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Introduction: In Asians, more than half of non-small cell lung cancers (NSCLC)

are induced by epidermal growth factor receptor (EGFR) mutations. Although

patients carrying EGFR driver mutations display a good initial response to EGFR-

Tyrosine Kinase Inhibitors (EGFR-TKIs), additional mutations provoke drug

resistance. Hence, predicting tumor dynamics before treatment initiation and

formulating a reasonable treatment schedule is an urgent challenge.

Methods: To overcome this problem, we constructed a mathematical model

based on clinical observations and investigated the optimal schedules for EGFR-

TKI therapy.

Results: Based on published data on cell growth rates under different drugs, we

found that using osimertinib that are efficient for secondary resistant cells as the

first-line drug is beneficial in monotherapy, which is consistent with published

clinical statistical data. Moreover, we identified the existence of a suitable drug-

switching time; that is, changing drugs too early or too late was not helpful.

Furthermore, we demonstrate that osimertinib combined with erlotinib or

gefitinib as first-line treatment, has the potential for clinical application. Finally,

we examined the relationship between the initial ratio of resistant cells and final

cell number under different treatment conditions, and summarized it into a

therapy suggestion map. By performing parameter sensitivity analysis, we

identified the condition where　osimertinib-first therapy was recommended as

the optimal treatment option.

Discussion: This study for the first time theoretically showed the optimal

treatment strategies based on the known information in NSCLC. Our

framework can be applied to other types of cancer in the future.

KEYWORDS

computational modeling, drug resistance, cancer evolution, lung cancer, optimal
treatment strategy
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Introduction

Among all the cancer types, lung cancer causes the highest

number of cancer-related deaths. 26% of cancer-related deaths in

males and 25% in females are induced by lung cancer (1). In Asians,

53% of non-small cell lung cancer (NSCLC) progression is induced

by epidermal growth factor receptor (EGFR) mutations, such as the

L858R mutation, exon 19 deletion, and exon 20 insertion (2).

Besides, EGFR has been recognized as an oncogenic driver of

NSCLC, making it increasingly important in the era of precision

medicine for lung cancer (3).

EGFR belongs to the receptor tyrosine kinase (RTK) family.

EGFR is activated by various ligands in the extracellular

environment and transmits cellular responses to mediate many

cellular activities, including cell proliferation, survival, growth, and

development. It is expressed in many organs, with its abnormal

expression associated with a variety of cancers. EGFR has an

extracellular ligand-binding domain, hydrophobic transmembrane

domain, and cytoplasmic tyrosine kinase domain. The driver

mutations in EGFR associated with cancers are concentrated in

the tyrosine kinase domain, forming exons 18–21 (4–7). More than

200 types of EGFR mutations have been identified, but the most

common types are exon-19 deletion and the L858R mutation in

exon 21 (8, 9). Approximately 44% of EGFR-mutated patients

harbor exon-19 deletion, and 31% have the L858R mutation (10).

Although EGFR was first identified in 1977, EGFR-targeted

antitumor drugs were first reported in 1994 (11). After the first

report of EGFR-targeted therapy, first-generation EGFR-Tyrosine

Kinase Inhibitors (EGFR-TKIs) were not approved until 2004 (12).

Subsequently, the second-generation EGFR-TKI, afatinib, was

approved in 2014. First- and second-generation EGFR-TKIs are

effective in most cases of lung cancer harboring EGFR driver

mutations (13–16). However, acquiring mutations, such as the

T790M mutation, causes drug resistance and induces treatment

failure (17, 18). In 2015, the third-generation EGFR-TKI

(osimertinib), which inhibits both driver mutations and the

T790M mutation, was approved as a second-line drug for patients

with EGFR mutations (19–22). Although osimertinib is clinically

effective, the emergence of additional mutations, such as the C797S

mutation, induces resistance to osimertinib (23–25). Clinical

observations suggest that optimized treatment schedules can help

patients achieve better therapeutic effects (26–28). Thus, predicting

resistance evolution and making reasonable treatment schedules in

advance are necessary to delay the appearance of drug resistance

and prolong the time of recurrence. However, even with knowledge

of medical and genetic information in the early stage, such as tumor

size and the proportion of different genotypes, it is still difficult to

simulate the future development of tumors using traditional

biological techniques alone.

Mathematical modeling is an approach for simulating realistic

problems using mathematics and computational algorithms. This

can offer a better understanding of how tumors evolve during

treatment, which can be visualized in vivo. Thus, it can help us

predict tumor dynamics under certain treatment schedules,

compare different treatments, and even suggest optimal treatment
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strategies. Many studies have demonstrated the capability of

mathematical modeling in cancer-related research (29–33). For

example, Diaz Jr. et al. developed a mathematical model of cell

kinetics during chemotherapy to predict the emergence of resistant

genotypes in colorectal cancer (30). Castagnino et al. established a

mathematical model of a genetic network to identify novel

molecular targets for the treatment of colorectal cancer (34). In

this way, we decided to employ mathematical modeling to predict

tumor evolution and direct reasonable treatment schedules for lung

cancer patients harboring EGFR mutations.

In this study, we establish a novel mathematical model of lung

cancer evolution under EGFR-targeted therapy based on clinical

observations. Parameter values in the model are estimated from

published literature, and the results are confirmed using clinical

observations. Moreover, we examine the relationship between the

timing of switching drugs and the final number of cells in the

tumor. Furthermore, we compare the combinatorial use of EGFR-

TKIs to their sequential use to test their potential for clinical

application. Finally, we investigate how intratumoral

heterogeneity at the initial time of therapy affects treatment

outcomes. The simulation results are comprehensively tested by

parameter sensitivity analysis in order to identify the condition

where each treatment strategy becomes the best option. Our

framework is expected to be capable of suggesting reasonable

individualized medicine for EGFR-mutated NSCLC.
Materials and methods

Mathematical model

Based on clinical observations (35, 36), we established a

mathematical model that describes the dynamics of the four types

of EGFR-mutated cells under two types of EGFR-TKIs (Figure 1).

There are two different types of EGFR-TKIs in the model: one is

“DrugA,” representing the first- or second-generation EGFR-TKIs

named gefitinib, erlotinib or afatinib; and the other is “DrugB,”

representing osimertinib. Four cancer cell types are denoted by

“Type-W,” “Type-X,” “Type-Y,” and “Type-Z”. Type-W is sensitive

to both DrugA and DrugB, indicating cancer cells with driver EGFR

mutations, such as L858R mutations or exon-19 deletion. Type-X

cells are resistant to DrugA but sensitive to DrugB, indicating cells

with T790M mutations. Type-Y is sensitive to DrugA but resistant

to DrugB, indicating cells with C797S mutations. Type-Z is resistant

to both DrugA and DrugB. Summarizing the relationship between

drugs and cells, under DrugA treatment, Type-W and Type-Y will

decrease, but Type-X and Type-Z will increase, whereas under

DrugB treatment, Type-W and Type-X will decrease, but Type-Y

and Type-Z will increase. According to published clinical studies

(37–39), when DrugA was administered as first-line treatment,

Type-X eventually became dominant in the tumor. After

switching from DrugA to DrugB, the frequency of Type-X

decreased, and only Type-Z continued to grow and dominate the

tumor. However, when using DrugB as the first-line treatment,

Type-Y will replace Type-W as the major population. After
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switching from DrugB to DrugA, only Type-Z became the donor

population in the tumor.

In this mathematical model, we assumed that each cell type itself

increases innumber by cell division andmutates into a resistant type at

a low mutation rate. We did not consider back mutations that were

resistant to the sensitive cells. Moreover, according to the purpose of

this study,we only focused onmutations related to drug resistance and

assumed that other mutations are neutral and do not affect the growth

kinetics. Then the dynamics of Type-W, Type-X, Type-Y, and Type-Z

are given by Eqs. (1)

dw
dt

= aw (1:1)

dx
dt

= gw + bx (1:2)

dy
dt

= hw + cy (1:3)

dz
dt

= kw + px + qy + fz (1:4)

Here, thevariablesw,x,y, and z represent the cell numbersofType-

W, -X, -Y, and -Z, respectively. Parameters a, b, c, and f are the growth

rates ofType-W,Type-X,Type-Y, andType-Z, respectively, and g,h, k,

p, and q are the mutation rates from type-W to Type-X, Type-W to

Type-Y,Type-WtoType-Z,Type-X toType-Z, andType-Y toType-Z,

respectively. Because no other cell type can mutate into Type-W, the

number ofType-Wcells is affected by its kinetics only.However,Type-

W will mutate into Type-X, Type-Y, and Type-Z.
Solution of equations

The Eqs. (1) can be solved and given by Eqs. (2)

w(t) = W0e
at (2:1)
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x(t) = X0e
bt +

g
a − b

W0e
(at−bt)ebt (2:2)

y(t) = Y0e
ct +

h
a − c

W0e
(at−ct)ect (2:3)

z(t) = Z0e
ft − eft

ab+ac−bc−a2 ½W0
a−f e

(at−ft)(a2k − abk − ack + bck + agp+

ahq − cgp − bhq)

+ X0
b−f e

(bt−ft)(a2p − abp − acp + bcp)

+ Y0
c−f e

(ct−ft)(a2q − abq − acq + bcq Þ�
(2:4)

The equations describe the cell number of each type over time

(t) during therapy. W0, X0, Y0, and Z0 represent the initial cell

numbers of Type-W, -X, -Y, and Type-Z in the tumor. Please refer

to Table 1 for the meaning of each letter in the model.
Parameter evaluation

The parameter values were obtained from the published data

(Table 2) (40–42). Since we obtained growth parameters under

erlotinib and osimertinib treatments, we regarded these drugs as

representative of DrugA and DrugB, respectively. Since Starrett

et al. (41) reported that first-line therapy with erlotinib and

osimertinib delayed the emergence of secondary mutations in

untreated EGFR-mutated NSCLC, thus, for combination therapy,

we defined a combinatorial regimen of erlotinib plus osimertinib as

DrugC. Based on genome-editing cell line experiments (40), we

adopted the growth rate of EGFR-L858R mutated cells for Type-W

as -0.17 [/day] under DrugA (aA) and -0.32 [/day] under DrugB

(aB). Note that the subscript of each growth rate represents the

condition of drugs, i.e., aA represents the growth rate of Type-W

under DrugA. From Starrett et al. (41), we adopted the growth rate

of EGFR-L858R/C797S mutated cells for Type-Y as -0.13 [/day]

under DrugA (cA) and 0.024 [/day] under DrugB (cB). The growth
FIGURE 1

Illustration of the Model. Blue cells represent EGFR-TKI sensitive genotypes (for example, EGFRL858R and EGFRdel-19), orange cells represent
osimertinib sensitive genotypes (such as EGFRL858R-T790M or EGFRdel-19-T790M), yellow cells represent osimertinib-only resistant genotypes (for
instance, EGFRL858R-C797S or EGFRdel-19-C797S), green cells represent all EGFR-TKI resistant genotypes (like EGFRL858R-T790M-C797S and EGFRdel-19-

T790M-C797S). DrugA involved the first- and second-generation EGFR-TKIs (erlotinib, gefitinib, and afatinib), and DrugB is osimertinib.
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rate of EGFR-L858R/T790M/C797S mutated cells for Type-Z is

0.022 [/day] under DrugB (fB), and the growth rate of EGFR-L858R/

C797S mutated cells for Type-Y is -0.0335 [/day] under DrugC (cC).

According to Gunnarsson et al. (42), we set all the mutation rate as

10-7 [/day] (g, h, k, p and q).

Based on the adopted parameters, we assumed all the other

parameter values. Because the growth rate of Type-Y under DrugC

is approximately 26% of that under DrugA (-0.0335/-0.13), we

calculated the growth rate of Type-W in DrugC as 26% of that

under DrugA, which is -0.064 [/day] (aC). We assume the growth

rate of Type-X under DrugC is same as Type-Y, which is -0.0335

[/day] (bC). Moreover, we assumed the growth rate of Type-X under

DrugB as -0.15 [/day] (bB), which is smaller than that of Type-Y

under DrugA (cA) based on clinical observation (20, 21) where the

first-line treatment by DrugB showed better prognosis than that by

DrugA. Based on the same reason, we assumed the growth rate of

Type-X cell under DrugA as 0.045 [/day] (bA). Finally, since Type-Z

is resistant to both DrugA and DrugB, we assume its growth rates

under DrugA and DrugC are same as that under DrugB effect,

which is -0.022 [/day] (fA and fC).

As for the initial condition of simulations, the initial total cell

number of the tumor is set to be 109, and the standard initial cell

number of Type-X (X0), Type-Y (Y0), Type-Z (Z0), and Type-W

(W0), is 104, 104, 10, and the rest component, respectively. The

initial total cell number is set to be 109 because the diameter of a

tumor at this point is about 1cm and a detectable size clinically.

About the drug switching time in monotherapy, we set day-307

(sta=307) under DrugA-first therapy and day-567 (stb=567) under

DrugB-first therapy based on clinical statistic data of the median

Progression-Free Survival (mPFS) (20). The whole treatment time is

assumed to be 1000 days (T=1000) in our simulation because 1000

days is long enough to compare the treatment options.
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Computational simulation

We used Python (version 3.8.8) to simulate our model. We did

time course simulation of different therapies for checking whether

our model can express the progression of tumor as clinical

observation. Then, we simulated the relationship between drug

switching time and final cell number to theoretically figured out the

possible affects that could influence therapy effects. Moreover, we

simulated how parameters affected final cell number in different

therapies. All the codes for simulations can be found in our GitHub

open repository: https://github.com/yuqianxigua/EGFR-

TKIs-therapy.
Results

Tumor evolution under
different treatments

We simulated Eqs. (2) to predict tumor progression under

different treatments, including monotherapy and combination

therapy. When DrugA was used as first-line treatment

(Figures 2A, D), Type-W and Type-Y decreased, whereas Type-X

and Type-Z increased. Once Type-X became the dominant

population, the tumor started to grow again and would no longer

be sensitive to the first treatment. We then changed this drug to

DrugB. In this study, we set the drug-switching time at day 307 (t=

307) based on clinical observations of the median Progression-Free

Survival (mPFS) of erlotinib treatment (21). Under the second-line

medication of DrugB, the growth of Type-W and Type-X was

suppressed, but that of Type-Y and Type-Z increased. Finally,

Type-Z became the major population. The simulation results
TABLE 2 Parameter values with different therapies.

Parameters

Drug

Growth Rate (/day) Mutation Rate (/day)

a
(L858R)

b
(L858R/
T790M)

c
(L858R/
C797S)

f
(L858R/T790M/

C797S)

g
(W→X)

h
(W→Y)

k
(W→Z)

p
(X→Z)

q
(Y→Z)

A(erlotinib) -0.17 0.045 -0.13 0.022 10-7 10-7 10-7 10-7 10-7

B(osimertinib) -0.32 -0.15 0.024 0.022 10-7 10-7 10-7 10-7 10-7

C(e+0) -0.064 -0.0335 -0.0335 0.022 10-7 10-7 10-7 10-7 10-7
fron
TABLE 1 Parameter notation in the mathematical model.

Cell Type Cell Number Initial Cell Number Growth Rate Mutation Rate

Type-W w W0 a /

Type-X x X0 b g

Type-Y y Y0 c h

Type-Z z Z0 f
k (from W),
p (from X),
q (from Y)
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demonstrated a trend of tumor evolution under erlotinib-first

treatment. At the end of our simulation period, set as day 1000

(t=1000), the cell number of the tumor was 2.12× 1012. Next, we

examined the DrugB-first treatment. The main population changed

from Type-W to Type-Y and Type-Z (Figures 2B, E). During the

treatment period, Type-W and Type-X decreased, whereas Type-Y

and Type-Z increased. Once Type-Y became the main population,

the tumor started to grow again and was no longer sensitive to

DrugB. Herein, we switched drugs at day 567 (t=567) because the

mPFS was approximately 567 days under the osimertinib treatment

(21). When DrugA was used as the second-line treatment, Type-Y
Frontiers in Oncology 05
was suppressed, and Type-Z continued to grow and dominated the

tumor. Compared with the presumed evolution (Figure 2E), our

model profitably reflected the tumor progression of osimertinib-

first treatment. In this treatment schedule, the tumor recurred at

day 490, which was longer than that of erlotinib-first therapy.

Additionally, at the end of our simulation period (t=1000), the

total cell number was 1.09× 1012, which was less than that of the

DrugA-first treatment.

Furthermore, we investigated the outcomes of combination

therapy (DrugC) by using DrugA and DrugB at the same time as

first-line treatment (Figures 2C, F). When DrugC was applied as the
B

C

D

E

F

A

FIGURE 2

Time course simulation results of monotherapy and combination therapy. The results of the simulations are depicted in (A–C). The x-axis is time,
and the y-axis is the cell number. The blue, orange, yellow and green curves represent the dynamics of Type-W, -X, -Y, and -Z, respectively. The
purple curve represents the total cell number. The expected tumor progression tendencies are depicted in (D, E, F). The blue, orange, yellow, and
green cells are Type-W, -X, -Y, and -Z, respectively. In the simulation of erlotinib-first (A), the main population changed from Type-W to Type-X for
a while. After changing erlotinib to osimertinib at day 307, Type-X decreased, and Type-Z became the dominant population in the end. This
simulation result represents the tumor evolution tendency shown in (D). The simulation product of osimertinib-first is shown in (B). The tumor
response to osimertinib increased in the beginning, but as Type-Y became the main population, osimertinib-resistance appeared. After the change
to erlotinib at day 567, Type-Y decreased, and the tumor response to treatment increased again. However, Type-Z became the central population
causing drug resistance. This simulation result represents the tumor evolution tendency shown in (E). In the combination therapy (C), the main
population changed from Type-W to Type-Z. This result represents the tumor evolution tendency shown in (F).
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first-line treatment, Type-W, Type-X, and Type-Y decreased, and

only Type-Z continued to increase because it was resistant to both

DrugA and DrugB. Type-W is the main population in the early

phase of treatment, and eventually, Type-Z replaced Type-W to

become the main population in the tumor. During medication,

neither X nor Type-Y dominated the population. At day 1000, the

total cell number was 4.2 × 1012.
Drug-switching time and final cell number

To examine the relationship between drug-switching time and the

development of the total cell number of the tumor, we simulated the

tumor dynamics and measured the total cell number at day 1000 with

various drug-switching times (Figure 3). In the case of DrugA-first

treatment (Figure 3A), the lowest final total number of cells was 2.0×

1012, while it was about 1.0 × 1012 in the case of DrugB-first treatment

(Figure 3B). This implied that first-line treatment with DrugB

displayed better treatment outcomes than DrugA-first treatment.

Moreover, the total number of cells at day 1000 remained essentially

the same in an appropriate range of drug-switching times under both

DrugA- andDrugB-first treatments. This suggested the existence of an

optimal drug-switch period, and it was not advisable to switch drugs

too early or too late. Furthermore, comparing the suitable drug-

switching time period for these two treatments, DrugB-first therapy

had a broader range than DrugA-first. In the DrugB-first treatment,

switching drugs from days 200 to 900 was acceptable (Figure 3B).

However, in DrugA-first therapy, the suitable drug-switching time

ranged from day 100 to day 450 (Figure 3A).
Cell initial proportion dependence

To investigate the effect of the initial proportion of different

mutant cells on the final cell number, we simulated how the final

cell number changes with the increase of mutant cell proportion in

different treatment strategies (Figure 4). We explored the effect of

only one resistant cell type at one time, keeping other conditions

constant as the standard condition. For Type-X and Type-Y, we

tested the change in initial proportion from 10-8 to 10-1, and for
Frontiers in Oncology 06
Type-Z from 10-9 to 10-5. With the increase of Type-X cell

(Figures 4A–C), the final cell number did not change under

DrugB-first therapy (Figure 4B) and combination therapy

(DrugC) (Figure 4C) but increased in DrugA-first therapy

(Figure 4A) once the initial proportion of Type-X exceeded 10-4.

Similarly, in Type-Y dependence simulations (Figures 4D–F), the

final cell number increased only in DrugB-first therapy (Figure 4E)

when the initial proportion of Type-Y became larger than 10-3. In

addition, in Type-Z dependence simulations (Figures 4G–I), the

final cell number increased once the initial proportion of Type-Z

cell became larger than 10-7 under all treatments. Within the range

of initial cell proportion that did not cause an increase in the final

cell number, DrugB-first therapy always showed the smallest

number of total cells at day 1000.
Therapy selection map

In order to identify which treatment strategy is optimal in a given

case, we compared the final total cell number in different treatments

with the change of the initial Type-X and Type-Y cell proportion and

summarized the results in a therapy selection map (Figure 5). In this

simulation, we kept the initial number of Type-Z constant as 10. By

comparing the final total cell number under these three treatment

strategies in the different initial proportions of Type-X and Type-Y

cells, we determined the best strategy by realizing the smallest cell

number at day 1000. The simulations were performed in the same

method asused inFigure2. From thismap,wenoticed thatDrugB-first

therapy was the optimal choice when tumors harbored a low initial

proportionofType-Ycells.However,DrugA-first therapy could still be

advisable if the initial proportion of Type-Y cells was more significant

in the tumor cluster. Furthermore, this map indicated that when both

Type-X and Y cells had a high initial proportion in the tumor cluster,

combination therapy (DrugC) was the optimal choice.
Parameter sensitivity analysis

To investigate the parameter sensitivity, we analyzed how the

total cell number at day 1000 changed with parameters under those
BA

FIGURE 3

Drug switch time and final total cell number. The x-axis is drug-switch time, and the y-axis is the total cell number at day 1000. In panel (A), the
simulation result using erlotinib as a first-line treatment is shown. The lowest total cell number at day 1000 is approximately 2 × 1012. In panel (B),
the case of first-line Osimertinib treatment is shown. The lowest total cell number at day 1000 is approximately 1 × 1012.
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three treatment strategies (Figure 6). In the analysis of the growth

rate of Type-W cell (a), the final total cell number increased with

the increase of aA under DrugA-first therapy (Figure 6A1); the

increase of aB under DrugB-first therapy (Figure 6A2); and the

increase of aC under the combination therapy (Figure 6A3). As for
Frontiers in Oncology 07
the growth rate of Type-X cell (b) and Type-Y cell (c), they did not

affect the final total cell number significantly in our simulated value

range (Figures 6B, C). Moreover, about the growth rate of Type-Z

cell (f), the final total cell number increased with fC under the

combination therapy (DrugC) (Figure 6D). Concerning the effect of

mutation rates (Figure 6E–I), their influence was different based on

therapy strategies. In DrugA-first therapy, the increase of gA, hA, kA,

pA and qA increased the final total cell number. Meanwhile, the

increase of gB, hB, kB, pB and qB increased it in DrugB-first therapy.

In the combination therapy (DrugC), only kC increased it (Figure 6).
Parameter dependence on the therapy
selection map

Since several parameter values were set by our own

assumptions, we investigated how these values affected the

optimal choice of treatment in detail (Figure 7). In this analysis,

we changed one focused parameter value, made a therapy-selection
FIGURE 5

Initial Proportions of Type-X and -Y cells and treatment strategy
selection. The x-axis is the initial ratio of Type-X, and the y-axis is
the initial ratio of Type-Y. The yellow region means that osimertinib-
first therapy is the optimal therapy, the blue region means erlotinib-
first therapy is the optimal therapy, and the green region means
combination therapy (erlotinib+osimertinib) is the optimal choice.
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FIGURE 4

Relationship between the initial proportion and final cell number. The total cell number at day 1000 of each therapy with the different initial cell
numbers of Type-X cells are shown in (A–C). The final total cell number of each therapy with the different initial cell numbers of Type-Y cells are
shown in (D–F). The total cell number at day-1000 of each therapy with the different initial cell numbers of Type-Z cells are shown in (G–I). The x-
axis is initial proportion of mutation cells, the y-axis is the final total cell number.
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map as described in Figure 5, calculated the area of each strategy on

the map and showed the area composition of each strategy at each

parameter value. Especially, we investigated the dependence of

growth rates of Type-W (a) and Type-Z (f) cell, and mutation

rate from Type-W to Type-Z cell (k) under the three treatment

strategies. As a result, the area where DrugB-first therapy exhibited

superiority was large in the aA, aB, and aC,-dependent analyses

(Figures 7A–C). When the DrugB effect was weak against Type-W

cell, the DrugA-first therapy became superior (Figure 7B).

Moreover, when we changed growth rates of Type-Z under the

three strategies, the DrugB-first therapy was the best option again

except the cases where the growth rate of Type-Z under DrugA and

DrugB was large (Figures 7D, E), and the growth rate of Type-Z

under DrugB and DrugC was small (Figures 7E, F). Finally,

changing the mutation rate under the three treatment strategies,

DrugB-first therapy was the best option in most cases (Figures 7G–

I). When the mutation rate (k) was small under DrugA and DrugC,

and large under DrugB, DrugA-first or DrugC therapy became the

best option (Figures 7G–I).
Discussion

In this study, we proposed a new mathematical model of EGFR-

mutated NSCLC. First, our model successfully reproduced the

process of tumor evolution under different treatment schedules,
Frontiers in Oncology 08
including monotherapy and combination therapy (Figure 2). In the

erlotinib-first treatment (i.e., DrugA-first treatment), the drug was

switched at day 307, while at day 576 it was switched in the

osimertinib-first treatment (i.e., DrugB-first treatment). Next, we

compared the effects of the two therapies. Our simulation results

indicated that first-line osimertinib therapy was better than

erlotinib. Within the same time period, for example, 1000 days in

our study, osimertinib-first therapy resulted in a lower total cell

number. Furthermore, the tumor recurred at nearly 500 days in

osimertinib-first therapy compared to approximately 300 days in

erlotinib-first therapy. This implied that first-line osimertinib

therapy could suppress the growth of tumors more effectively

than first-line erlotinib therapy, and could prolong the time of

tumor recurrence. In the FLAURA project, clinical statistical data

also revealed that EGFR-mutated NSCLC patients treated with

osimertinib-first therapy had longer median mPFS (20, 21). This

statistical study indicated the validity of our proposed

model.Additionally, we noticed that in monotherapy, the total cell

count was relatively low over a range of drug-switching times

(Figure 3). This finding describes the existence of a suitable drug-

switching phase, which suggests that it is not advisable to change the

drug at a very early or late stage. In the suitable range of drug

switching times, our simulation results showed that osimertinib-

first therapy had a relatively lower total cell number than erlotinib-

first therapy at day 1000. This result also indicates the potential of

osimertinib as a first-line therapy in clinical applications. In
B
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E

F
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H

I

A

FIGURE 6

Parameter sensitivity analysis. Parameter dependence on the total total cell number at day 1000 under the three therapy strategies was analyzed. In
monotherapy related analysis, the x- and y-axis are the parameters in the effect of DrugA and DrugB, and the color bar presented the final total cell
number. In combination therapy, the x-axis is the parameter, while the y-axis is the final total cell number. The analysis of growth rates, a, b, c, f is
showed in (A–D), the mutation rates analysis is showed in (E–I).
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addition, the appropriate drug-switching time range in osimertinib-

first treatment was broader than that in erlotinib-first.

Furthermore, we explored the influence of tumor heterogeneity

on therapeutic effects (Figure 4). By analyzing the relationship

between the initial cell number and total cell number at the end

of the tested time, we learned that the therapeutical effects depended

on the initial ratio of resistant types in untreated tumors, and

sensitive type did not affect it. According to the simulation results,

when the initial ratio of Type-X exceeded the threshold, only the

total cell number in the erlotinib-first therapy became large

(Figure 4A). In the case of Type-Y, only osimertinib-first therapy

resulted in large number of cells (Figure 4E). As for Type-Z, when

its number became sufficiently large, the final total cell number

developed rapidly in all the tested treatment schedules (Figures 4G–

I). These results indicated that a high proportion of drug-resistant

cells is associated with poor treatment efficacy. This conclusion

suggests that if the tumor harbors a high ratio of Type-X,

osimertinib-first is better than erlotinib-first. However, with a

high initial ratio of Type-Y, erlotinib-first was better. Importantly,

by combining this information, we for the first time theoretically

revealed the relationship between the choice of treatment strategy

and the initial proportion of Type-X and -Y cell (Figure 5). These

findings indicated the advantage of first-line osimertinib treatment

and revealed the influencing factors when determining treatment

plans. Parameter sensitivity analysis about the total cell number and

the best treatment choice confirmed the region where osimertinib-

first therapy was superior to other options (Figures 6 and 7).

Especially, we noticed that among the parameters, growth rate of

Type-W and Type-Z cell and mutation rate from Type-W to Type-

Z made a significantly change in the therapy selection map

(Figure 7). Thess findings indicated the importance of

suppressing all-drug-sensitive (Type-W) and all-drug-resistant
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(Type-Z) cells. This implied that during the treatment, not only

the emergence of secondary resistant cells, but also the response of

all-drug-resistant and -sensitive cells to drugs should be considered.

Furthermore, the simulation results showed that the combination

of two types of EGFR-TKIs (erlotinib + osimertinib) as first-line

therapy has the potential for clinical applications. Recently, several

clinical studies have combined two types of EGFR-TKIs (first- and

third-generationTKIs) asfirst-line treatment. In 2017,Wang et al.first

reported the combination of erlotinib and osimertinib in patients with

EGFR-mutated NSCLC patients (37). They illustrated the expediency

of this type of treatment strategy. In addition, Rotow et al. applied

gefitinib plus osimertinib as the first-line treatment for untreated

patients with EGFR-mutated NSCLC (43). Their results showed the

feasibility of conductingEGFR-TKI combination therapy, and survival

analysis is in progress. In this study, we explored the combination of

erlotinib and osimertinib as first-line therapy and explained the

advantages of this method from a theoretical level. Especially, the

drug response time with combination therapy was longer than that

with monotherapy. Based on our simulation results, the recurrence

time under combination therapy was longer than 500 days, whereas it

was approximately 450 days in osimertinib-first treatment and 300

days in erlotinib-first therapy. This finding implied that the ability of

combination therapy to prevent the emergence of acquired mutations

and prolong the drug response time was even better than osimertinib-

first treatment, which suggested its potential in clinical applications.

Based on the above, the versatility exhibited by the simulation

results suggests that our model has the potential to be applied to

simulate other similar cases in different cancer types. For further

study, some clinical information about patients, such as age, sex,

and the degree of malignancy of the tumor, may be considered in

the parameter estimation. Thus, this model can be used to develop

individual treatment schedules in the future.
B C
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FIGURE 7

Parameter dependence on the area compositions of the three strategies in the optimal strategy map. We analyzed the composition of optimal
therapies among DrugA-first therapy, DrugB-first therapy, and DrugC therapy in therapy selection map with the change of parameters. The x-axis is
the parameter to be focused, the y-axis is the percentage of the area of the optimal therapies in the therapy selection map. The dependence of
growth rates of Type-W (A–C), and Type-Z cell (D–F), and mutation rate from Type-W to Type-Z cell (G–I) under the three treatment strategies
were tested. The yellow, blue, and red lines are DrugA-first therapy, DrugB-first therapy, and DrugC therapy, respectively.
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