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Introduction: Hepatocellular carcinoma (HCC) has different etiologies that

contribute to its heterogeneity. In regards to the number of HCC patients,

Egypt ranks third in Africa and fifteenth worldwide. Despite significant

advancements in HCC diagnosis and treatment, the precise biology of the

tumor is still not fully understood, which has a negative impact on patient

outcomes.

Methods: Advances in next-generation sequencing (NGS) have increased our

knowledge of the molecular complexity of HCC.

Results & discussion: In this research, 16 HCC and 6 tumor adjacent tissues

(control) of Child A Egyptian patients were successfully profiled for the

expression profile of miRNAs by NGS. Forty-one differentially expressed

miRNAs (DEMs) were found by differential expression analysis, with 31 being

upregulated and 10 being downregulated. Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathway enrichment analysis was then conducted on these

differentially expressed miRNAs revealing that Sensitivity and specificity analysis

showed that hsa-miR-4488, hsa-miR-3178, and hsa-miR-3182 were unique

miRNAs as they are expressed in HCC tissues only. These miRNAs were all

highly involved in AMPK signaling pathways. However, hsa-miR-214-3p was

expressed in control tissues about eight times higher than in cancer tissues

and was most abundant in “pathways in cancer and PI3K-Akt signaling pathway”

KEGG terms. As promising HCC diagnostic markers, we here suggest hsa-miR-

4488, hsa-miR-3178, hsa-miR-3182, and hsa-miR-214-3p. We further urge

future research to confirm these markers' diagnostic and prognostic potential

as well as their roles in the pathophysiology of HCC.

KEYWORDS

next generation sequencing, biomarkers, Hsa-miR-214-3p, hsa-miR-4488, hsa-miR-
3178, hsa-miR-3182
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Introduction

One of the most prevalent gastrointestinal tumors and the

second most common cause of cancer-related death worldwide is

liver cancer. By 2030, it is estimated that up to 21.6 million new

cases of cancer will be diagnosed each year in less developed regions

(1). Hepatocellular carcinoma is a global issue, and local

epidemiology data revealed regional variations. In Africa and

globally, Egypt has the third- and fifteenth-highest populations of

HCCs, respectively. In Egypt, HCC is the fourth most frequent

cancer (2). Over a decade, the number of HCC patients doubled (3),

and consequently, Egyptian health officials view HCC as the most

difficult health issue.

Numerous hospital-based studies have revealed that the

prevalence of HCC is increasing (3–7). Possible explanations for

the rise in HCC incidence are (1) the construction of diagnostic

tools and screening programs (8), (2) the higher chance of cirrhotic

patients surviving, which raises the risk of HCC, and (3) raising the

hepatitis C virus (HCV) incidence and consequences (4). HCV is

considered as the primary risk factor for liver cancer in Egypt,

including HCC (9).

MicroRNAs (miRNAs), which are small non-coding RNAs, are

ubiquitous and frequently bind to target mRNAs’ 3′ untranslated
regions (3′UTR). Mature miRNAs are about 22 nucleotides long (10).

MiRNAs play a crucial role in tightly controlled processes such as cell

division, proliferation, apoptosis, and metabolism (11). Although

miRNAs play critical roles in regulating mRNA expression, their

precise functions are not all mechanistic details have been revealed

yet. It’s interesting to note that 30% of human genes, many of which

have associations withmalignancies or are located in unstable regions

of the genome, are influenced by miRNAs in terms of how they are

expressed (12). Human cancer development has been found to be

significantly influenced by miRNAs (13–15). The two distinct

categories of miRNAs that have been identified are tumor

suppressor miRNAs and oncogenic miRNAs (oncomiRs). Tumor

suppressor miRNAs reduce oncogene expression in normal cells,

whereas oncomiRs promote carcinogenesis by suppressing the

expression of tumor suppressors. cancer-related changes were

found that, miR-16 and miR-15 are linked to the commonly

targeted chromosomal deletion of BCL2, which is responsible for

the anti-apoptotic components (16).

Early detection and treatment of HCC can be accomplished by

the use of early screening tools, which improve prognosis and

overall survival. Unfortunately, the alpha-fetoprotein (AFP), the

most used biomarker for HCC, has a limited sensitivity, which

hampers the screening procedure (17). Consequently, it is urgently

needed to continue looking for novel biomarkers. Recently, NGS

technologies have shown to be a potent new force in the arsenal of

cancer geneticists, who support the investigation of cancer genomes

at higher resolutions (18). The patterns of miRNAs in diverse

malignancies and normal tissues vary, and they are crucial in the

beginning and progression of cancer (15). In addition, HCC cell

lines show dysregulation of the miR-222 (19). Glycine N-methyl

transferase is miR-224’s primary target in humans, and it is crucial

for the development of HCC tumors (20). In HCC patients, a 20-
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miRNA signature is associated with survival (21). The aim of the

current exploratory pilot study is to profile miRNA for both HCC

tissues and tumor adjacent tissues in the Egyptian Child A

population (requires surgical intervention) that can pave the way

for noninvasive usage of the key identified miRNA for HCC

diagnostics and treatment.
Materials and methods

Ethical declaration

Each patient gave their understanding and written consent prior

to the study’s execution, and the investigation was carried out in

accordance with the Good Clinical Practice (GCP) standards of the

International Council for Harmonization of Technical

Requirements for Pharmaceuticals for Human Use (ICH). The

National Liver Institute’s Ethics Committee gave the current

study their seal of approval (NLI IRB protocol number 00187\2020).
Human subjects

A curative liver resection was performed on a total of 21 HCC

patients, 15 men and 6 women, with a median age of 58.5 years

(range, 28-74 years), 15 tumor specimens and 6 matched tumor

adjacent tissues (cirrhotic safety margin area) used as controls were

obtained. From March to May 2020, the study’s participants were

HCC stage 0 and they had a surgery at the National Liver Institute,

Menoufia University followed Barcelona Clinic Liver Cancer,

(BCLC) (Supplementary Figure 1). All patients had HCV as

etiological factor Child A5, A6, according to Child-Pugh

classification, MELD score < 9 without preoperative chemo- and

radio-therapy. The metastatic patients were out of resection criteria

and were excluded from our study. All patients were negative to

HBV screening. All cases were histopathologically confirmed.
Sample collection and RNA extraction

From the patients, tissue samples of the cancerous tissue and

adjacent non-cancerous tissues (minimum, 1 cm3) were taken. Both

malignant and non-cancerous samples received RNAlater

immediately and were kept at 80°C until RNA extraction. Total

RNA with the small RNA fractions were extracted by using the

miRNeasy Mini kit (cat. # 217004) to extract 0.5 g of tissue using

TRIzol, as directed by the manufacturer (Qiagen, Germany). The

Qubit RNA HS Assay Kit (Invitrogen, USA; Cat. # Q32852) was

used to determine the concentrations of the RNA samples.
miRNA library preparation and sequencing

NEXTFLEX® Small RNA-Seq Kit (PerkinElmer, USA; Cat. #

NOVA-5132-05) was used to extract miRNA profiling. According
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to the manufacturer’s specifications, 700 ng of pure RNA was

utilized for each library preparation input. Ligated libraries were

reverse-transcribed, amplified, and given their own special barcode

primer. Utilizing a 6% TBE-PAGE gel, DNA fragments ~ 150 bp

(miRNA sequences plus 3′ and 5′ adaptors) were detected and

subsequently processed in a 300 ul elution buffer for purification.

Equimolar amounts for each final library were pooled at a final

concentration of 4 nM cDNA. The Qubit dsDNA HS Assay

(Thermo Fisher Scientific, USA; Cat. # Q33230) was used to

measure concentration, and the Bio analyzer DNA assay (Agilent,

USA; Cat. No.: 5067-1504) was used to examine the size

distribution of the pooled library. At the Genomics and

Epigenomics Research Program (GERP) in CCHE 57357, Egypt, a

single flow cell of the Illumina MiSeq (Illumina, Inc., USA) was used

to sequence the final pooled library for about 2693 miRNAs using

75-bp single-end reads.
Raw reads processing

Tools based on Unix were used to analyze the data. as illustrated

in Figure 1. Raw reads quality inspection was performed

using FastQC (22) . Trimming the adaptor sequence

“TGGAATTCTCGGGTGCCAAGG” with Cutadapt (23) was done

after eliminating four bases from both read ends. Only reads between

15 and 28 nucleotides in length were kept out of the processed reads.

FastQC was used to evaluate the quality of the filtered reads, and

MultiQC was used to compile the results (24).
Frontiers in Oncology 03
Reads mapping and miRNA quantification

The human genome reference GRCh38 (accession number

GCA 000001405.29) was used as a reference for bowtie 1

alignment of filtered data. We used the default Bowtie 1 (25)

parameters without the mismatch option turned on. MiRNA

coordination supplied from the miRBase database (26) was

utilized to quantify the mapped reads using feature counts (27).
Differential expression of HCC miRNA

DESeq2 (28) was used to perform differential expression (DE)

analysis on collected counts package in R V4.1.2. DESeq2 was used to

compare control and HCC patients after data normalization. DESeq2

includes an internal normalization step for reads per millions. which

each miRNA geometric mean (a pseudo-reference sample) was

calculated across all samples. Then, for each miRNA in each

sample, the miRNA count was divided by the calculated mean.

Next, the median (size factor) of these calculations in each sample

is calculated. Finally, each raw count is divided by the calculated

factor, and the normalization count is generated. This normalization

technique considers the differences in sequencing depth.

Selection criteria for differentially expressed miRNAs were > 1.5

log2 fold change and an adjusted p value (Adj. p) value < 0.05. All

expressed miRNAs values and adj. p-value were visualized in

volcano plot using Enhanced Volcano (29) and differentially

expressed miRNA (DEMs) were illustrated by lollipop using
FIGURE 1

Illustrate data analysis work flow from data filtration through adaptor trimming by cut adapt, alignment using bowtie 1 and finally miRNA
quantification using feature count to be used in downstream analysis by DEseq2.
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ggplot (30) R packages. Then heat-maps of normalized read count

of DEMs were created using pheatmap (31) R package. Finally

shared and unique DEMs were illustrated by Venn diagram using

Venny (32).
DEMs target prediction and
network inference

Target genes and pathways analysis of DEMs were performed

using mienturnet (33) and KEGG (34), the maximum number of

interactions and enriched pathways according to miRTarBase (35)

were displayed in a bubble plot using ggplot with false discovery rate

(FDR) <0.05 and p value <0.05. STRING V11 (36) was used to

create the protein-protein association network of enriched genes.

Finally, a miRNA – target gene network was constructed using

miRNet (37) with selecting Liver related data only and Degree filter.
Statistical analysis

Microsoft Excel 2016 and the social science statistical

programme IBM SPSS Statistics for Windows, version 26 (IBM

Corp., Armonk, N.Y., USA) were used to analyze the data P values <

0.05 were classified as statistically significant for non-normal

variables, which were summarized as a median with 25 and 75

percentiles. The Mann-Whitney U test was applied to non-normally

distributed variables to compare the median between groups. The

receiver operating characteristic (ROC) curve was used to evaluate

the study miRNAs’ diagnostic performance. The miRNA selective

criteria for ROC curves were based on unique miRNAs either in

samples or in control only. As a measure of prognostic test

performance accuracy, the area under the curve (AUC) was

computed. The greatest combined sensitivity and specificity was

used as the cutoff for a group of the study’s diagnosis.
Result

Sequencing data and differential expression
miRNA analysis

Liver tissues from 21 HCC patients were used for library

construction yielding, 0.95 million mean reads of samples count

(Supplementary Table 1). A total of 279 miRNAs were discovered

using the predetermined screening conditions, as shown by a

volcano plot (Figure 2). In order to identify differentially

expressed miRNA (DEMs) between tumor and tumor adjacent

tissues, all miRNA expression data were imported into the DEseq2

software. Thirty-two DEMs were identified by adjusted P value (adj.

p) values <0.05 and >1.5 for log2 fold change criteria for up and

downregulated miRNAs. Lolliplote clearly shows that 32 miRNAs

were retrieved, of which 24 DEMs were upregulated and 8 DEMs

were down regulated (Figure 3A). The carcinoma samples could be
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distinguished from the control samples using the heat map clusters

of DEMs (Figure 3B). Finally, the shared and unique differentially

expressed miRNAs between HCC cases and controls were shown

using a Venn diagram, to obtain 3 upregulated DEMs; hsa-miR-

4488, hsa-miR-3178 and hsa-miR-3182 were represented uniquely

in HCC group (Figure 4). Our data were compared with 3 different

miRNAs datasets. TCGA was based on RNA-Seq technology on

American population and sample size was 412 tissue samples. The

study was compared HCC samples tissues with normal tissues. GSE

10694 datasets are microarray-based for Chinese population with

sample size was 156 containing HCC samples, corresponding

noncancerous liver tissue and normal liver tissue. Finally, GSE

6857 dataset also was used as microarray based for American

population with 481 samples; HCC tissue and normal tissues. All

the mentioned data are merged and clustered with our data and

represented by Heatmap (Supplementary Figure 2). Moreover, we

found that 5 DEMS in our study out of 7 found in OncomiR Cancer

database were shared (miR-183, miR-96, miR-10b, miR-224 and

miR-424). OncomiR Cancer database study was depending on HCC

tissues and normal tissues.
Prediction of miRNA target genes and
enrichment analysis of those genes

Functional annotation by miRTarBase based only on

experimentally validated not predicted targets was used to obtain

up and down regulated DEMs, showing that the 8 down regulated

DEMs targeting 199 genes with top 11 hub genes illustrated in

(Figure 5A). Based on the quantity of interactions, P value <0.05

and FDR, the hub genes were chosen. The two genes that were most

prevalent were MYC and CALU. The top 11 hub genes for the 23

up-regulated DEMs that target 866 genes are shown in (Figure 5B),

which were selected based on the same bases. CDKN1B and BCL2

were the highest down regulated represented genes.

The KEGG database was searched using the retrieved DEMs

and genes, the enriched pathways filtered out based on P value <

0.05 and FDR < 0.05 and extensively studied to select the most HCC

correlated pathways. The most significantly enriched pathways were

44 pathways (Figure 6A). Downregulated DEMs were strongly

linked to the FOXO signaling pathway, the cell cycle, and

transcriptional dysregulation in cancer, which were found to be

crucial processes in the pathogenesis of HCC, according to KEGG

analysis. In case of up regulated DEMs, the pathways filtered out

based on the same previous criteria to obtain 73 significantly

enriched pathways (Figure 6B), which illustrates that genes were

significantly related to ubiquitin-mediated proteolysis, VEGF

signaling pathways, Tight junction, viral carcinogenesis, AMPK

signaling pathway among other processes. Moreover, the FOXO

signaling pathway, P53 pathway, pathway in cancer, miRNAs in

cancer, and hepatocellular carcinoma pathway all had the highest

proportion of upregulated and downregulated enriched target

genes. Many enriched pathways, which are confirmed to have

important roles for HCC development are common for up-and
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down-regulated miRNA targets, and this supports the accuracy of

our analysis.
Microrna regulatory networks and their
target genes

miRNA - target genes network
A target regulatory network comprising 17 DEMs and their

targets implicated in 186 KEGG pathways was created using

miRTarBase and KEGG target gene annotation. There are 152

genes and four main miRNAs in the network, depending on the

degree of interaction (Figure 7A). The top 4 miRNAs were found to

target pathways in cancer and PI3K-AKT signaling pathway.

Moreover, hsa-miR-130a-3p and hsa-let-7c-5p were enriched in

hepatocellular carcinoma, FOXO signaling pathway, and cellular

senescence pathways. Likewise, hsa-mir-34a-5p and hsa-mir-96-5p

targeted focal adhesion and apoptosis pathways. Interestingly, we

revealed that hsa-mir-130a-3p has the most target genes.
Frontiers in Oncology 05
Protein–protein interaction network
To investigate the relationships and interactions between the

HCC-related proteins, the PPI network was built. Out of 1069

proteins, 1061 had strong interactions with one another to form a

cluster (Figure 7B).
ROC curve analysis for miRNA in HCC and
control tissues

Normalized counts of the selected miRNAs according to the

selective criteria mentioned previously in the methods section, were

used to investigate diagnostic and prognostic potentials for miRNAs

by (ROC) curve analysis (Supplementary Tables 2, 3). Hsa-miR-

4488, hsa-miR-3178, hsa-miR-3182, and hsa-miR-214-3p all shown

strong discriminatory power, hsa-miR-4488 (AUC 0.778, sensitivity

(Sn) 73.3%, specificity (Sp) 66.7% with P value 0.050 and false

positive rate (FPV) 33.3%), hsa-miR-3178 (AUC 0.833, Sn 66.7%,

Sp 100% with P value 0.020 and FPV 0.0%), hsa-miR-3182 (AUC
FIGURE 2

Volcano plot represent all expressed miRNA in samples, log2(fold change) is plotted against-log10(p-value), where p-value is from differential miRNA
expression test. The vertical dash line represents fold change of >1.5, while the horizontal dash line represents the p-value <0.05. Red dots denote
miRNAs that meet both FC >1.5 and p-value <0.05 criteria, while blue dots meet p-value <0.05 but not FC <1.5, and black dots meet FC > 1.5 but
not p-value <0.05 criteria.
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0.794, Sn 66.7%, Sp 83.3% with P value 0.039 and FPV 16.7%) and

hsa-miR-214-3p (AUC 0.911, Sn 100%, Sp 80% with P value 0.004

and FPV 20%).All significant miRNAs were combined and

represented in (Figure 8). However, hsa-miR-1269a was found as

insignificant miRNA (AUC 0.728, Sn 53.3%, Sp 100.0% and P

value 0.111).
Frontiers in Oncology 06
Discussion

The incidence of hepatocellular carcinoma (HCC), the third

most prevalent cancer-related cause of death worldwide, is rising

(38). Infection with the hepatitis C and B viruses (39), alpha-1-

antitrypsin deficiency (40), heavy alcoholism (41) cirrhosis (42),
A

B

FIGURE 3

(A) Lolliplote represent up and down differentially expressed miRNAs based on log2fold change and P value, it showed 23 up regulated with 8 down
regulated DEMs. Green circles for up regulated DEMs and Red circles for down regulated DEMs. The circle size reflects P value. (B) The figure
represents heat maps of differentially expressed miRNAs in HCC tissue and tumor adjacent tissue as control (HCC for HCC patient tissues samples
and N for tumor adjacent cirrhotic tissue samples) the key representing HCC samples with up or down DEMs. Black square upper the heat maps
represent HCC samples and the blue one represent tumor adjacent tissue samples. The black square left the map represent up regulated DEMs and
purple one for down regulated DEMs.
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hemochromatosis (43), are risk factors associated with HCC. The

prognosis for individuals with HCC remains dismal despite

significant advancements in the treatment of the disease,

primarily due to the high prevalence of diagnosis at advanced

stages (44). Due to their crucial involvement in the genesis and

prognosis of cancer, miRNAs have recently gained attention as

potential biomarkers (45). In HCC, miRNAs have been studied as

biomarkers (46). MiRNA dysregulation in HCC has been

documented in earlier research. Furthermore, it’s believed that

some miRNAs may be able to manage HCC (47). Our study aims

to illustrate the miRNA profile in Egyptian HCC patients based on

HCC tissue group and tumor adjacent group as control.
Frontiers in Oncology 07
Our data analysis revealed that the levels of miR-182-5p and

miR-183-5p had significantly increased in HCC tissues by eight and

nine folds, respectively. According to our data, miR-183-5p targets

FOXO1, SMAD4, and GSK3B genes involved in transcriptional

misregulation in cancer, FOXO signaling pathway and alcoholic

liver disease. on the other side, we found that miR-182-5p targets

number of cell cycle and HCC development genes as CDKN1A,

BCL2, and CDKN1B in vital pathways including HIF-1 signaling

pathway, P53 signaling pathway, cell cycle and JAK-STAT signaling

pathway (48). The miR-182-183 miRNA cluster, which includes

miR-183-5p and miR-182-5p, is situated at 7q31–34 chromosomal

regions. Three miRNAs in this miRNA cluster, miR-96, miR-182,

and miR-183-5p, all have remarkably similar 5′-seed sequences

(49), depending on the type of cancer, acting as either tumor

suppressor genes or oncogenes. Rong Yan et al. (50) showed that

miR-183-5p overexpression enhanced liver cancer cells in

proliferation and migration. This study found that miR-183-5p,

which interacts with the 3’-UTR of insulin receptor substrate-1

(IRS-1), was strongly associated to various clinico-pathological

characteristics in HCC (50). Recent research demonstrated that

miR-183-5p can increase HCC cell proliferation by suppressing the

expression of tumor suppressors (including AKAP12, DYRK2,

FOXN3, FOXO1 and LATS2) (51) which is agreement with our

results. For those with liver cancer, miR-182-5p overexpression has

been shown to have diagnostic and prognostic relevance (52). In
FIGURE 4

Venn diagram represents shared and unique miRNAs between HCC
group and control group. Illustrates that HCC group have unique 3
DEMs and shared 29 DEMs with control group.
A

B

FIGURE 5

(A) Bar plot where the Y-axis refers to the top 11 target genes resulted from the enrichment. Analysis of down-regulated DEMs, while the X-axis
represents the number of miRNAs targeting them. The color code reflects the FDR value increasing from red to blue. (B) Bar plot Represents top
target genes for up-regulated DEMs. Gene symbol was represented by horizontal Axis and vertical Axis was used for number of interactions. Colors
reflect FDR value form Red to Blue.
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concordance with our results, in liver cancer tissues and cell lines,

miR-182-5p was recently found to be substantially expressed,

according to a study (53). MiR-182-5p stimulated liver cancer cell

proliferation by downregulating the regulator of calcineurin 1

(RCAN1). RCAN1 is an endogenous protein that inhibits liver
Frontiers in Oncology 08
cancer cells’ proliferation, migration, invasion, and cell cycle

progression (53).

The miR-10b-5p located on the 2q31.1 chromosome is

belonging to the miR-10 family (54). HCC cell lines were shown

to express hsa-miR-10b-5p at higher levels than control cell lines,
A

B

FIGURE 6

(A) The bubble plot represents miRNA-down regulated pathways with false discovery rate (FDR <0.05) indicated by degree of blue color and for
number of interacted genes was represented by circle size. (B) Bubble plot for miRNA-up regulated pathways with number of interacted genes
represented by circle size with FDR <0.05 represented by blue color degree.
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according to previous research. This may be related to the invasion

and migration of HCC (54–56). This is consistent with our results

because it was strongly expressed in the HCC group and seven times

more prevalent. We found that miR-10b-5p regulates KLF4 and

AKT1 by targeting a number of pathways including chemical

carcinogenesis - receptor activation signaling pathways and
Frontiers in Oncology 09
signaling pathways regulating pluripotency of stem cells.

Additionally, a recent study found that the miR-10b-5p levels in

the HCC group increased significantly, with a noteworthy rise in the

early stage, comparing the diagnostic accuracy of exo-miR-10b-5p

to serum AFP, it may exhibit surprising results (57). In HCC, miR-

224 was also discovered to have early diagnostic value (58). By
A

B

FIGURE 7

(A) Illustrates miRNA-gene interaction network for up and down DEMs, represent 4 hub genes based on the number of interactions. Red color for
the highest number of interactions. (B) string Protein- Protein interaction network for HCC-related Proteins. Showing high interaction with each
other.
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controlling PPP2R1B, a downstream target of miR-224-5p, and

CPEB3, the miR-224-5p overexpression promoted HCC cell

motility and invasion, according to several studies (58–60). In

these studies, suggest that miR-224-5p plays a significant role in

the occurrence in HCC samples compared to adjacent tumor tissue

samples, which is consistent with our findings that miR-224-5P was

four times more abundant in HCC tissues with highly represented

BCL2, MTOR, and GSK3B genes. These molecules regulate critical

pathways such as the JAK-STAT signaling pathway, the PI3K-Akt

signaling pathway, apoptosis, and p53 signaling pathway, which are

responsible for angiogenesis, stemness, invasion and metastasis

(48). Neoteric study supports that miR-183-5p, miR-182-5p, miR-

10b-5p, and miR-224-5p have an important role as diagnostic

markers for HCC (61). Furthermore, we recorded miR-34a-5p as

a hub miRNA with three-fold higher in liver cancer tissues. miR-

34a-5p is targeting large number of genes playing important role in

cancer development including MYC, MET, cell-cycle related genes

CCND1 (cyclin D1), WNT1, MAP2K1, NANOG, TP53, SRC and

AKT1 to target mTOR signaling pathway, Wnt signaling pathway,

MAPK signaling pathway, p53 signaling pathway among additional

crucial pathways, which play crucial role in HCC tumorigenesis,

tumor growth and angiogenesis (62). miR-34a-5p is a member of

miR-34a family, which is seen as a hotspot for oncological research,

which validated experimentally to target p53 gene (63). miR-34

shown to be associated with hypermethylation and tissue

regeneration in the liver (64). Although miR-34a expression may

be upregulated in cancers, its function in HCC has not yet been

thoroughly established. MiR-34a-5p was reported previously in

HCC cells as a response to the oxidative stress in HCC cell lines

as it showed relation to intracellular oxidative stress status (63).

MiR-34a-5p was also downregulated in HCC cell line when

compared with normal human hepatocyte cell line (65), which is

in disagreement with our findings as miR -34a-5p was 3 folds higher

in HCC tissue samples in comparison to its expression level in the

adjacent safety margins and that difference may be as a result of

difference in the sample type (66, 67).
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Recent research suggests that miR-34a-5p plays a significant

role in triggering apoptosis by suppressing SNAI1 in lung cancer

cells treated with apigenin (68). Furthermore, according to another

study, the expression of miR-34a-5p was increased in people with

colorectal cancer and linked with both survival and the expression

of the clock gene PER2 (69). Therefore, miR-34a-5p may introduce

new hope for HCC patients as a target therapy.

Moreover, we identified miR-3182, miR-3178, and miR-4488 as

unique DEMs, they were embodied only in HCC tissues with two-

folds higher than control tissue samples but for tumor adjacent

group miR-214-3p was reported 8 times higher. In concordance

with our results (70), showed that miR-214-3p expression was

downregulated in primary HCC samples compared with normal

liver tissues, and was decreased in HCC recurrence species

compared with non-recurrence controls (P = 0.001). Low miR-

214-3p level was associated with poor overall survival (OS) (Log

rank P = 0.003) and recurrence-free survival (RFS) (Log rank P =

0.007) (70). All selected miRNAs showed no or low false positive

values (0-33.3%), which support the high possibility of their usage

as biomarkers for Child A HCC patients. miR-3178 and miR-3182

were reported before but in mismatch with our results; MiR-3178

was reported as downregulated miRNA in malignant Hepatic

Sinusoidal Endothelial Cells HSECs against healthy HSECs (71),

but miR-3182 was recorded in another study used different sample

types as it use HCC patients obey Milan criteria, patients without

HCC, chronic liver disease patients with or without HCC, alcoholic

liver disease and chronic hepatitis C patients) by microarray assay.

So the difference may be a result of sample type, detection method

and population differences (67). Additionally, the tumor suppressor

miR-214-3p was significantly downregulated (8 times) in our HCC

group compared to adjacent control tissues. miR-214-3p targets

MAP2K3 and MAPK1 to regulate a number of pathways such as

FoxO signaling pathway, MAPK signaling pathway and mTOR

signaling pathway which is consistent with Wang et al, (2022)

study (72).

Moreover, one of the proposed mechanism of action for miR-

214-3p in HCC through the overexpression of Hox transcript

antisense intergenic RNA (HOTAIR), which suppresses the

expression of adhesion-related integrin which ultimately slows the

adherence of HCC cells, and increases metastasis (68–74). The

downstream target of HOTAIR, Flotillin 1 (FLOT1), a crucial

tumor gene that is connected to the invasion and metastasis of

malignancies and can be employed as a stable scaffold when

enlisting multi-protein complexes (75), makes the HOTAIR/miR-

214-3p/FLOT1 an important axis of how HCC invades and

spreads (72).

MiR-139-5p expression level was previously reported to be

downregulated in HCC patients, and this was linked to a worse

prognosis (71– 73). Our results showed that HCC group was four-

folds lower in miR-139-5p expression level, which targets IGF1R,

MET, and BCL2 that regulate the MAPK signaling pathway,

apoptosis, and mTOR signaling pathway. MiR-139-5p has been

identified as a crucial player in the initiation and progression of a

variety of cancers, including HCC (76). Our expression profile of

miR-139-5p in HCC tissue compared to para-carcinoma tissue, was

in concordance with data from the GSE54751 HCC cohort and The
FIGURE 8

Combined ROC curve for unique miRNA both HCC group and
control group. vertical axis represent sensitivity, for specificity
horizontal axis was used. Yellow line represent reference, dotted
lines with blue, green, red and violet colors represent miR-4488,
miR-3178, miR-3182 and miR-214-3p respectively.
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Cancer Genome Atlas (76). These findings reveal new targets for the

therapy of HCC by regulatory connections between miR-139-5p

and transcription factor (ETS1) that regulate aerobic glycolysis,

proliferation, and metastasis in HCC cells (77–79). miR-451a is

recorded as tumor suppressor in HCC cases in many previous

studies (80, 81), because it significantly inhibits tumor progression

via YWHAZ gene to control the growth and spread of HCC through

many targets (82, 83). This is in concordance with our findings

where miR-451a was found to be three-folds lower in HCC group.

miR-451a could be a promising target for HCC biotherapy as it

targets MYC, MAPK1, and BCL2 genes that is actively involved in

the HIF-1 signaling pathway, stem cell pluripotency-regulating

signaling pathways, and cellular senescence. MiR-487-3p, which is

a member of 14q32-encoded miRNAs (84), was found to be

downregulated three-fold in our HCC group than adjacent tumor

tissues. It targets MYC and THBS1, which participate in the cell

cycle, Wnt signaling route, and p53 signaling pathway, among

many other pathways, that matched with Geraldo et al. (85), who

identified that the miR-487-3p could act as a tumor suppressor. The

mechanism of action for miR-487-3p was defined in few cancer

types, but not in HCC. Therefore, further research is necessary to

clarify the significance of miR-487-3p in HCC cases since it may

represent a new target therapy. Also, our study identified miR-424-

5p to be differentially expressed and significantly downregulated

(three times) in HCC tissues compared to adjacent tissues and that

aligned with earlier findings by Zhao et al. (86). As it targets E2F7,

MiR-424-5p controls the cell cycle and suppresses proliferation,

playing a noteworthy role in the development of HCC (86). Our

miRNA gene network analysis showed the connection of miR-424-

5p with CDK6, CCND1, and FGFR1 genes which is represented in

the Wnt signaling pathway, cell cycle, and FoxO signaling

pathway (48).

miR-130a-3p was detected in our study as hub miRNA with

three-folds lower in HCC group than control tissues that targets

crucial genes as indicated by gene network responsible for HCC

progression and metastasis via a number of pathways including cell

cycle, Hippo signaling pathway, and mTOR signaling pathway (62).

Aligned with our findings Liu etal. (87) find that miR-130a-3p was

significantly decreased in cirrhosis but when miR-130a-3p was

injected into the liver effectively decreased liver granulomatous

inflammation, decreased expression of the tissue inhibitor of

metalloproteinase (TIMP), collagen deposition, and increased the

expression of matrix metalloproteinase (MMP) which contributed

to the dissolution of collagen (87). Which will lead to decrease the

chance for HCC initiation and development.

After comparing our data with different datasets used different

populations (TCGA, GSE 6857 and GSE 10694) reported in (88), we

found that 10 common miRNAs (miR-214, miR-139, miR-424,

miR-130a, miR-148a, miR-34a, miR-221, miR-182, miR- 135a,

miR-183 and miR-224) were found in at least 2 of 3 datasets (88).

We have found expression differences between the included

datasets, as result of differences in detection method used,

patient’s criteria and population, which may justify the presence

of some discrepancies between this study and our data. Moreover,
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our data offers miRNAs isoforms, as it based on miRNA Seq but for

TCGA, GSE 10694 and GSE 6857 were RNA-Seq and microarray

based respectively. different populations were used in each study for

TCGA and GSE 6857 were performed on Americans, but for GSE

10694 and our study were Chinese and Egyptians, respectively.

Because the input material is frequently enriched for short RNAs,

the miRNA-Seq varies from other RNA-Seq types. The miRNA-Seq

examines tissue-specific expression patterns, disease associations,

and isoforms of miRNAs, and to discover previously

uncharacterized miRNAs (89, 90). Morgul et al. (67) reported

that the miRNA signatures could differentiate the HCC tumor

and cirrhotic liver in their underlying disease like alcoholic liver

vs. HCV and therefore they could serve for personalized medicine,

which confirm that many factors may affect the expression profile

and levels of miRNAs (67). While when comparing our data with

OncomiRs database found that 5 DEMS (miR-183, miR -96, miR

-10, miR -224, miR -424) in our study out of 7 represented in

OncomiRs Cancer were shared. OncomiRs database compared the

miRNAs profile in HCC patients tissue and normal liver which was

noticed in Pvalues numbers for the shared DEMs. The difference in

p value maybe as a result of sample nature as our samples were HCC

tissue stage 0 patients compared with adjacent non tumor cirrhotic

area but in OncomiR Cancer, the HCC tissue compared with

normal tissues. Moreover, we could not find samples specifically

classified as Child A HCC stage.

To the best of our knowledge, this is the first study using NGS

technique to figure out miRNA profile in HCC child A Egyptian

patients’ tissues and recommend miR-34a-5p, miR-3178, miR-

3182, and miR-4488 as diagnostic markers. Additionally, this

research illuminates miR-487b-3p’s possible significance in HCC.

Further studies may be needed in larger cohort group to validate the

identified miRNAs.
Conclusion

In this study, miRNA profiling for Egyptian hepatocellular

carcinoma patients was used to construct a comprehensive miRNA-

target genes network and protein-protein interaction network with the

illustration of involved significant pathways. 41 differentially expressed

miRNAs were identified. Further specificity and sensitivity tests

revealed that four miRNAs; hsa-miR-4488, hsa-miR-3178, hsa-miR-

3182, and hsa-miR-214 were significantly associated with diagnosis.

Therefore, these differentially expressed miRNAs are expected to be

potential biomarkers or therapeutic targets for HCC. Further studies

are needed for the validation of the identified miRNAs roles in

pathophysiology and diagnosis of HCC on large cohort group

including higher sample size and different HCC stages
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BCLC Barcelona Clinic Liver Cancer, PS performance status, N node

classification, M metastasis classification, RFA radiofrequency ablation, TACE

transcatheter arterial chemoembolization. https://www.researchgate.net/
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Comparison between our data and different data set merged and clustered
in heatmap.
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