM) doorways. This

structure is composed of perivascular M2-like macrophages,

endothelial cells and tumor cells expressing Mammalian enabled

actin-regulatory protein (MENA). The tumor cell interaction with

M2-like macrophages flow through the tumor cells via the TMEM

doorway releasing them to the bloodstream to accomplish another

step of the metastatic cascade (280–282). These niches, where the

dissemination trajectories of tumor cells occur, are immune desert

and enable the successful migration of tumor cells to disseminate

through the host (283). Another layer of complexity of TAM impact

on the TME relies on their ability to remodel tissue by interacting

with cancer-associated fibroblasts (CAFs) promoting collagen

production and fibrosis, fostering the exclusion of T cells and

causing failure of ICB (284). As CAFs secrete high levels of IL-6,

it induces Stat3 activation and macrophage polarization to M2-like

increasing the immunosuppressive tumor milieu (285).
3.2.2 CAFs and the ECM
The major producer of ECM in solid tumors are the CAFs

(286), which are mainly co-opted resident (287) or recruited

fibroblast-like cells that undergo reprogramming by the tumor

(288). In several tumors, an increased proportion of CAFs on the

TME has been associated with poor prognosis (289), but lately a

wider and more specific classification of CAFs subpopulations

highlights the idea that not all CAFs are biomarkers of poor

outcome (290, 291), and that different CAF subtypes may have

different contributions to cancer progression. This is due to the

heterogeneity of CAFs, as they can be immunosuppressive or

immunostimulatory for T cells. As PDAC is characterized to be

surrounded by abundant desmoplasia, it has been crucial to study

CAFs subpopulations. Öhlund et al. revealed that pancreatic stellate

cells are a main source of CAFs, since they can either differentiate to

inflammatory CAFs (iCAFs) or myofibroblastic CAF (myoCAF).

These subpopulations were defined based on their protein

expression: iCAFs secrete IL-6 and pro-inflammatory factors,

while myCAFs have elevated expression of a-smooth muscle

actin (aSMA). By RNAseq, authors identified that the

proinflammatory genes as Il6, Il11, and Lif, and chemokines, such

as Cxcl1 and Cxcl2 were upregulated in the iCAFs, while a TGFb-
response genes were characteristic of myCAFs. In addition, a spatial

separation between iCAFs and myCAFs was reported: myCAFs are

in contact with tumor cells, while iCAFs are situated far from the

neoplastic nest (290). These two subpopulations were confirmed by

single-cell RNA sequencing in human PDAC (292). Nevertheless,

another subtype of CAFs emerged from scRNA in human and

mouse PDAC, the so-called antigen-presenting CAFs (apCAFs).

These cells have high levels of major histocompatibility complex
Frontiers in Oncology 11
(MHC) class II family members and, in a mouse model, showed

capacity to activate CD4+T cells (291).

CAFs have shown to have different strategies to restrain T cells

to the stroma and prevent them from penetrating the tumor core.

One of these strategies is their contribution to the production of a

stiff and dense ECM, since it has been demonstrated by live imaging

of lung tumor tissue slices that T cells move actively in regions of

loose fibronectin and collagen fibers, while dense ECM surrounding

the tumor core presented a clear impairment to T cell mobility

(154). Interestingly, when collagenase was used to reduce the

rigidity of the ECM around tumor islets, an enhanced movement

of T cells was observed from the stroma and into the tumor core, in

close contact with tumor cells. Another strategy by which CAFs can

control T cell infiltration is by means of the production of the

cytokine CXCL12. In a preclinical mouse model of PDAC, it was

demonstrated that CAFs that express the fibroblast activation

protein (FAP) within the ECM produce and secrete CXCL12,

which in turn binds to the PDAC tumor cells, coating them

(241). This phenomenon has also been reported for colorectal

and ovarian cancer (293, 294). Feig and collaborators found that

T cells were absent from tumor regions containing cancer cells,

which were coated with CXCL12. Moreover, they proved that the

main source of CXCL12 production in the TME were the FAP+

CAFs. The administration of AMD3100, an inhibitor of the

CXCL12 receptor (CXCR4), highly increased T cell infiltration

among cancer cells. What is more, authors claim that AMD3100

synergized with anti-PD-L1 therapy to diminish the proportion of

cancer cells within the lesion and to arrest tumor growth (241). CD8

+T cells functionality is hijacked by CAFs at different levels. TCR

signaling can be suppress by secretion of TGFb produced by CAFs

(295). CAFs also express PD-L1 and PD-L1 that decrease CD8+ T

cell proliferation, function and probably contributes to T cell

exhaustion (296, 297).
4 Clinical impact

Given the importance of the TME in treatment response, in

particular immunotherapies, in this section we will address the

current state-of-the-art of targeting the above-mentioned physical

barriers as novel treatments in combination with standard of care

therapies and their clinical implications.
4.1 Targeting MDSCs

MDSCs are a subpopulation of immature myeloid cells that

expand massively during tumor progression and invasion and have

immunosuppressive effects and promote tumor immune escape.

There are several reports of MDSCs involvement in chemo-, radio-

and immunotherapy (257, 298–303), which poses this cell

population as an attractive therapeutic target. Numerous

strategies are being tested in clinical trials: promoting maturation,

differentiation or depletion of MDSCs, prevention of expansion and

recruitment, inhibition of their function or their metabolism (299,

304–306), among others.
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4.1.1 Maturation, differentiation or depletion
Vitamin D3 showed to stimulate MDSCs maturation and

improved the antitumor immune response in patients with head

and neck squamous cell carcinoma extending their progression-free

survival (307, 308). All trans retinoic acid in combination with

immunotherapy was proven to induce MDSCs differentiation into

macrophages, granulocytes, and dendritic cells (309, 310) which not

only abolishes the immunosuppressive effects but also can reduce

the MDSCs number from the blood (311, 312). In respect to MDSCs

depletion, chemotherapeutic agents can diminish their number, but

it is not specific for this population (313). Therefore, a monoclonal

antibody against CD33 conjugated with a toxin was tested in acute

myeloid leukemia for depletion of MDSCs in a phase II clinical

trial (314).

4.1.2 Prevention of expansion and recruitment
Stat3 activation is crucial for MDSCs expansion and function

and its inhibition with an antisense oligonucleotide called AZD9150

reduced MDSCs circulation in peripheral blood of patients with

diffuse large B-cell lymphoma (315), and is currently being tested in

combination with ICB in solid tumors (NCT02499328). MDSCs are

regulated by the same colony stimulating factors (CSF) that

modulate normal myelopoiesis (316). It has been demonstrated in

preclinical models for different cancers that blockade of GM-CSF/

G-CSF can inhibit the accumulation of MDSCs and exert an

antitumor immune response while restraining polarization of the

macrophages to the M2-like phenotype (317–320). Moreover,

combination of GM-CSF/G-CSF blocking agents with ICB and

chemotherapy have given promising results (321) which led to

clinical trials that test these combinations (322, 323) in prostate

(NCT02961257, NCT01499043), melanoma (NCT02071940,

NCT02975700), glioblastoma (NCT01499043) and breast

(NCT02265536) among others. Naturally, targeting the complex

cytokine and chemokine network or their receptors which modulate

MDSCs is expected to have great clinical implications. For example,

propagermanium (a CCL2 inhibitor) was shown to be safely

tolerated by patients with primary breast cancer and an

antimetastatic effect was observed (324). On the other hand, a

monoclonal antibody against CCL2 showed no antitumor effect as a

single agent in patients with metastatic castration-resistant prostate

cancer (325). A small molecule inhibitor of CCR2 combined with

FOLFIRINOX, the standard of care for patients with PDAC, had

promising results, decreasing TAMs and migration of MDSCs (326,

327). In spite of these results, most of the approaches targeting the

CCL2/CCR2 axis have disappointing results, and this could be due

to the impediment for long term blocking (328). Targeting CXCR1/

2 in combination with chemotherapies showed a potent antitumor

response, and enhances the efficacy of chemotherapy in an animal

(329) model of gastric cancer, and furthermore have shown to

improve ICBs therapy in head and neck tumors and (330)oral and

lung carcinoma (331, 332),. Numerous CXCR1/2 inhibitors have

been tested in clinical trials for cancer patients and are extensively

described elsewhere (330). Another key player in MDSCs

recruitment and mobilization is VEGF, which is also produced by

them to promote metastasis and angiogenesis (333). VEGF
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and MDSCs infiltration (334). Different studies have approached

the use of anti-VEGF/VEGFR therapies in patients with NSCLC

(335), glioblastoma (336) and colorectal (337) cancer and presented

good outcomes. Sunitinib, a tyrosine kinase inhibitor that targets

PDGFRs and VEGFRs, has shown to inhibit MDSCs

immunosuppressive effect in patients with various cancer types

(338). Another study in renal cancer patients showed that sunitinib

decreases circulating MDSCs (339) by inhibiting VEGF and STAT3

activation (338). To achieve effectiveness, combination treatments

that target several of these factors are being tested in preclinical

models, for example in a preclinical breast cancer model all trans

retinoic acid administration together with VEGFR2 inhibitors and

chemotherapy have been tested and not only they diminished

MDSCs infiltration, but also exhibited hindered tumor

growth (340).

4.1.3 Inhibition of function
These treatments aim to inhibit pathways related with MDSCs

immunosuppressive mechanisms. Inhibition of STAT3 through

different strategies in preclinical models and clinical trials (316,

341, 342) have been tested in solid tumors with limited effectiveness

and unwarranted toxicities (343). The COX2/PGE2 axis is another

interesting target since it has been shown to be involved in tumor

promotion and invasion in ovarian cancer (344), tumor evasion in

colorectal adenoma (345), among others (346). Inhibition of said

signaling pathway showed to improve immune response and

decreased arginase expression (347, 348) and exhibited great

inhibitory effect over the MDSCs population in several cancers

(349–351). Combination with immunotherapy has been already

reviewed elsewhere (352). Inhibitors of the histone deacetylase have

also shown to reduce COX2, arginase and iNOS levels, resulting in

an inhibition of the immunosuppressive function of MDSCs. These

drugs have been tested in preclinical models (352, 353) and in

clinical trials resulting in sustained survival, retarded tumor growth

and a positive immunostimulatory effect over CD8+ T cells (354,

355). Phosphodiesterase inhibitors can also alter MDSCs function

downregulating iNOS and arginase stimulating antitumor

immunity in mice (356) and in patients with HNSCC (357) and

melanoma (358).
4.2 Targeting TAMs

TAMs account for 30-50% of the TME (359) and promote

tumor progression (360, 361) and an immunosuppressive TME

depending on their polarization (362, 363). These characteristics

make them an appealing target to modulate the TME and obtain

tumor regression or increase efficacy of current therapies. Depletion

of TAMs, stimulation of their phagocytosis, reprogramming and

inhibition of their recruitment are some of the proposed

targeted therapies.

Paralleling CAR-T cells, recently, chimeric antigen receptor

macrophages (CAR-M) have been developed. CAR-M have

shown to polarize macrophages to the M1 antitumoral subtype
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and to enhance the phagocytosis of cancer cells (364–367), and are

also capable of transforming the TME into a pro-inflammatory one,

which promotes antitumoral effects in preclinical models (366).

CD47 (don’t eat me signal) is a crucial molecule expressed by

tumors that impedes macrophage recognition of the tumoral cells,

which results in a decreased phagocytosis and in tumor evasion

(368). Several works have studied potential therapies directed

against CD47 and have shown favorable results (369–372).

Regarding TAMs depletion, bisphosphonates have been shown to

be effective and they also inhibit M2-like TAMs proliferation and

migration, but they do not achieve a durable response (373–377).

Another interesting strategy is TAMs reprogramming.

Macrophages can shift between M1-like antitumoral or M2-like

pro-tumoral phenotypes, depending on the cytokines present in the

microenvironment (378). As it was described for MDSCs,

recruitment of M1-like macrophages to the tumor core is an

interesting therapeutic idea and given both cells belong to the

myeloid population, some of the therapies used for MDSCs also

affect TAMs. In line with this, TLR agonists are currently being

tested in the clinical setting to repolarize M2-like TAMs to the M1-

like subtype (379–384). Moreover, CSF-1/CSFR-1 blockade inhibits

TAMs recruitment to the tumor bed and has antitumoral effects in

mice and in patients (385–388). The CCL2/CCR2 axis is also

important for TAMs recruitment and therapies that target these

proteins have shown to be effective in this sense and they also

reduce tumor growth (326, 389, 390). Inhibitors of CSF-1/CSFR-1

not only affect TAMs recruitment but also have a reprogramming

effect (322, 385, 391, 392). Given the rise of immunotherapies,

several strategies that target TAMs are now being tested in

combination with ICBs and have shown to improve their

effectiveness (375, 393–399).
4.3 Targeting CAFs

Lately, CAFs have emerged as an important factor in the

regulation of the TME and immunotherapy response. Fibroblast

activating protein (FAP) is one of the main targets for depleting

CAFs (400), and inhibition of said protein showed good outcomes

in mice models (401, 402). However, a monoclonal antibody

targeting FAP did not show the expected promising results in a

phase II clinical trial of patients with metastatic colorectal cancer

(403). Bispecific antibodies of FAP and IL-2 receptor (RO6874281)

or 1BBL (RG7826) are being tested in combination with ICBs on

clinical trials and have shown to be safe, and preclinical models

encourage the advancement due to promising results such as tumor

regression, accumulation of CD8+ T and NK cells. Other

approaches aim to inhibit pathways related to CAFs activation,

for example, focal adhesion kinase (FAK) inhibitors combined with

anti-PD-1 had a good effect in preclinical and clinical models (159,

404) (NCT03727880, NCT02758587, NCT02546531). In this sense,

inhibition of the platelet derived growth factor (PDGF) (405) and

FGFR (406) pathways have shown positive outcomes for the

patients but the adverse effects and resistant events remain to be

elucidated. On the other hand, depletion of a-SMA+ myCAF

induces reduced survival of animals with PDAC and scarce
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overall survival (407). Therefore, a deep insight of CAFs subtype

and their relationship with tumor types should be unraveled before

their approval in patients. Recent review highlights the challenges

that targeting CAFs has to overcome to reach clinical practice

(408, 409).

Some downstream effectors of CAFs have been studied as

potential therapeutic targets such as CXCR4/CXCL-12 (410)

(NCT02907099, NCT02826486) or TGF-b (36, 97, 411–413).

Interestingly, some of them are also being proposed as targets of

other cell populations as mentioned above, meaning these therapies

affect multiple cell types. Given the recent description and

implications of CAFs subsets in the TME remodeling and

immunotherapy response, future studies should disclose the role

of said subsets and new therapeutic targets will arise.
4.4 Targeting collagen

Collagen is a central element of the ECM, and therefore for the

TME and immune (414) exclusion, has implications in tumor

progression, metastasis, and conditions response to treatment.

However, collagen has also shown to exhibit antitumor activity

(415). Collagen-binding domains (CBD) are present in collagen and

mediate interactions with other proteins (416). Given this, CBD-

engineered biomolecules could deliver drugs or monoclonal

antibodies to the tumor site and their effect is limited to the

ECM, augmenting the therapeutic outcomes and decreasing off-

target effects and toxicity (417). Among these examples, CBD fused

with the EGFR binding portion of cetuximab showed antitumor

activity in vitro and longer retention times and enrichment in tumor

human epidermoid squamous carcinoma xenografts (418, 419). In

the same manner, CBD carrying IL-2 or IL-12 in combination with

ICB treatment have been tested, exhibiting promising results in

breast cancer (420) and melanoma (421). In another approach,

collagen-binding albumin, a protein that accumulates in the TME

and is used as an energy source for cancer growth, was conjugated

to chemotherapy in combination with ICB in a colon carcinoma

preclinical model (422). The treatment not only caused

accumulation of the drug on the TME but also generated

complete tumor inhibition in breast and colorectal cancer models

(423). Recently, a fusion protein of CBD and the Fc of SIRPa (signal

regulatory protein a) (423), which targets the SIRPa-CD47 axis,

showed accumulation in the tumor tissue, more antitumor activity

and an increase infiltration of M1-like macrophages than SIRPa Fc

alone, in a xenograft model of NSCLC (424). Collagenase

treatment loosens the ECM, allows an improved drug penetration

and delivery and provides an antitumor effect (425–427).

Alternatives to achieve collagen degradation include activators of

matrix metalloproteinases (428, 429), engineered bacteria (430) and

armed oncolytic virus expressing ECM components (431–434).

Another strategy is not to deplete collagen, but to modulate its

production by interfering with collagen crosslinking. The LOX

family of enzymes is critical in collagen crosslinking and therefore

ECM stiffness. In fact, it has been shown that aberrant LOX

expression is implicated in tumor progression (435) and therapy
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resistance (436). Therapies targeting LOX have been developed and

tested in preclinical models in various cancers showing good results

(437, 438). Inhibition of collagen synthesis by antifibrotic drugs

loosens ECM architecture allowing greater immune cell infiltration

and drug delivery in PDAC (439, 440), NSCLC (441), melanoma

(442), among others. There are several clinical trials testing

antifibrotic drugs that could potentially be used in cancer

treatment in the future (443). Clinical trials testing therapies

targeted collagen have been reviewed elsewhere (138).

Recently, it was demonstrated that an antibody against the

collagen receptor discoidin (DDR1) disrupts collagen alignment

and inhibits tumor growth in TNBC (152). Finally, given that CAFs

are the main producers of collagen, therapies targeting this cell

population can achieve the above-mentioned collagen-

related effects.
4.5 Targeting HA

As mentioned above, HA can act as a physical barrier causing

both the exclusion of immune cells and of drugs (such as

chemotherapeutics and monoclonal antibodies), thus leading to

failure of treatment. Finding efficient tools to remodel the HA

matrix within tumors is complex and constitutes a matter of

intense research nowadays. One strategy proposes to target the

hyaluronidase activity with O-sulfated HA, and showed a

pronounced effect over invasion in PDAC (444) and prostate

cancer (445).

The application of hyaluronidases to degrade HA has also been

investigated as a possible anticancer drug alone or in combination

with other drugs. Indeed, intravenous hyaluronidase treatment of

mice implanted with human breast cancer cells significantly

reduced tumor growth (446). Intravenous trastuzumab constitutes

the main standard of care for HER2-positive BC since 1998. As an

alternative, a subcutaneous trastuzumab formulation was developed

containing the recombinant human hyaluronidase, which degrades

interstitial HA, enables the administration of large drug volumes

subcutaneously, and favors trastuzumab delivery to the circulation

(447, 448). After a phase III trial confirmed the comparable efficacy

and safety of subcutaneous and intravenous trastuzumab (449),

subcutaneous trastuzumab was approved for HER2-positive early

BC. This trastuzumab formulation presents several advantages

compared with the intravenous trastuzumab including shorter

administration times and increased convenience and preference

for patients (450). Preclinical studies in pancreatic cancer models

demonstrated that the hyaluronidase PEGPH20, besides increasing

CD8+ T cell infiltration as stated before, increases chemotherapy

effectiveness (451). Based on this, PEGPH20 treatment was assessed

in clinical trials for PDAC, where it showed an increase in perfusion

and chemotherapy delivery (452). Although early phase studies

showed promising results, further clinical studies demonstrated that

addition of PEGPH20 to chemotherapy either increased toxicity or

failed to achieve an improvement in the progression-free survival or

overall survival, so the studies were discontinued for PDAC (452–

454). It is worth noting that although HA may be a physical barrier
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Therefore, hyaluronidases may also generate HA fragments, which

could have pro-tumorigenic (pro-angiogenic) actions and may

explain the failure of PEGPH20 treatment in PDAC. Blocking

peptides for LMW HA is another interesting strategy to prevent

HA to bind its receptors and downregulate signaling, but to date

there is not extensive work approaching this task. However, it has

been demonstrated that HA-binding peptides can inhibit survival

and invasion of breast and prostate cancer cell lines in vitro and in

vivo (455–457).

Another therapeutic strategy proposes to target HA synthesis by

treatment with 4-metylumbilliferone (4-MU), a natural compound

that inhibits the expression of HA synthases (152, 458) and

therefore downregulates HA signaling. Preclinical studies have

shown that 4-MU has antitumoral effects affecting progression,

migration, and invasion in several cancers, such as colorectal,

pancreatic, prostate, ovarian, breast, melanoma, hepatocellular

cancers (459). 4-MU also has shown to reduce metastasis in

breast (460), ovarian (461) and skin (462) cancers. Since 4-MU is

already approved in Europe for biliary spasms treatment, and given

that it decreases HA levels in human participants (463), 4-MU

constitutes a promising anticancer agent. Recently, another

inhibitor of HA synthesis, the thymidine analog 5′-Deoxy-5′-(1,3-
Diphenyl-2-Imidazolidinyl)-Thymidine (DDIT), demonstrated

more potent anti-tumorigenic properties than 4-MU in breast

cancer (464), further supporting targeting HA synthesis as an

antitumoral therapeutic strategy. Further studies investigating the

impact of HA-targeting strategies on HA levels, HA molecular

weight, and the activation of HA receptors will help to improve

current and develop new therapeutic tools aiming HA to tailor HA

metabolism in cancer.
4.6 Targeting MUC4

MUC4 expression was reported to be higher in various cancer

types such as breast, pancreatic, lung, ovarian, bladder and cervical

cancer (465). Our group reported that TNFa-induced MUC4 is

involved in HER2-targeted therapy resistance in vivo and in vitro,

and that it is an independent predictor of trastuzumab response in

HER2-positive breast cancer patients (115). We have disclosed that

a dominant-negative protein (INB03) that selectively blocks sTNFa
downregulates MUC4 and its administration with trastuzumab

turns the immunosuppressive TME into a immunostimulatory

one through polarization to M1-like macrophages and favoring

the crosstalk between macrophages and NK cells in preclinical

models (466). Furthermore, MUC4-positive breast tumors are

associated with an immunologically cold phenotype, suggesting

that INB03 could be used in combination with trastuzumab and

ICBs in these tumors. MUC4 has also been proved to be a

biomarker for pancreatic cancer and drives cell tumor

proliferation and invasion in PDAC (467, 468). In ovarian cancer

MUC4 downregulation potentiates the antitumoral effect of

auranofin (469). Moreover, MUC4 expression has been linked to

the metastatic potential of the cancer cells (470). Given the
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aforementioned information and the lack of therapies targeting

MUC4, we proposed that TNFa-blocking agents or MUC4-targeted

therapies in combination with immunotherapy and the standard of

care for each cancer type should be further investigated in the

clinical setting.
5 Closing remarks

It is clear that the phenomenon of immune exclusion has strong

clinical relevance for different tumor types, but has not yet been fully

elucidated. We envision that understanding the immune-excluding

mechanisms of action of the different components of the TME will

open up new avenues of therapeutic approaches. However, a full

comprehension of the TME of each tumor type, and even in each

patient should be taken into consideration in the clinical setting. In the

near future, diagnosis would be performed by promising non-invasive

techniques that will help to characterize the TME and select a

proper treatment. Moreover, the plasticity of myeloid cells, the

depletion of suppressive cells and the reduction of the TME stiffness

are different strategies that are now being explored to reshape the

immunosuppressive tumor milieu into an immunocompetent one

that will render the success of the present IBC.
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protein inhibits tumor stromagenesis and growth in mice. J Clin Invest (2009) 119
(12):3613–25. doi: 10.1172/JCI38988

402. Gunderson AJ, Yamazaki T, McCarty K, Phillips M, Alice A, Bambina S, et al.
Blockade of fibroblast activation protein in combination with radiation treatment in
murine models of pancreatic adenocarcinoma. PloS One (2019) 14(2):e0211117. doi:
10.1371/journal.pone.0211117

403. Hofheinz RD, al-Batran SE, Hartmann F, Hartung G, Jäger D, Renner C, et al.
Stromal antigen targeting by a humanised monoclonal antibody: an early phase II trial
of sibrotuzumab in patients with metastatic colorectal cancer. Onkologie (2003) 26
(1):44–8. doi: 10.1159/000069863

404. Mohanty A, Pharaon RR, Nam A, Salgia S, Kulkarni P, Massarelli E. FAK-
targeted and combination therapies for the treatment of cancer: an overview of phase I
and II clinical trials. Expert Opin Investig Drugs (2020) 29(4):399–409. doi: 10.1080/
13543784.2020.1740680

405. Kim S, You D, Jeong Y, Yoon SY, Kim SA, Lee JE. Inhibition of platelet-derived
growth factor c and their receptors additionally increases doxorubicin effects in triple-
negative breast cancer cells. Eur J Pharmacol (2021) 895:173868. doi: 10.1016/
j.ejphar.2021.173868

406. Kommalapati A, Tella SH, Borad M, Javle M, Mahipal A. FGFR inhibitors in
oncology: insight on the management of toxicities in clinical practice. Cancers (2021)
13(12):2968. doi: 10.3390/cancers13122968

407. Özdemir BC, Pentcheva-Hoang T, Carstens JL, Zheng X, Wu CC, Simpson TR,
et al. Depletion of carcinoma-associated fibroblasts and fibrosis induces
immunosuppression and accelerates pancreas cancer with reduced survival. Cancer
Cell (2015) 28(6):831–3. doi: 10.1016/j.ccell.2015.11.002

408. Chen Y, McAndrews KM, Kalluri R. Clinical and therapeutic relevance of
cancer-associated fibroblasts. Nat Rev Clin Oncol (2021) 18(12):792–804. doi: 10.1038/
s41571-021-00546-5

409. Brewer G, Fortier AM, Park M, Moraes C. The case for cancer-associated
fibroblasts: essential elements in cancer drug discovery? Future Drug Discovery (2022) 4
(1):FDD71. doi: 10.4155/fdd-2021-0004

410. Lefort S, Thuleau A, Kieffer Y, Sirven P, Bieche I, Marangoni E, et al. CXCR4
inhibitors could benefit to HER2 but not to triple-negative breast cancer patients.
Oncogene (2017) 36:1211–22. doi: 10.1038/onc.2016.284

411. Teicher BA. TGFb-directed therapeutics: 2020. Pharmacol Ther (2021)
217:107666. doi: 10.1016/j.pharmthera.2020.107666

412. Lan Y, Zhang D, Xu C, Hance KW, Marelli B, Qi J, et al. Enhanced preclinical
antitumor activity of M7824, a bifunctional fusion protein simultaneously targeting
PD-L1 and TGF-b. Sci Transl Med (2018) 10(424):eaan5488. doi: 10.1126/
scitranslmed.aan5488

413. Martin CJ, Datta A, Littlefield C, Kalra A, Chapron C, Wawersik S, et al.
Selective inhibition of TGFb1 activation overcomes primary resistance to checkpoint
blockade therapy by altering tumor immune landscape. Sci Transl Med (2020) 12(536):
eaay8456. doi: 10.1126/scitranslmed.aay8456

414. Collagen receptor implicated in immune exclusion. Cancer Discovery (2022) 12
(1):6. doi: 10.1158/2159-8290.CD-NB2021-0397

415. Shi R, Zhang Z, Zhu A, Xiong X, Zhang J, Xu J, et al. Targeting type I collagen
for cancer treatment. Int J Cancer (2022) 151(5):665–83. doi: 10.1002/ijc.33985

416. Pareti FI, Fujimura Y, Dent JA, Holland LZ, Zimmerman TS, Ruggeri ZM.
Isolation and characterization of a collagen binding domain in human von willebrand
factor. J Biol Chem (1986) 261(32):15310–5. doi: 10.1016/S0021-9258(18)66869-3

417. Wahyudi H, Reynolds AA, Li Y, Owen SC, Michael Yu S. Targeting collagen for
diagnostic imaging and therapeutic delivery. J Controlled Release (2016) 240:323–31.
doi: 10.1016/j.jconrel.2016.01.007

418. Liang H, Li X, Wang B, Chen B, Zhao Y, Sun J, et al. A collagen-binding EGFR
antibody fragment targeting tumors with a collagen-rich extracellular matrix. Sci Rep
(2016) 6:18205. doi: 10.1038/srep18205

419. Liang H, Li X, Chen B, Wang B, Zhao Y, Zhuang Y, et al. A collagen-binding
EGFR single-chain fv antibody fragment for the targeted cancer therapy. J Control
Release (2015) 209:101–9. doi: 10.1016/j.jconrel.2015.04.029

420. Ishihara J, Ishihara A, Sasaki K, Lee SSY, Williford JM, Yasui M, et al. Targeted
antibody and cytokine cancer immunotherapies through collagen affinity. Sci Transl
Med (2019) 11(487):eaau3259. doi: 10.1126/scitranslmed.aau3259

421. Mansurov A, Ishihara J, Hosseinchi P, Potin L, Marchell TM, Ishihara A, et al.
Collagen-binding IL-12 enhances tumour inflammation and drives the complete
remission of established immunologically cold mouse tumours. Nat BioMed Eng
(2020) 4(5):531–43. doi: 10.1038/s41551-020-0549-2

422. Cho H, Jeon SI, Ahn CH, Shim MK, Kim K. Emerging albumin-binding
anticancer drugs for tumor-targeted drug delivery: current understandings and clinical
translation. Pharmaceutics (2022) 14(4):728. doi: 10.3390/pharmaceutics14040728

423. Sasaki K, Ishihara J, Ishihara A, Miura R, Mansurov A, Fukunaga K, et al.
Engineered collagen-binding serum albumin as a drug conjugate carrier for cancer
therapy. Sci Adv (2019) 5(8):eaaw6081. doi: 10.1126/sciadv.aaw6081
Frontiers in Oncology 24
424. Liu J, Meng Z, Xu T, Kuerban K, Wang S, Zhang X, et al. A SIRPaFc fusion
protein conjugated with the collagen-binding domain for targeted immunotherapy of
non-small cell lung cancer. Front Immunol (2022) 13:845217. doi: 10.3389/
fimmu.2022.845217
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