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Introduction: Organ-at-risk segmentation for head and neck cancer radiation

therapy is a complex and time-consuming process (requiring up to 42 individual

structure, and may delay start of treatment or even limit access to function-

preserving care. Feasibility of using a deep learning (DL) based autosegmentation

model to reduce contouring time without compromising contour accuracy is

assessed through a blinded randomized trial of radiation oncologists (ROs) using

retrospective, de-identified patient data.

Methods: Two head and neck expert ROs used dedicated time to create gold

standard (GS) contours on computed tomography (CT) images. 445 CTs were

used to train a custom 3D U-Net DL model covering 42 organs-at-risk, with an

additional 20 CTs were held out for the randomized trial. For each held-out

patient dataset, one of the eight participant ROs was randomly allocated to

review and revise the contours produced by the DL model, while another

reviewed contours produced by a medical dosimetry assistant (MDA), both

blinded to their origin. Time required for MDAs and ROs to contour was

recorded, and the unrevised DL contours, as well as the RO-revised contours

by the MDAs and DL model were compared to the GS for that patient.

Results: Mean time for initial MDA contouring was 2.3 hours (range 1.6-3.8

hours) and RO-revision took 1.1 hours (range, 0.4-4.4 hours), compared to 0.7
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hours (range 0.1-2.0 hours) for the RO-revisions to DL contours. Total time

reduced by 76% (95%-Confidence Interval: 65%-88%) and RO-revision time

reduced by 35% (95%-CI,-39%-91%). All geometric and dosimetric metrics

computed, agreement with GS was equivalent or significantly greater (p<0.05)

for RO-revised DL contours compared to the RO-revised MDA contours,

including volumetric Dice similarity coefficient (VDSC), surface DSC, added

path length, and the 95%-Hausdorff distance. 32 OARs (76%) had mean VDSC

greater than 0.8 for the RO-revised DL contours, compared to 20 (48%) for RO-

revised MDA contours, and 34 (81%) for the unrevised DL OARs.

Conclusion: DL autosegmentation demonstrated significant time-savings for

organ-at-risk contouring while improving agreement with the institutional GS,

indicating comparable accuracy of DL model. Integration into the clinical

practice with a prospective evaluation is currently underway.
KEYWORDS

deep learning, autosegmentation, head and neck cancer, radiation therapy, clinical
validation, comprehensive, organs-at-risk
1 Introduction

Head and Neck (HN) cancer is a significant burden on global

health, accounting for an estimated5% of world-wide cancer-related

mortality in 2020 (1) – similar in magnitude to breast and pancreas

cancers – and it is expected that over 700,000 people will die from

HN cancer in 2030 (an increase of 38% from 2016) (2).

Unfortunately, this burden is shouldered primarily by low and

middle income countries lacking adequate capacity and access to

radiation therapy (RT), chemotherapy, and surgery (2). RT plays a

critical role in the management of HN cancer: it is indicated in an

estimated 74% of HN cancer patients per published guidelines and

evidence (3).

Delivering function-preserving, curative HN-RT is challenging

due to the complex anatomy and the need to balance the competing

objectives of delivering adequate radiation dose to the tumor while

sparing adjacent organs-at-risk (OARs). A custom RT treatment

plan needs to be designed that finds the optimal balance for an

individual patient, and the quality of the treatment plan plays an

important role in improving clinical outcomes (4). Furthermore,

improved survival has been associated with RT provided by high-

volume radiation oncologists (ROs) (5). Integral to this process is

the accurate segmentation of the OARs, as radiation injury to OARs

can lead to a significant detriment in function and quality of life (6),

as seen by the high incidence of suicide in patients with HNC (7, 8).

This segmentation must also be comprehensive to mitigate the wide

range of potential severe adverse effects, ranging from dysphagia

and xerostomia to neuropathy and necrosis. Managing these risks

requires segmentation not only of the swallowing structures,

mandible, mastoid, and salivary glands, but also neurological

organs (brachial plexus, brainstem, cord, optic nerves, optic

chiasm, and brain), auditory structures (external auditory canal,

and cochlea), and optical structures (eye, lens, lacrimal gland, and
02
retina). It has also been demonstrated that risk of stroke (9) and

general cerebrovascular events (10, 11) is associated with RT for HN

cancer patients, motivating the need for delineation of carotid

arteries (CAs).

High-quality RT for HN cancer patients requires accurate and

comprehensive OAR segmentation. Our institutional guidelines

define 42 OAR structures that may be contoured for HN cancer

patients (see Table S1 in the Supplemental materials). While the

specific OAR structures required for treatment planning for each

patient varies depending on the site, extent, and staging of the

disease, each of these structures has situations in which it is

necessary to include it. In addition, having a comprehensive set of

contours included in the patient’s data set simplifies the collection

of dose-volume histogram (DVH) data for outcomes analysis. HN

anatomy is complex, and manual segmentation of them is

particularly time-consuming and requires significant investment

in personnel resources (12). Furthermore, heterogeneity in the

quality of manually segmented structures has been widely

reported (13–15). Ultimately, the requirements for manual

contouring of OARs can be a barrier to patient access for

intensity-modulated RT for HN cancer, particularly in low and

medium resource environments.

There is great interest in expanding indirect access to high-

quality RT via autosegmentation tools using deep learning (DL)

models informed by expert-level contouring experience (16). These

autosegmentation tools have the potential to produce efficiency

gains and standardization in the treatment planning process (16).

Consequently, there has been much interest in pursuing these

models (17–19), but to date there has not been widespread

clinical adoption. One limitation is that none of the reported

models provides a comprehensive set of all recommended OARs

for HN cancer (20). For instance, the brachial plexus (BP) is often

not included in the model, despite having both an important role in
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treatment planning and generally requiring substantial time to

contour (21). In addition, the segmentations produced by these

models generally require substantial manual edits of multiple OARs

in order to be accurate enough for treatment planning.

One common challenge for deep learning (DL) tools in

autosegmentation for RT is the absence of training and validation

datasets of sufficient size, consistency, and quality (16). At our

institution, all OAR segmentation is governed by a detailed set of

institutional standards, primarily based on international consensus

guidelines (20). Using these standards, two of the authors (both HN-

expert ROs) were given protected time away from clinical

responsibilities to contour on retrospectively-collected patient

datasets, and without the time constraints experienced during daily

clinical practice, spending an average of more than 11 hours per

patient dataset (21) (exceeding the typical amount of time available for

a clinical case). This effort resulted in a consistent “gold standard” (GS)

dataset that best reflects the international consensus and institutional

standards for 490 retrospectively-identified patients (21). Using this

foundation, a 3D U-Net convolutional neural network (19) was

trained using the planning computed tomography (CT) images and

curated set of 42 OARs from 445 of these patients.

The standard contouring workflow using humans only is time

intensive. We hypothesize that a DL-assisted workflow could

significantly reduce contouring time compared to a fully manual

workflow. Here, we report the results of a randomized, single-blind

observational study comparing the OAR contouring workflow with

and without the use of our DL autosegmentation for a hold out

(HO) cohort of 20 patients’ data available from the GS that had not

been previously used for model training, testing, or validation. The

study assessed the feasibility of integrating the model into clinical

practice and readiness for external validation by measuring the

potential time-savings, geometric agreement with the institutional

gold standard contours for each patient, and dosimetric impact.
2 Materials and methods

2.1 OAR contouring workflow

Our department has developed a comprehensive set of OAR

contouring guidelines that is used for all campuses. The HN OAR

guidelines were primarily developed by three of the authors of this

study, two HN-expert ROs (SHP and RLF) and a senior certified

medical dosimetrist (AEH). It was based on international consensus

guidelines (20) and standardized nomenclature (22). Training was

provided to all staff involved in contouring after the adoption of the

guidelines, and a detailed electronic document was distributed as

a reference.

The contouring workflow at our institution starts with initial

contouring performed on a patient’s planning CT (pCT) by a

member of the dosimetry staff: either a CMD or medical

dosimetry assistant (MDA). The MDA’s role is data preparation

for treatment planning, with a large focus on OAR contouring (for

which they receive extensive training). The RO reviews and revises

the OAR contours and adds the target volumes. These final

contours are then used for treatment plan design.
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2.2 Selection of patient data sets

This study was conducted at two campuses of Mayo Clinic, a

National Cancer Institute-designated comprehensive cancer center

within an academic medical center in the United States, with data

collected under approval by the Mayo Clinic institutional review

board. Retrospective chart data including CTs for adult patients (age

> 18 years) receiving HN-RT between January 1, 2016 and October 1,

2020 were collected. Patients were included if they had a pCT for

external beam RT (either with x-rays or protons) that was acquired

according to the departmental standard protocol with 2 mm slice

thickness. Patient data was excluded if the patient was not in a

thermoplastic mask, if the pCT contained a proton-specific range-

shifting device, or if a small field-of-view reconstruction of the

planning CT was not available. Patient data were not automatically

excluded on the basis of previous surgery and/or RT; however, each of

those cases was reviewed by an author who was a HN-expert RO

(RLF or SHP) prior to inclusion to ensure that the anatomical

changes associated with the previous treatment still allowed for

identification of the majority of OARs of interest. Typical voxel size

was 1.27 x 1.27 x 2 mm3. A total of 490 patient data sets were

collected and anonymized for model development and evaluation.
2.3 Curation of gold standard data sets

The same two HN-expert RO-authors (referred to as the RO-As

below) who developed the institutional contouring guidelines were

given time away from clinical duties to create a set of OAR contours

for each of the 490 collected patient data sets, assisted by members

of the dosimetry team. The dosimetry team was composed of

certified medical dosimetrists and MDAs. The contouring staff

had access to the pCT, a small field-of-view reconstruction, and –

if available – a contrast-enhanced CT, but not the contours used for

the patient’s treatment. Due to the protected time, and retrospective

nature of the curation, the contouring team was able to spend a

mean of 11.6 hours per case during curation. The data curation

process and infrastructure is discussed elsewhere (21). The 3D

representation and select CT slices with contours for the GS are

shown in Figures 1 for a sample patient, with additional

representative slices is given in Figure S1 of the Supplemental

material (Figure S1).
2.4 Model architecture and training

The deep learning model was based on a single, custom 3D U-

Net architecture (Figure 2). This architecture has been shown to be

well-adapted to the complexity of medical image segmentation and

has been shown to perform very well compared to other

architectures and approaches (19, 23, 24). The model was adapted

from the model used by Nikolov, et al. (19) and is fully 3D: it

operates on 32x512x512 voxel sub-volumes of a CT. This is the

largest sub-volumes used by any previously reported 3D

autosegmentation model (19, 25–62). The model consists of 6
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convolution blocks each for the encoding and decoding directions,

and outputs 42 binary OAR labels for each input voxel (discussed in

details in section 2 of the Supplemental material). The number of

slices used in each subvolume and the number of convolution

blocks was chosen because the authors felt it would achieve a

satisfactory balance between providing the model with enough

depth to appropriately handle the complexity of the contouring

task while also being computationally tractable for model training

and inference.

The model was trained on TPUv3 with spatial partitioning

using a hybrid loss function consisting of a region-based Dice loss

and a voxel-wise focal loss to account for the large variability in

OAR sizes. This model was initially re-trained using 544

retrospectively identified patient datasets that were not included

in the GS. Training and inference were done using only the GS
Frontiers in Oncology 04
contours and the planning CT, without access to any additional

image series or reconstructions. Some patients were missing

structures due to previous surgical excision. In such cases, the DL

model was simply presented with an empty contour for the

corresponding structure and not given any additional guidance or

patient metadata. The empty contours served as negative examples

during model training. The model’s ability to omit the missing

structures was then assessed by computing a contingency table for

the presence of the contour compared to the presence in the GS

structure set. 312 CTs were used for training, 51 for validation, and

82 for testing (the remaining data sets were held out for the clinical

feasibility study reported here). After inference, the binary masks

were post-processed to produced vectorized contours that were

stored as DICOM-RT Structure Set representations. Further details

are provided in the section 2 of the Supplemental material.
FIGURE 2

The architecture of the deep learning model used for autosegmentation of organ-at-risk for head and neck cancer radiation therapy.
FIGURE 1

3D visualization, and an axial and sagittal slice of the CT with the contours from the gold standard (GS) dataset, as well as the DL, DL+RO, and MDA
+RO contours for a representative patient.
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2.5 Study design

Under the approval of the institutional review board, we recruited

as participants ROs and MDAs who were staff members with HN

contouring expertise at our institution for the observational study.

Participants were consented by the departmental clinical trials team.

Prior to the recruitment period (11/3-11/10/2021), the model was

finalized (AI-HN-v3b) and a study protocol pre-specification was

publicly released (63). The staff members were eligible to participate if

OAR contouring for HN patients was a part of their regular practice

and were excluded if they had been involved in the data curation,

model training or validation for this project.

The HO datasets, withheld from model training, testing, and

validation, were prospectively selected from a pool of retrospective

candidate datasets with an emphasis on diversity in terms of

anatomic subsites of disease, surgical status (including both

definitive and adjuvant RT), and traditional patient demographical

information (race, sex, and ethnicity). 20 patient datasets were

selected with patient characteristics given in Table S2 of the

Supplemental materials. For each patient data set, one set of OAR

contours was created by an MDA participant and a second set was

generated by the DL model. Using block randomization without

replacement (Figure 1), a RO participant was allocated to review and

revise each set of initial contours (blinded to their origin) to make

them acceptable for clinical treatment planning. In this way, the

initial MDA contours with RO-revisions is the standard arm of the

study, representing the fully manual contouring workflow, and the

RO-revisions of the DL contours represents the experimental arm.

These arms will be referred to as MDA+RO and DL+RO,

respectively. To achieve balance between the arms, each

participating RO was assigned an equal number of cases for each

arm, and the ROs were not assigned to both arms for the same patient

to avoid the effects of recall. Randomization was completed by the

statistical team and entered in the REDCap database to ensure

blinding for the rest of the study team using a REDCap database

(REDCap Cloud, Encintas, CA). A CONSORT-AI reporting checklist

is provided in the Supplemental materials (section 7).
2.6 Study endpoints

2.6.1 Time savings
The primary endpoint was reduction in the total time to

complete OAR contouring for participants. Timing was calculated

from manual review of the contouring session recorded using

screen-capture software (Capture, Kaltura, New York, NY),

excluding any significant period of time without activity (greater

than 5 minutes). For the MDA+RO arm, the time required for the

MDA to perform initial contours and the RO to revise them was

collected, and the total time for both participants was computed.

2.6.2 Evaluation of missing structures
The model’s ability to identify and omit missing structures was

assessed by computing a contingency table for the presence of the

contour compared to the presence in the GS structure set.
Frontiers in Oncology 05
2.6.3 Comparison of geometric agreement with
gold standard

For each patient, the geometric agreement with the GS contours

was assessed with multiple measures for theMDA+RO, and DL+RO

contours, as well as the unrevised contours from the

autosegmentation model (which will be referred to as the DL

arm) with multiple measures: volumetric Dice similarity

coefficient (64) (VDSC), surface Dice similarity coefficient (SDCS,

with t=1, 1.5, 2, and 3mm) (19), 95-percentile Hausdorff distance

(64) (HD95%), added path length (APL, computed with tolerances

of 1, 2, 3, and 5 mm) (65), precision (64), sensitivity (64), contour

Dice coefficient (CDC) (66), and the change in volume and centroid

of structure.
2.6.4 Comparison of impact on treatment
plan dosimetry

To facilitate a comparison of the dosimetric impact of the

autosegmentation, a new reference treatment plan was generated

for each patient using the OAR structures generated by the DL

model before RO revisions. The choice to use the DL contours

(without RO revision) for the OARs for the reference plan was made

to allow a comparison of the quality of the plan designed using the

DLmodel being evaluated against the GS contours, and to assess the

feasibility of running a prospective trial using the unrevised DL

contours for treatment planning. The clinical target volumes

(CTVs) were taken from the patient’s previously delivered

treatment plan, and planning target volumes were generated from

them by performing a uniform 3mm expansion (cropped to the

patient’s body surface). Each patient had between one and three

prescription dose levels. These OARs were briefly reviewed to detect

major defects by MDAs (who were not study participants), and

minor post-processing was performed consistent with routine

clinical practice. The review and post-processing process was not

allowed to take more than 15 minutes, no major defects were noted,

and the VDSC was compared before and after the post-processing

to ensure that no significant changes were made to the contours.

The prescription dose levels for each plan were determined by the

RO-As based on the department’s guidelines for conventionally

fractionated x-ray treatments based on the patient’s disease site and

treatment intent, ranging from 54 Gy to 72 Gy total dose in

fractions of 1.8 to 2.12 Gy. CMDs with significant HN planning

experience worked with the RO-As to create a 6 MV volumetric

modulated arc therapy treatment plan, with treatment objectives

adapted by the RO-As to the specific patient based on

institutional guidelines.

Ultimately, HN RT treatment planning is challenging because it

involves balancing a complex set of trade-offs to achieve the optimal

plan for a given patient. That means assessing the clinical impact of

contour accuracy on treatment planning requires looking not just at

the impact on one DVH statistic, but also on how it impacts the

overall trade-offs that inform plan quality. To quantify this impact,

we adapted the concept of the plan quality metric from Nelms, et al.

(67). A plan quality metric scoring template was built from DVH

statistics for both target volumes and OARs derived from the

institutional planning guidelines for HN cancer (see Table S2 in
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the Supplemental material). To account for the variation in the

number of target levels and OARs between patients within the HO

cohort, the plan quality metric score for a given set of contours was

reported as the percentage of the maximum possible value of the

plan quality metric given the structures present, which we refer to as

the normalized plan quality metric (NPQM).

The focus of this study was the agreement of the DVH statistics

and NPQM with the GS for the contours on each arm (rather than a

plan quality study), so all dosimetric statistics were reported as the

absolute value of the difference between the experimental arm and

the GS. Using the reference dose distribution for each patient, the

mean dose (Dmean) and D0.03cc were computed for the region of

the OAR contours that was not overlapping with the PTVs. If the

volume of the contour that was non-overlapping with the targets

was less than 0.1cc, that contour was excluded from dosimetric

analysis. All dose-volume statistics were extracted using a

commercial treatment plan quality software (ProKnow Systems,

Sanford, FL, USA). The mean value of the absolute difference in the

OAR’s mean dose (|DDmean|) and D0.03cc (|DD0.03cc|) between
the arms were computed for all structures, and for each individual

OAR. In addition, the percent difference in NPQM relative to the

GS (|DNPQM|) is reported.

2.6.5 Participant survey
Surveys were administered to understand the RO’s experience

reviewing and revising the contours and their perceived quality.

After each case was completed, a survey was administered to the

ROs who were still blinded to the origin of the contours. The survey

included questions on subjective quality, clinical impact, and task

load (68, 69) for that case. After all allocated cases were completed,

an exit survey was administered to the RO in which cases were

unblinded, allowing ROs to comment on the use of the DL model

for autosegmentation.
2.7 Statistical methods

Data analysis was performed using SAS v9.04 and R v3.6.2.

Categorical values are reported in terms of absolute and relative

frequencies, while continuous variables are described in terms of

mean and 95% confidence intervals (95%-CI). Prior to the study, we

hypothesized that a 30% time-savings with the deep learning model

would be clinically significant. Based on previous internally

collected data on timing results showing a reduction in

contouring time of approximately 65% (standard deviation 20%),

we conservatively estimated that the time-savings in this study

would be 50%. From these estimates, we would have 92.4% power to
Frontiers in Oncology 06
demonstrate that the time-savings was significantly more than 30%

(with a one-sided significance level of 0.025) using a sample size of

20 patient datasets. All other group comparisons were performed

using independent two-sided paired t-tests with significance level

of 0.05.
3 Results

3.1 Recruitment and study completion

The study recruited 8 ROs and 8 MDAs to participate. The

study was run from 12/6/2021 through 1/31/2022, and two sets of

RO-revised contours were obtained for each of the 20 patient data

sets. However, one CT dataset had to be excluded from comparison

due to unintentional data cross-over during the blinding process.

Analyses were performed only on the remaining 19 datasets.

Figures 1B shows the contours for a representative patient from

both arms, as well as the un-revised contours from the DL and GS

contour sets.
3.2 Time savings

The mean contouring times are presented in Table 1. The total

contouring time for the MDA+RO contouring time was 3.4 hours,

compared to 0.7 hours for the revisions to the DL contours, a time

savings of 76% (95% CI: 65% - 88%). In addition, the RO revisions

to the DL contours showed a non-significant reduction compared to

the revisions of the MDA contours of 35% (95% CI, -39%-91%,

p=0.09). For all cases, the DL revision time was less than the

combined MDA+RO time.
3.3 Missing structures

The DL model correctly identified the presence of 818 OAR

structures and omitted no structures that were present (100%

sensitivity). The DL model correctly identified that 15 structures

were not present, and incorrectly identified the presence of 7 that

were not present (68% specificity).

For clinical cases at our institution, the ROs are responsible for

contouring the BPs or CAs. As part of the blinding process, no

empty (placeholder) structures for the BP or CA structures in the

structure set were added for the MDA-derived contours. The

unanticipated result was that for the MDA+RO arm, the ROs did

not add the CAs in any cases and only added 13 pairs of BP
TABLE 1 Mean time (95%-CI) for MDA initial contouring, and physician revisions of the MDA and DL contouring for all patients (N=19).

Arm MDA Contouring (hour) RO Revision (hour) Total (hour)

MDA+RO 0.7 (0.6 – 1.6) 1.1 (0.4-4.4) 3.4 (2.9-3.9)

DL+RO n/a 0.7 (0.6 – 1.6) 0.7 (0.6 – 1.6)

Time Savings n/a 35% (65% - 88%) 76% (-39% - 91%)*
*Indicates a statistically significant (p<0.05) difference.
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contours, although these structures were present in all 19 cases (and

were correctly identified by the DL model). As such, the CAs and

missing BPs were excluded from all aggregate statistics and

comparisons. However, while no comparisons are performed, the

geometric similarity of the CAs with the GS is shown for the DL and

DL+RO arm for reference.
3.4 Geometric agreement with gold
standard

All geometric and dosimetric comparisons and analysis were

performed only for structures that were present in all 4 arms for a

given patient. With this criteria, there were 777 structures (3108

total contours) that were eligible for analysis from the 19 patients,

representing 40 OARs.

3.4.1 DL+RO arm vs MDA+RO arm
Comparing the agreement between the final, RO-revised

contours from the DL model (DL+RO) to the final contours from

the MDA+RO allows us to assess the impact of the DL model on the

current workflow. The mean value of the geometric agreement

metrics for all experimental contours compared to the GS are given

in Table 2 (additional metrics are in section 4 of the Supplemental

material). The agreement with the GS of the DL+RO contours was

significantly better than for the MDA+RO contours for all

geometric metrics except for sensitivity and specificity (for which

there was no significant difference). The mean VDSC for the DL

+RO contours was 0.86 ± 0.01 compared to 0.78 ± 0.01 for the

MDA+RO.

Categorizing the contours by OAR, the mean VDSC, HD95%,

APL-1mm, and SDCS-1mm are shown in Figures 3–6 and Table S5

of the Supplemental material l. 32 of the OARs had a mean VDSC

greater than 0.8 for DL+RO arm, compared to 20 for the MDA+RO

arm. In addition, all OARs showed either a significantly better

agreement for the DL+RO contours or no difference, compared to

the MDA+RO by all 4 metrics (summarized in Table 3 from the full
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data provided in Table S5 of the Supplemental material), with one

exception (while the pharyngeal constrictor muscles showed better

agreement with VDSC and SDCS-1mm for the DL+RO arm and no

significant difference as measured by HD95%, there was a better

agreement for the MDA+RO as measured by APL-1mm). Better

agreement was demonstrated for most OARs for the DL+RO arm

using VDSC and APL, while most showed no difference according

to HD95%.and SDCS-1mm.

3.4.2 DL+RO arm vs DL arm
The comparison of the unrevised (DL) and revised (DL+RO)

contours enables an assessment of the quality and consistency of the

DL model. The mean agreement with the GS for all contours was

significantly better for the unrevised contours compared to the

revised ones (Table 2) except for volume and centroid (no statistical

differences). Overall, there was very strong agreement with the GS

both before and after the revisions: mean VDSC was 0.87 ± 0.01 and

0.86 ± 0.01 for the DL and DL+RO contours, respectively. In

addition, before Dean RO-revisions, only 4 of the 777 (<1%)

individual contours from the DL model had a VDSC < 0.5

compared to GS, and none of the RO-revisions improved

agreement to be greater than 0.5. In addition, there were 3

contours that showed VDSC > 0.5 before RO revisions to the DL

model contours, but the revisions reduced agreement below 0.5.

Figures 3–6 also show the agreement with the GS broken down

by OAR for both the DL and DL+RO contours (as well as in Table

S5 of the Supplemental material). For each of the metrics, none of

the OARs showed significantly better agreement with GS after RO

revisions compared to before (Table 3): in fact, most showed no

differences. However, 2 more OARs had a mean VDSC greater than

0.8 for the DL arm, bringing the total to 34 compared to 32 for the

DL+RO arm. The explicit change in geometric agreement with the

GS of the RO’s revisions is summarized in Figure 7. The mean

change in the VDSC compared to GS was not significantly different

from zero (p=0.8). There were no individual cases in which the RO-

revisions resulted in an improvement of larger than 0.05, and 22

(3%) revisions decreased the agreement by more than 0.1.
TABLE 2 Mean value (95%-CI) of select metrics of geometric agreement between each experimental arm and the GS for all contours for comparison
(N=777).

Metric DL (95%-CI) DL+RO (95%-CI) MDA+RO (95%-CI)

VDSC 0.87 (0.01)* 0.86 (0.01) 0.78 (0.01)*

HD95% (mm) 2.2 (0.1)* 2.8 (0.2) 5.3 (1.2)*

APL-1mm (mm) 19.1 (1.9)* 21.6 (2.2) 25.5 (2.5)*

SDCS-1mm 0.81 (0.01)* 0.78 (0.01) 0.70 (0.01)*

DVolume (cc) 0.9 (0.6) 1.3 (0.8) -3.0 (1.2)*

DCentroid (mm) 0.8 (0.1) 0.9 (0.1) 1.8 (0.3)*

Precision 0.87 (0.01)* 0.86 (0.01) 0.77 (0.01)*

Sensitivity 0.89 (0.01)* 0.87 (0.01) 0.88 (0.01)

Specificity 1.0 (0.0)* 1.0 (0.0) 1.0 (0.0)

CDC-1mm 0.77 (0.01)* 0.73 (0.01) 0.64 (0.02)*
*Indicates a statistically significant (p<0.05) difference with the DL+RO arm.
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3.5 Dosimetric impact

The average magnitude of the difference of the D0.03cc, mean

dose, and NPQM relative to the GS for the DL, DL+RO, MDA+RO

contours for all OARs are shown in Table 4. There is no significant

difference in the agreement of the NPQM with the GS between the

DL+RO contours and either the DL or the MDA+RO contours. In

terms of D0.03cc and Dmean, the agreement with the GS was

significantly better for the DL+RO contours compared to the MDA

+RO contours, (DL contours showed significantly better agreement

than DL+RO). The dosimetric data for each OAR are shown in

Table S11 of the Supplemental material. The DL+RO contours had

significantly better agreement than the MDA+RO contours with the

GS in terms of D0.03cc and the mean dose for 5 and 9 of the OARs,

respectively, while there was no significant difference in agreement

between the DL and DL+RO contours for any OAR.
3.6 Participant survey

While still blinded to the origin of the contours, ROs reported

they did not need to make any edits of major clinical significance to

the DL contours and reported fewer edits of any significance
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compared to the MDA contours (Figure 8). ROs rated their

subjective impression of the quality of all DL contours from

“somewhat satisfied” to “completely satisfied” and all indicated

that they were “very interested” in using the DL contours for

clinical cases. Complete survey results are available in section 6 of

the Supplemental materials.
4 Discussion

The potential of this DL autosegmentation model to be

integrated in the clinic and undergo external validation was

investigated using a multi-observer randomized trial. Eight ROs

with significant experience in HN cancer participated in the study,

reviewing and revising two sets of contours (one manually

delineated by MDAs, the other from the DL model) for 19

patient datasets. The scale of this study, in terms of both number

of participants and patient data sets, is meant to represent the

clinical practice at our large institution (and applicability at other

institutions). The use of comparisons to an independent GS dataset

is a key novelty of this study: created without the demands on the
FIGURE 3

Mean volumetric Dice similarity coefficient (VDSC) and 95%
confidence intervals for the unrevised deep learning (DL), radiation
oncologist (RO) revised deep learning (DL+RO), and RO-revisions to
the initial MDA contours (MDA+RO), categorized by organ-at-risk
type and for all OARs. OARs listed in order of decreasing volume.
FIGURE 4

Mean surface Dice similarity coefficient (SDSC) with a 1mm
tolerance, and 95% confidence intervals for the unrevised deep
learning (DL), radiation oncologist (RO) revised deep learning (DL
+RO), and RO-revisions to the initial MDA contours (MDA+RO),
categorized by organ-at-risk type and for all OARs. OARs listed in
order of decreasing volume.
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time that routine clinical practice imposes, the GS in this study

represents the realization of the institutional contouring standards

derived from international consensus guidelines. The independence

of the GS enables us to assess the effect of the DL model in terms of

agreement with the institutional standards, in addition to finding

differences between the standard and DL-assisted workflows.

The DL-assisted workflow demonstrated significant time savings

compared to the standard workflow of 76% reduction (2.7 hours).

Furthermore, this reduction in time may underestimate the true time

savings, as the CAs and many of the BPs were not contoured in the

MDA+RO arm but were reviewed and revised by the ROs on the DL

+RO arm. These are complex and often time-consuming OARs to

contour: during the GS curation process, it took an average of 33

minutes to manually contour the CAs and 56 minutes for the BPs

(21). While all of the OARs may not be required for treatment

planning for an individual patient, in our existing workflow the

MDAs are expected to contour all of them (except the BP and CA), so

this increased efficiency translates to the clinical practice. Crucially,

these efficiency gains did not result in lower quality contours. On the

contrary, whether for the aggregate statistics for all 777 analyzed

structures or categorized by OAR, the geometric and dosimetric

agreement with the GS either showed no statistical difference or

favored the DL+RO arm relative to the MDA+RO (except for the
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pharyngeal constrictors, which showed improved agreement for the

MDA+RO using APL-1mm but not any other metrics). Ultimately,

the DL model has potential to reduce contouring time while

improving standardization across the clinic.

The RO’s revisions to the DL contours tended to be very

minimal, indicating excellent performance by the model. The

mean change in VDSC before and after the revisions was not

significantly different from zero and there were no revisions

resulting in an increase of VDSC greater than 0.06. This finding

holds with SDCS-1mm and APL-1mm, which have been shown to

have a strong correlation with time-savings (19, 32, 65), and

HD95% which is often used to assess treatment planning impact.

Importantly, the quality of the DL contours was evident by the fact

that the ROs required less time to revise them compared to the

MDA contours (an average reduction of 0.4 hours per patient, or

35%). This was also evident in the RO’s subjective assessment of

contour quality. While still blinded to the origin of the contours, the

physicians indicated higher satisfaction with the DL contours and

reported that none of the revisions were of major clinical

significance. After unblinding, the ROs all expressed interest in

using this tool clinically. The contours produced by the DL model

have potential to be used for clinical treatment planning with at

most minor revisions.
FIGURE 5

Mean added path length (APL) with a 1mm tolerance, and 95% confidence intervals for the unrevised deep learning (DL), radiation oncologist (RO)
revised deep learning (DL+RO), and RO-revisions to the initial MDA contours (MDA+RO), categorized by organ-at-risk type and for all OARs. OARs
listed in order of decreasing volume.
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While there have been many published reports of DL-based

autosegmentation using 3D U-net architectures, as well as other

approaches, the performance of this model is noteworthy (19, 25–

62). Model performance was most frequently reported in terms of

VDSC, and often a threshold of 0.8 was used for clinical

acceptability. In this study, for the 777 analyzed structures, the

mean VDSC for the unrevised DL contours was 0.87 ± 0.01, and

that 34 of the included OARs showed a mean VDSC of greater than

0.8 (with none less than 0.73). In comparison, none of the other

studies report more than 16 OARs which showed a VDSC greater

than 0.8 with their reference structures (Figure 9, please see section

5 of the Supplemental materials for further discussion). In addition,
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literature. This is the first demonstration of a DL-model that

produces the comprehensive set of HN OAR contours needed for

treatment planning at our institution: the model demonstrated

excellent performance for 42 OARs.

The accuracy, reliability, consistency of this of model for all 42

OARs against the institutional GS reflects well on both the quality

and quantity of the curated data as well as the appropriateness of the

model architecture and training process. Providing adequate

resources to produce a large, standardized, and high-quality

dataset provided a strong foundation for both model training and

validation. In addition, deep learning in general (and 3D U-Nets
TABLE 3 Number of OARs demonstrating statistically significant differences (p<0.05) in agreement with gold standard between arms for select
measures of geometric similarity between the DL and DL+RO contours, and MDA+RO and DL+RO contours, and if the difference is significant, which
arm showed better agreement with gold standard.

Metric DL v DL+RO MDA+RO v DL+RO

No Difference Favor DL Favor DL+RO No Difference Favor DL+RO Favor MDA+ RO

VDSC 38 2 0 8 32 0

HD95% (mm) 35 5 0 32 8 0

APL-1mm (mm) 29 11 0 32 7 1

SDCS-1mm 30 10 0 27 13 0
FIGURE 6

Mean 95%-percentile Hausdorff distance (HD95%) with a 1mm tolerance, and 95% confidence intervals for the unrevised deep learning (DL),
radiation oncologist (RO) revised deep learning (DL+RO), and RO-revisions to the initial MDA contours (MDA+RO), categorized by organ-at-risk type
and for all OARs. OARs listed in order of decreasing volume.
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FIGURE 7

Box-and-whisker plot showing the change in agreement with the gold standard (GS) before (DL) and after (DL+RO) the radiation oncologist’s (RO’s)
revisions to the deep learning (DL) contours measured by volumetric Dice similarity coefficient (VDSC). A positive value indicates that the revisions
improved agreement with the GS, and a negative value indicates reduced agreement. OARs listed in order of decreasing volume.
TABLE 4 Mean agreement with gold standard using dosimetric comparisons.

Metric DL (95%-CI) DL+RO (95%-CI) MDA+RO (95%-CI)

|DD0.03cc| (Gy) 0.6 (0.1)* 0.8 (0.2) 1.2 (0.2)*

|DDmean| (Gy) 0.4 (0.1) 0.4 (0.1) 0.8 (0.1)*

|DNPQM| (%) 1.3 (0.8) 1.7 (1.2) 3.0 (1.4)
F
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*Indicates a statistically significant (p<0.05) difference compared to the DL+RO arm.
A B

FIGURE 8

Selected results from the survey given to radiation oncologists (ROs) after completion of revision of a particular dataset. These survey questions were
asked while the ROs were still blinded to origin of the initial contours, either by a medical dosimetry assistant (MDA) or the deep learning (DL) model. (A)
The ROs were asked to rate their satisfaction with the initial contours, as well as (B) rate the clinical significance of the revisions to the contours.
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specifically) have been shown to have advantages over other

reported approaches to HN autosegmentation (16, 19, 23, 24, 32,

34). The architecture of this model is unique because of both the size

of the 3D sub-volumes it uses and the depth of the network (six

layers), which enabled the creation of a model of sufficient

complexity to tackle this challenging problem. Ultimately, this

process required a very significant investment in terms of

curation efforts and model training. In the end, differences in the

model architecture, training method, and training data contribute

to the differences between this model and previously

reported models.

The purpose of this study was to assess whether the current DL

model was ready for clinical integration and external validation. As

such, although the hold out cohort of 19 patients was selected to be

as representative of the US population as possible (and is large

compared to other studies), it is still a limited sample size and

number of participants (8 ROs). Naturally, this single-institution

study on retrospective data is limited in terms of more general

applicability: prospective study of the impact on clinical integration

in our clinic and an external validation study are in development.

Since the institutional standards are based on international

consensus guidelines, this model could have applicability for
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many institutions. The benefits of an accurate and widely

available autosegmentation tool would include providing access to

comprehensive organ-sparing RT to patients throughout the world,

particularly in low-resource environments.
5 Conclusion

A DL model capable of highly accurate autosegmentation of a

comprehensive set of 42 HN OARs was demonstrated to provide

significant time-savings in a blinded randomized controlled trial

involving 19 patient datasets and 8 ROs. The DL contours have the

potential to be used for clinical treatment planning with, at most,

minor revisions. An interventional clinical trial is being developed

to prospectively assess the capability of the model in patient care as

well as external validation.
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