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Identification of a centrosome-
related prognostic signature for
breast cancer

Zhou Fang †, Zhi-Jie Gao †, Xin Yu, Sheng-Rong Sun*

and Feng Yao*

Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan,
Hubei, China
Background: As the major microtubule organizing center in animal cells, the

centrosome is implicated with human breast tumor in multiple ways, such as

promotion of tumor cell immune evasion. Here, we aimed to detect the

expression of centrosome-related genes (CRGs) in normal and malignant

breast tissues, and construct a novel centrosome-related prognostic model to

discover new biomarkers and screen drugs for breast cancer.

Methods: We collected CRGs from the public databases and literature. The

differentially expressed CRGs between normal and malignant breast tissues were

identified by the DESeq2. Univariate Cox and LASSO regression analyses were

conducted to screen candidate prognostic CRGs and develop a centrosome-

related signature (CRS) to score breast cancer patients. We further manipulated

and visualized data from TCGA, GEO, IMvigor210, TCIA and TIMER to explore the

correlation between CRS and patient outcomes, clinical manifestations,

mutational landscapes, tumor immune microenvironments, and responses to

diverse therapies. Single cell analyses were performed to investigate the

difference of immune cell landscape between high- and low-risk group patients.

In addition, we constructed a nomogram to guide clinicians in precise treatment.

Results: A total of 726 CRGs were collected from the public databases and

literature. PSME2, MAPK10, EIF4EBP1 were screened as the prognostic genes in

breast cancer. Next, we constructed a centrosome-related prognostic signature

and validated its efficacy based on the genes for predicting the survival of breast

cancer patients. The high-risk group patients had poor prognoses, the area under

the ROC curve for 1-, 3-, and 5-year overall survival (OS) was 0.77, 0.67, and 0.65,

respectively. The predictive capacity of CRS was validated by other datasets from

GEO dataset. In addition, high-risk group patients exhibited elevated level of

mutational landscapes and decreased level of immune infiltration, especially T

and B lymphocytes. In terms of treatment responses, patients in the high-risk

group were found to be resistant to immunotherapy but sensitive to

chemotherapy. Moreover, we screened a series of candidate anticancer drugs

with high sensitivity in the high-risk group.
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Conclusion:Our work exploited a centrosome-related prognostic signature and

developed a predictive nomogram capable of accurately predicting breast

cancer OS. The above discoveries provide deeper insights into the vital roles of

the centrosome and contribute to the development of personalized treatment

for breast cancer.
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Introduction

Currently, breast cancer remains the major threat to women’s

health worldwide, and according to statistics, it has become the

most prevalent malignancy worldwide (1). Breast cancer is

considered as one of highly heterogeneous malignancies with

diverse pathologic features and molecular subtypes. Although

more and more new targets, drugs, superior medical diagnostic

and imaging techniques for breast cancer have emerged (2, 3), the

prognosis for breast cancer patients still remain unsatisfying (4, 5).

Accumulating researches have indicated that advanced or high-risk

breast cancer patients suffer from poor prognoses and treatment

outcome (6). The current validated markers and diagnostic tools fail

to accurately predict the prognosis and treatment response of breast

cancer (7). Therefore, it is imperative to develop novel and effective

markers and predictive models.

Centrosomes, the major microtubule nucleating organelles in

animal cells, play a key role in mitotic spindle orientation and

genome stabilization (8). Cancer cells driven by cytokinesis failure

exhibit centrosome amplification (CA), which is an important

hallmark of cancer (9). In addition to its well-known role, several

recent studies have shown that centrosomes are intimately linked to

the genome and immunity. For example, early amplification of

centrosomes is dependent on wild-type expression of the tumor

suppressor p53 and hotspot mutations (10). Researches have also

shown that the absence of the BRCA1 oncogene causes centrosome

dysregulation that promotes tissue-specific carcinogenesis (11). In

addition, centrosome defects have been shown to promote immune

escape of tumor cells, which would lead to tumor deterioration (12).

Several studies have shown that CA promotes the development of

breast cancer (13–16). In breast cancer, CA is seen as a driver of

chromosomal instability and breast carcinogenesis. The lowest CA

was found in normal breast tissues, and a significantly increased CA

was shown in precancerous tissues, while the ductal carcinoma in situ

and infiltrative tumors exhibited the highest CA (17). For a long time,

researchers have intensively studied the role of centrosomes in cancer

development and progression. However, to date, there are no relevant

studies on centrosome-related prognostic model of breast cancer.

Therefore, studying centrosome-related gene markers in breast

cancer may provide valuable therapeutic guidance in clinical practice.

In our study, we collected 727 centrosome-related genes (CRGs)

from the public databases and literature, and identified the 155
02
differentially expressed CRGs between normal and cancerous breast

samples in TCGA dataset. We then used univariate Cox regression

and Least Absolute Shrinkage Selection Operator (LASSO)

regression analyses to screen three prognostic CRGs in breast

cancer patients, including PSME2, MAPK10, and EIF4EBP1.

Based on these three genes, we constructed a centrosome-related

prognostic model and centrosome-related signature score (CRSS)

for breast cancer patients. According to the CRSS, we classified

breast cancer patients into high-risk and low-risk groups. We

confirmed that the high-risk group showed a poorer prognosis

and a higher frequency of genomic mutations, as well as a lower

level of immune infiltration. Regarding to the cellular component at

single-cell resolution, the immune cell infiltration differed

significantly between high- and low-risk groups. Patients in the

high-risk group exhibited decreased composition of immune cell,

especially T and B lymphocytes. Additionally, we revealed that

patients in the high-risk group were resistant to immunotherapy

but sensitive to chemotherapy. A nomogram was conducted to

predict the outcome of breast cancer patients. Taken together, this

prognostic model provides us with a novel and powerful reference

for diagnosis and treatment of breast cancer.
Materials and methods

Acquisition and preprocessing of breast
cancer datasets

Training set
We selected 1128 patients from the Cancer Genome Atlas

(TCGA) database and downloaded their mRNA expression matrix

and clinical information from UCSC Xena (https://xena.ucsc.edu/).

The expression matrix included the fragments per kilobase of exon

model per million mapped fragments (FPKM) and the count value.

After removing 9 patients with duplicate or incomplete follow-up

information, 1020 TCGA breast cancer patients and 99 normal

patients were included in our training cohort.

We downloaded somatic mutation data from Genomic Data

Commons (GDC, https://portal.gdc.cancer.gov/). Somatic mutation

data sorted in the form of Mutation Annotation Format (maf) were

analyzed and then used to calculate TMB using the R package

“maftools” (18).
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Testing set
We downloaded three external data sets from the GEO database

(https://www.ncbi.nlm.nih.gov/geo/), then eliminated the cases

with duplicate or incomplete survival information, and finally got

another three validation cohorts, including GSE12276 with 196

samples, GSE21653 with 252 samples and GSE58812 with 107

samples. After removing the batch effects, we merge these three

data cohorts into one complete data cohort as our testing set.
Screening of differentially expressed
centrosome-related genes

We collected 726 centrosome-related genes from the database

(MiCroKiTS) (http://microkit.biocuckoo.org/) (19) and several

associated literature (20–22). The expression information of 699

centrosome-related genes was obtained from the TCGA-BRCA

database. The “Deseq2” R package was used to perform

differentially expressed genes (DEGs) analysis using raw counts

(23). DEGs were determined with a cutoff of an adjust p-value of

less than 0.05 and |Log2 fold change| greater than 1.
Functional enrichment analysis of
differentially expressed genes

The “clusterProfiler” (24) R package was used to perform Gene

Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes

(KEGG) pathway enrichment analysis. With the use of Fisher’s

exact test, those with false discovery rate FDR-corrected p-values of

less than 0.05 were regarded as marked indicators. Gene set

enrichment analysis (GSEA) was performed with the webgestalt

(http://www.webgestalt.org/) (25). The “PROGENy” R package was

used to assess 14 signaling pathway activities (androgen, estrogen,

EGFR, hypoxia, JAK-STAT, MAPK, NFkB, PI3K, p53, TGFb,

TNFa, Trail, VEGF and WNT) in patients (26).
Construction and validation of the
centrosome-related prognostic model

First, RNA expression in the TCGA-BRCA, GSE12276,

GSE21653 and GSE58812 datasets was cross-checked to identify

co-expressed and differentially expressed centrosome-related genes.

Consequently, univariate Cox analysis of overall survival (OS) was

applied to screen for centrosome-related genes with prognostic

value. Subsequently, LASSO regression with 10-fold cross-

validation was performed, 1,000 cycles of the “glmnet” R package

were run, and 1,000 random stimulations were set (27, 28). Based

on the best lambda value, the optimal possible gene was selected to

construct the model, and a CRSS was constructed.

The CRSS was calculated based on the expression level of each

gene and its corresponding regression coefficients based on the

following equation:

CRSS  =  o genes Cox coefficient  �  gene expression
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The patients were then categorized into the high-risk and low-

risk groups according to the best cutoff value, using the R package of

“surv_cutpoint” in “survminer”. The predictive sensitivity of the

CRSS was painted via the R Package “survivalROC” for estimation.

The model effectiveness was evaluated in the validation set using the

same coefficient and cutoff values that were used in the training set.
Assessing the immune microenvironment
of breast cancer

We used “estimate” algorithm to calculate the stromal and

immune scores, as well as the tumor purity of breast cancer samples

from TCGA. Then, we used 4 different algorithms, including

CIBERSORT, XCELL, QUANTISEQ and TIMER, to estimate the

infiltration level of several tumor infiltrating immune cells in tumor

immune microenvironment (TIME). In addition, we downloaded

the activation levels of the 7-step Cancer Immunity Cycle

from the tracking tumor immunophenotype (TIP) (http://

biocc.hrbmu.edu.cn/TIP/) (29) and we further described the

tumor immune microenvironment through the expression of 11

immune checkpoint genes and immune response scores evaluated

by the “easier” algorithm.
Single-cell transcriptome analysis

We first obtained scRNA-seq data and paired bulk RNA-seq data

24 breast tumors from GEO: GSE176078. We applied each single-cell

sample separately to perform unsupervised clustering of the single

cells using the read count matrix as input via Seurat package (v4.1.1)

in R (v4.1.3). The quality control applied to cells was mainly based on

the number of detected genes and proportion of mitochondrial gene

count per cell. At first, cells with fewer than 200 detected genes and

cells with over than 15% mitochondrial gene count were filtered. In

order to avoid unexpected noise, genes detected in less than 3 cells

were excluded from the downstream analysis. To correct the batch

effects, data integration was performed by fast mutual nearest

neighbor (fastMNN) method via Seurat-Wrappers package (v0.3.0).

We next performed dimension reduction clustering and differential

expression analysis following the Seurat-guided tutorial. The

principal component analysis (PCA) and uniform manifold

approximation and projection (UMAP) dimension reduction were

conducted with the top 15 principal components.
Predicting immunotherapy sensitivity and
drug responses

To predict the immunotherapy sensitivity, the Immunophenoscore

(IPS) was calculated using the Cancer Immunome Atlas (https://tcia.at/).

To further validate the predictive value of above immunotherapy

responses, we used several extra immunotherapy data sets included

GSE123845 (breast cancer), IMvigor210 (uroepithelial carcinoma) and

GSE35640 (melanoma) to predict immunotherapy response.
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We used the “oncoPredict” R package to assess the predictive

ability of CRSS chemotherapeutic agents by calculating patients

IC50 for various common chemotherapeutic agents. The Wilcoxon

rank test was then used to compare the difference in IC50 between

the high/low-risk groups.
Univariate and multivariable Cox regression

We performed univariate Cox regression on TCGA-BRCA with

gene expression and overall survival. Multivariate Cox regression

was used to evaluate independent risk factors in the same cohort.

Genes and factors with a false discovery rate (FDR)< 0.05 were

considered statistically associated with patient survival. The results

of univariate and multivariate Cox regression were acquired and

visualized by using the R package of “ggforest” in “survminer”.
Establishment of the nomogram

This study used the Cox regression model along with the R

package “rms” to build an OS prediction nomogram that set 1-, 3-,

and 5-year OS as the endpoints. The C-index was used to estimate

the discriminative ability of the nomogram. Calibration plots were

used to visualize the consistency between the predicted and factual

1-, 3-, and 5-year OS.
Statistical analysis

DEGs were screened using the Wilcoxon test and compared

using Fisher’s exact test. Univariate Cox analysis of OS was

performed to identify relevant genes and their prognostic value.

Kaplan–Meier survival curves were generated and compared

between the two groups using the log-rank test. The association

between the prognostic model risk score and immune score was

assessed using Spearman’s correlation analysis. All statistical

analyses were performed using R version 4.1.1 (https://www.r-

project.org/) and its adequate packages. Statistical significance was

set at p ≤ 0.05.
Results

Identification of differentially expressed
centrosome-related genes in breast cancer

Through reviewing public databases and literature, we collected

a total of 727 centrosome-related genes (Supplementary Table 1)

and validated that 699 genes were expressed in our training set.

Next, we identified 155 centrosome-related DEGs between normal

and malignant breast tissues in TCGA-BRCA by applying the

Wilcoxon test through the “DESeq2” algorithm. As the volcano

plot showed, there were 106 upregulated genes and 49

downregulated genes in the tumor samples compared to normal

tissues (Figure 1A). Principal component analysis (PCA) analysis
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showed that the normal and malignant breast tissues could be

clearly distinguished by above the 155 differentially expressed CRGs

(Figure 1B). In addition, the heatmap further revealed significant

differences in the expression of these CRG sin normal and

malignant breast tissues (Figure 1C).
Functional analysis of
centrosome-related DEGs

In order to explore the biological significance of these 155

differentially expressed CRGs between normal and malignant breast

tissues, we firstly performed GO analysis on upregulated and

downregulated DEGs separately. We found that the upregulated

CRGs were significantly enriched in the nuclear division, spindle

and cell division terms based on GO enrichment analysis

(Figure 1D; Supplementary Table 2). Additionally, we found that

the pathways such as cellular responses to peptides, proteasome

activity were enriched in downregulated CRGs (Figure S1A;

Supplementary Table 2). Similarly, KEGG analysis revealed that

upregulated centrosome-related DEGs in tumor tissues were mainly

enriched in cell cycle, cellular senescence and p53 signaling pathway

(Figure 1E; Supplementary Table 2), while downregulated CRGs

were enriched in signaling pathways like sphingomyelin and

prolactin (Figure S1B; Supplementary Table 2). The significant

enrichment of cell cycle and mitotic pathways in malignant breast

tissues illustrates the important role of centrosomes during breast

cancer development (30, 31). It also verified that these differentially

expressed CRGs could discriminate the difference in biological

function between normal and malignant breast tissues.
Establishment of a centrosome-related
prognostic model for breast cancer

By univariate Cox regression analysis, we selected 15 genes

significantly associated with breast cancer patients prognoses (P<

0.05) from 155 centrosome-related DEGs, including STAT5A, REC8,

RAD51, PSME2, PLK1, MAPK10, HAP1, EIF4EBP1, DONSON, DCX,

CDH13, CCNE1, CCNE2 and CCND2. The Cox-LASSO regression

algorithm was then performed to identify genes with the most robust

prognostic value. Tenfold cross-validation was applied to overcome

overfitting, with an optimal l value of 0.012 selected (Figure 2A).

Eventually, three candidate genes (MAPK10, EIF4EBP1, PSME2)

were identified as independent prognostic genes and were included

in the centrosome-related prognostic model (Figure 2B). Therefore,

we computed the centrosome-related signature score (CRSS) based

on the expression levels of these three candidate genes: CRSS =

MAPK10*0.116+EIF4EBP1*0.305-PSME2*0.443
Prognostic analysis of the centrosome-
related prognostic model

Based on the best cutoff value, 325 and 695 patients were

categorized into the high- and low-risk groups, respectively.
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Prognostic analysis showed that the high-risk group had an

obviously poor prognosis (p< 0.0001) (Figure 2C). The number of

deaths in the high-risk group was significantly higher than that in

the low-risk group (Figure 2E). The area under the curve (AUC) for

predicting 1-, 3-, and 5-year OS was 0.77, 0.67, and 0.65,

respectively (Figure 2G).

We further analyzed the association of CRSS with clinical

manifestations and pathological features of breast cancer patients.

Table 1 obviously indicated that CRSS was indistinguishable from

clinical information and pathological features. Multifactorial Cox

regression analysis also confirmed that CRSS can be used as an

independent prognostic tool for breast cancer patients (Figure S1C).

Currently, the diagnosis and treatment of breast cancer is

guided mainly based on the clinical and pathological staging (32).

However, the patients prognoses in the same period varies

somewhat, so we further explored the prognostic status of
Frontiers in Oncology 05
patients under different stages. Our results showed that CRSS

could accurately predict the prognosis of stage II and III patients,

and patients with high CRSS showed a worse prognosis (stage II:

p=0.0038; stage III: p<0.0001) (Figures S2B, C). However, it failed to

distinguish the prognosis of breast cancer patients with stage I and

stage IV (Figures S2A, D). We suspected that this might be owing to

the small number of stage I and stage IV breast cancer patients, and

our increasing awareness of early prevention of breast cancer. In

addition, CRSS enabled prognostic prediction for patients with

different molecular subtypes (LumA, LumB, Her2, Basal). Patients

with high CRSS showed worse prognosis in all molecular subtypes,

and notably the predictive power of CRSS was more significant in

patients with LumB and Her2. (LumA: p=0.088; LumB: p=0.018;

Her2: p=0.00056; Basal: p=0.088) (Figures S2E–H).

We then devoted to use additional independent datasets to

validate the prognostic predictive ability of the prognostic model.
A

B

D E

C

FIGURE 1

Identification of differentially expressed centrosome-related genes and functional analysis. (A) Volcano plot of the differentially expressed
centrosome-related DEGs by comparing breast cancer tissues to normal prostate tissues from TCGA-BRCA cohort. Blue represents downregulated
genes, and red represents upregulated genes in BRCA. p< 0.05, |log2 fold change| > 1.0. (B) Principal component analysis (PCA) of TCGA-BRCA
cohort for optimal k = 2. (C) Heatmaps of centrosome-related DEGs. (D) GO enrichment of upregulated centrosome-related DEGs. (E) KEGG
pathways of upregulated centrosome-related DEGs.
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After excluding cases with duplicate or incomplete survival

information and correcting the batch effects, we merged three

data sets including GSE12276 with 196 samples, GSE21653 with

252 samples and GSE58812 with 107 samples into a new validation

cohort (555 samples). Likewise, patients in the validation cohorts
Frontiers in Oncology 06
were also divided into the high- and low-risk groups according to

the same cutoff value and prognostic model as those in our training

cohort. In the validation cohort, we obtained the similar results. The

high-risk group exhibited poor prognostic performances (p<

0.0001) and more deaths (Figures 2D, F, H). These results
A B

D

E F

G H

C

FIGURE 2

Establishment and stability validation of centrosome-related prognostic model. (A) The Least Absolute Shrinkage and Selection Operator (LASSO)
Cox regression for the centrosome-related prognostic DEGs. (B) The multivariable Cox regression analysis of five genes based on cross-validation
and the minimum partial likelihood deviance to further demonstrate the independent prognosis-related genes and obtain the genes index.
(C) Kaplan–Meier analysis for OS curves of patients from TCGA-BRCA in high/low-risk subgroups in training cohort. (D) Kaplan–Meier analysis for
OS curves of patients from GEO in high/low-risk subgroups in validation cohort. (E) Distribution of CRSS and patterns of the survival time and
survival status between the high/low-risk subgroups for the training set. (F) Distribution of CRSS and patterns of the survival time and survival status
between the high/low-risk subgroups for the validation set. (G) Time-related ROC analysis exhibited the prognostic value of the CRSS in the training
set. (H) Time-related ROC analysis exhibited the prognostic value of the CRSS in the validation set. The asterisks represent the statistical P value (*p
< 0.05; **p < 0.01; ***p < .001).
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demonstrated that the centrosome-related prognostic model based

on these three candidate genes (MAPK10, EIF4EBP1, PSME2)

shows high accuracy and considerable stability in predicting the

prognoses of breast cancers.
Functional analysis of the centrosome-
related prognostic model

To investigate the underlying mechanisms that led to the

different outcome stratified by CRSS, we first performed GO as

well as KEGG analysis based on the DEGs between the high- and

low-risk group patients. The GO and KEGG enrichment analyses

revealed that axon development, synaptic membrane and calcium

signaling pathway were upregulated in the high-risk group (Figures

S2A, B; Supplementary Table 2). However, the low-risk group

patients mainly showed enrichment in immune responses, such

as humoral immune response, T cell receptor complex, natural

killer cell mediated cytotoxicity, antigen processing and

presentation (Figures 3A, B; Supplementary Table 2).

Furthermore, the GSEA analysis showed that the gene sets

involved in interferon gamma/alpha response and inflammation

were gathered together in low-risk group patients. It has been

reported that MYC targets (33) and Hedgehog signaling (34) are

more active in tumor tissues. In contrast, signaling pathways

including cell cycle progression, MYC targets and Hedgehog

signaling were enriched in high-risk group patients (Figure 3C).
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To further compare the molecular functional differences across

high/low-risk patients, we calculated 14 cancer-related pathway

activities. Hypoxia leading to angiogenesis and metabolic rewiring

is a recognized driver of breast cancer aggressiveness, treatment

resistance, and poor prognosis (35). Our results showed that high-

risk group patients had higher hypoxia signature score (Figure 3D).

We also found high-risk group patients revealed upregulated levels

of glycolysis and gluconeogenesis, which represented the

breakdown of glucose or glycogen to lactate in the presence of

insufficient oxygen (36). RTK is a class of cell surface receptors that

responds to environmental signals by initiating appropriate

signaling cascades in tumor cells and regulates various

downstream signaling pathways including MAPK, PI3K/Akt, etc.

(37) Our results showed no significant difference in RTK (EGFR,

VGFR) activity between patients in different groups, but its

downstream signaling pathway (MAPK, PI3K/Akt) was higher in

high-risk group patients. Tumor necrosis factor-related apoptosis-

inducing ligand (TRAIL) induces cancer cell regulation without

causing toxicity in mice has received much attention (38). Our

findings exhibited that low-risk group patients harbored higher

TRAIL signature score, suggesting a higher apoptotic potential. In

summary, the high- and low-risk patients exhibited distinct

functional activities in immune responses, inflammation, and

other oncology-related signaling pathways. These results could

partly explain the underlying mechanisms how this prognostic

model was used to assess the prognoses of breast cancer patients.
Comparison of the mutation profiles in
high/low-risk breast cancer patients

Multiple researches have shown that the mutational pattern

plays an important role in tumor development (39). Therefore, we

next compared the mutational landscapes between different risk

group patients. PIK3CA, TP53, CDH1 and GATA3 which were

confirmed as somatic driver substitutions and small insertions/

deletions (indels), were previously reported to be implicated in

breast cancer development (40). Our results showed that they

exhibited still significantly different mutation rates in high/low-

risk groups (Figure 4A). To evaluate the level of tumor mutation

burden (TMB) which was the best quantitative criterion to reflect

the mutation level, we calculated the TMB score for every patient,

and found that the high-risk group patients had higher TMB score

(Figure 4B). Next, we performed a prognostic analysis to figure out

the prognostic value of the TMB level. The results showed that the

TMB level was associated with an unfavorable outcome (Figure 4C).

Considering the possible synergistic effect of TMB and CRSS on

prognosis, we performed a novel stratified prognostic analysis and

by combining TMB and CRSS. Surprisingly, we found an

improvement for survival prediction within the training cohort.

The results showed that patients with high CRSS and TMB score

were robustly linked with an inferior prognosis, while patients with

low CRSS and TMB score had an improved prognosis (P<0.0001)

(Figure 4D). Together, these data demonstrated that higher

frequency of somatic mutations occurred in high-risk group
TABLE 1 Clinicopathological associations of CRSS in breast cancer.

Variables Low risk High risk P. value

Age at diagnosis, years <0.0001

≤50 232 238

>50 463 87

Stage 0.3221

I+II 590 266

III+IV 104 57

ER <0.0001

Negative 111 108

Positive 555 203

PR <0.0001

Negative 164 147

Positive 501 163

HER2 0.9781

Negative 357 162

Positive 104 46

Survival state <0.0001

Death 77 69

Alive 618 256
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patients, and the combination of CRSS and TMB could further

refine the prognostic prediction of breast cancer patients.
Diverse tumor immune microenvironment
components among high/low-risk patients

When exploring the differences of biological functions in

different group patients, we found that the immune system might

have a considerable connection with our centrosome-related

prognostic model. Thus, we further investigated the tumor

immune microenvironment (TIME) which acted as an important

role in tumorigenesis and therapy responses (41).

Firstly, we evaluated the immune score and tumor purity in

different risk groups and calculated the correlation between CRSS

and immune score by ESTIMATE algorithm. The results showed that

lower immune score but higher tumor purity was found in the high-

risk group patients (Figures 5A, B). We also discovered a significant

negative correlation between CRSS and immune score (Figure 5C).

Therefore, we speculate that the high-risk group had a poor prognosis

probably because of the restricted immune cell infiltration.

To further clarify the diverse immune landscapes, we explored

the distribution of 22 immune cells in the TIME among breast
Frontiers in Oncology 08
cancer patients by conducting the CIBERSORT algorithm. The

results revealed that the abundance of M1 macrophages, CD8+ T

cells and resting memory CD4+ T cells were significantly lower in

the high-risk group (Figure 5D). We also calculated the immune cell

infiltration using other additional algorithms including XCELL,

QUANTISEQ and TIMER (Figures S3A–C), and found similar

results with CIBERSORT. These results suggested that high/low-

risk patients had distinct abundance of diverse immune subsets and

potentially different anti-tumor capacity.

In addition, some scholars proposed a seven-step immune

process in 2013, which was called the cancer immune cycle (42).

Anti-tumor immunity need begin, develop and expand this series of

events to be effective to kill cancer cells. Apparently, several processes

including the step2 (cancer antigen presentation), step5 (infiltration

of immune cells into tumors), step6 (recognition of cancer cells by T

cells), and step7 (killing of cancer cells) were significantly lower in the

high-risk group (Figure 5E). To further explore the distinct immune

responses between patients in different risk groups, we assessed

immune response score using the easier algorithm. We found that

the high-risk group showed lower levels of a variety of immune

responses, such as RIR, chemokines, T cell inflamed, which further

confirmed our speculation about the immunosuppressive status of

the high-risk group patients (Figure 5F).
A B

DC

FIGURE 3

Functional analysis of centrosome-related prognostic model. (A) GO enrichment of centrosome-related DEGs in low-risk subgroups. (B) KEGG
pathways of centrosome-related DEGs in low-risk subgroups. (C) Gene set enrichment analysis (GSEA) of centrosome-related prognostic model.
(D) Analysis of 14 cancer-related pathway activities score. The asterisks represent the statistical P value (*p < 0.05; **p < 0.01; ***p < .001; ****p <
0.0001; ns p > 0.05).
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The expression of immune checkpoint genes has been reported

to be lower in non-inflammatory TIME (43). We consistently found

lower expression of most immune checkpoint genes in the high-risk

group, including CD274, CD80, CD86, CTLA4, HAVCR2, IDO1,

LAG3, PDCD1, PDCD1LG2, TIGIT and TNFRSF9. Correlation

analysis showed that CRSS was negatively correlated with the

expression of immune checkpoint genes (Figures 5G, H). In

summary, patients in diverse risk groups showed significant

differences in immune cell infiltration and tumor immune cycles

in TIME. Particularly, the high-risk group patients exhibited an

immune-desert and immunosuppressive phenotype.
Distinct cellular composition of
high/low-risk breast cancer patients
at single-cell resolution

In order to figure out the different cellular landscape of breast

cancer patients in high-risk and low-risk groups, we integrated 24

published single-cell RNA-seq data with paired bulk RNA-seq data

of breast cancer samples. After strict quality control within every
Frontiers in Oncology 09
single sample and batch effects correction among diverse samples

via fastMNN function, we visualized the high-resolution

transcriptional atlas of breast cancer by uniform manifold

approximation and projection (UMAP) (Figure 6A). Next, we

annotated epithelial cells, endothelial cells, pericytes, cancer-

associated fibroblasts (CAFs), myeloid cells, T cells, B cells and

plasma cells based on the canonical cell markers (Figures 6A, B).

For example, we identified epithelial cell subsets based on the

expression level of EPCAM, KRT18 and KRT19. In addition, T

cells were defined owing to the expression of CD3D, CD3E and IL7R

(Figure 6B). Next, we aimed to decipher which cellular subsets

expressing the three candidate genes in our risk model. As shown in

the UMAP plot, EIF4EBP1 was mainly overexpressed in the

epithelial cells and weakly expressed in myeloid cells (Figure 6C).

Additionally, PSME2 was universally expressed in every subset,

particularly T and myeloid cells (Figure 6D). Moreover, MAPK10

was only sparsely expressed in epithelial cells and pericytes

(Figure 6E). Considering these 24 published single-cell samples

had paired bulk RNA-seq data, we calculated the CRSS of each

sample based on our risk model formula. Therefore, we divided the

samples into high-risk and low-risk groups based on the median
A

B DC

FIGURE 4

Mutation analysis of centrosome-related prognostic model. (A) Comparison of the mutation landscape between groups with high/low-risk.
(B) Tumor mutant burden (TMB) difference among groups with high/low-risk. (C) Kaplan-Meier analyses of OS in breast cancer patients, stratified
according to TMB values. (D) Kaplan-Meier analyses of OS in breast cancer patients stratified according to the combination of CRSS and TMB. The
asterisks represent the statistical P value (****p < 0.0001).
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value of CRSS (Figure 6F). These two risk groups revealed different

distributions in the UMAP plot (Figure 6G). The composition of

diverse cellular subpopulations in high/low-risk group was

compared. We found that the composition of lymphocytes

including T cells, B cells and plasma cells were significantly lower

in the high-risk group. However, the immunosuppressive myeloid

cells showed a higher frequency in the high-risk group (Figure 6H).

Taken together, we characterized the expression landscape of the

candidate centrosome-related markers in our risk model and

revealed distinct composition of immune subsets in high/low-risk

group breast cancer patients.
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Diverse treatment responses in
high/low-risk group patients

Considering the differences of immune status within different

risk group patients, we then compared the response to anti-CTLA4/

PD-1/PD-L1 therapy. The results showed that the low-risk group

patients were sensitive to anti-CTLA4/PD-1/PD-L1 therapy

(Figures 7A, B). We also used other datasets to validate the

stability of our results. In the high-grade melanoma cohort

(GSE35640), CRSS was higher in patients who failed to respond

to immunotherapy (Figure 7C). Additionally, in the uroepithelial
A B

D E

F G H

C

FIGURE 5

Diverse tumor immune microenvironments among high/low-risk patients. (A) Immune score in high/low-risk subgroups. (B) Tumor purity in high/low-
risk subgroups. (C) Spearman correlation between Immune score and CRSS. (D) The differential estimated proportion of 22 CIBERSORT immune cell
types in high/low-risk subgroups. The central line represents the median value. The bottom and top of the boxes are the 25th and 75th percentiles
(interquartile range). The whiskers encompass 1.5 times the interquartile range. (E) Activities of seven-step cancer immune cycle. (F) Immune response
score in high/low-risk groups. (G) The expression of immune-related checkpoints genes among high/low-risk subgroups. (H) Correlations between
CRSS and expression of immune-related checkpoints genes. The asterisks represent the statistical P value (*p < 0.05; **p < 0.01; ***p < .001; ****p <
0.0001; ns p > 0.05).
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tumor cohort (IMvigor210), patients with high CRSS had a worse

prognostic presentation (Figure 7D).

Then, we devoted to figure out if high/low-risk patients were

sensitive to neoadjuvant chemotherapy. The GSE123845 cohort

included 210 invasive breast cancer patients who received a

standard neoadjuvant chemotherapy (NAC). We found that

patients responding to NAC had a higher CRSS (Figure 7E). In

addition, we also compared the sensitivity to diverse anti-cancer

chemotherapy drugs between different group patients. We
Frontiers in Oncology 11
calculated the IC50 for several drugs which were commonly used

to treat breast cancer according to the National Comprehensive

Cancer Network (https://www.nccn.org/) guidelines. A series of

drugs were found to have a lower IC50 in high-risk patients such as

tamoxifen, bortezomib and lapatinib (Figures 7F–H). In summary,

these results illustrated that high-risk patients may be insensitive to

immunotherapy but sensitive to NAC and a set of anti-cancer

drugs, which may guide the treatment choice of breast

cancer patients.
A B
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C

FIGURE 6

Distinct cellular composition of high/low-risk breast cancer patients at single-cell resolution. (A) Cells were clustered into eight types via tSNE
dimensionality reduction algorithm, each color represented the annotated phenotype of each cluster. (B) Dot plot of the top three marker genes
expression of each cluster. (C–E) Expression of three centrosome-related prognostic genes in each cluster. (F) CRSS of 24 samples from breast
cancer single cell dataset GSE176078. (G) eight cell clusters in the high/low-risk groups were identified via tSNE dimensionality reduction algorithm.
(H) The proportion of cells in high/low-risk groups of breast cancer single cell dataset GSE176078.
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Construction and validation of a
centrosome-related prognostic model
associated nomogram

To further investigate the value of the CRSS for clinical

application, we examined the CRSS as an independent clinical

indicator along with other clinical information. As previously

described, CRSS, age, stage, and hormone receptor expression

were all the independent prognostic risk factor for breast cancer

patients (Figure S1C). Therefore, we combined the CRSS with other

clinical information of independent predictors suggested by

multivariate Cox analysis to construct a nomogram. In the

nomogram, the CRSS contributed significantly to the prediction

of survival probability (Figure 8A). As shown in the calibration

curve, the 1-, 3-, and 5-OS predicted by the column line plot was

generally consistent with the actual OS (Figures 8B–D), indicating
Frontiers in Oncology 12
that the column line plot had great reliability and value in

clinical applications.
Discussion

So far, breast cancer remains one of the most common and

fatal malignancies in women worldwide (1, 2). As a highly

heterogeneous disease, breast cancer exhibits extremely distinct

outcomes among individuals (44, 45). The precise prognosis and

treatment of breast cancer are far from satisfying. Therefore, it is

imperative to develop a novel tool for the stratification of breast

cancer patients. In recent years, studies concerning genomics and

transcriptome as well as single-cell multi-omics data have greatly

contributed to our understanding of breast cancer. However,

most of these studies are mainly based on cell functions and
A B
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FIGURE 7

Validation of immunotherapy response and the difference of anticancer drug sensitivity. (A, B) Immunophenoscore (IPS) score in high/low-risk
subgroups. (C) Kaplan–Meier survival curve of the patients in high/low-risk groups for OS in the PD-1/PD-L1 treatment cohort (IMvigor210).
(D) Analysis of the immunotherapy response between high/low-risk groups in the high-grade melanoma immunotherapy cohort (GSE35640).
(E) Analysis of the neoadjuvant chemotherapy between high/low-risk group in breast cancer cohort (GSE123845). (F) The IC50 of Tamoxifen among
high/low-risk groups. (G)The IC50 of Bortezomib among high/low-risk groups. (H) The IC50 of Lapatinib among high/low-risk groups. The asterisks
represent the statistical P value (**p < 0.01; ***p < .001; ****p < 0.0001).
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certain molecular, there are few researches focusing on the role of

certain subcellular structures.

The centrosome contains a pair of centrioles at its core. With a

ninefold symmetric structure, the centrioles are embedded in its

surrounding matter and form a complete centrosome (46). The

centrosome acts as the main microtubule-nucleating organelle in

animal cells and plays a critical role in mitotic spindle orientation

and in genome stability (47). During the G1 phase of the cell cycle,

the separation of the two centrioles of the old centrosome is allowed

to replicate, and at the end of the replication process, each of the two

old centrioles combines with a new centriole to become a new

centrosome (48). The network of centrosomes involved in actin and

tubulin interactions and regulation plays a crucial role in cell

dynamics and cell polarity. Centrosome amplification, instability

and mis-regulation have been shown to be essential factors in

carcinogenesis (49). During an entire cell cycle, each single action

of the centrosome is regulated by genomic and cytokine regulation.

To our knowledge, this study is the first prognostic model based on
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a centrosome-related gene set. In this study, we developed and

validated a novel prognostic model, CRSS, which independently

predicts the prognosis of breast cancer patients. This may provide a

precise method to evaluate prognosis and guide treatment in breast

cancer patients.

In our study, we extracted 155 differentially expressed CRGs

between normal and malignant breast tissues by DESeq2.

Univariate Cox regression analysis and the LASSO algorithm

were used to identify candidate genes for the centrosome-related

prognostic model, including MAPK10, PSME2, EIF4EBP1.

MAPK10 is a member of the MAP kinase family and is activated

by threonine and tyrosine phosphorylation (50). The MAP kinase

signaling cascade response is regulated by multiple cellular factors,

and small changes in it can profoundly affect centriole assembly and

cell cycle fidelity (51). PSME2 is mainly associated with the

assembly of cellular pre-replication complexes (52). EIF4EBP1 is

the recipient of our focus and it is a member of a family of encoded

translation blocking proteins that interact with a variety of protein
A

B DC

FIGURE 8

The calculation of centrosome-related prognostic nomogram. (A) The prognostic nomogram to predict the 1-, 3-, and 5-year OS of breast cancer
patients. For each patient, we calculated the points of the clinical–pathological features and summed up the points to obtain the total points. The
predicted 1-, 3-, and 5-year OS can be estimated based on the total points of each patient. (B) The calibration curves for predicting patient survival at 1-
year OS. (C) The calibration curves for predicting patient survival at 3-year OS. (D) The calibration curves for predicting patient survival at 5-year OS.
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kinases such as CDK1, CDK12, PLK1 (53). Phosphorylated

EIF4EBP1 regulates eukaryotic mitosis as a translation regulator,

which may be important in tumorigenesis and mitotic centrosome

function (54). Subsequently, we evaluated the prognostic value of

this model in the TCGA training set and in three independent

external validation sets. According to CRSS, breast cancer patients

were stratified as high/low-risk group. We analyzed the

clinicopathological characteristics of patients in different risk

groups and explored the differences in the mutational landscape

and tumor immune microenvironment of patients. We found that

the upregulated genes in the high-risk group patients were

associated with tumor signaling pathway, such as focal adhesion

and ErbB signaling pathway. Moreover, higher level of TMB score

was found in the high-risk group patients. In addition, high-risk

group patients also exhibited a suppress ive immune

microenvironment based on the results of several deconvolution

algorithms and single-cell RNA-seq analyses. Next, we explored

how patients responded to diverse treatments and tried to offer

different recommendations based on CRSS risk groups. The

findings revealed that high-risk group patients were resistant to

immunotherapy but sensitive to chemotherapy, specially several

anti-cancer drugs. Finally, we constructed a nomogram based on

CRSS and several clinicopathological features as a way to

quantify the risk assessment and survival probability of breast

cancer patients.

In breast cancer, estrogen receptor (ER), progesterone receptor

(PR) and human epidermal growth factor receptor-2 (HER2) are

the main factors that determine the pathological type and treatment

options (55, 56). CRSS was differentially expressed in various ER+/-

and PR+/- patients, but not in HER2+/- patients. Overall, high-risk

group breast cancer patients showed worse survival prognoses.

Additionally, CRSS was also a good predictor of prognosis in

breast cancer patients among different molecular subtypes

(LumA, LumB, Her2, Basal) and clinical stages.

For example, The accumulation of mutations of multiple genes

contributes to the tumorigenesis of breast cancer (39).

Accumulating studies have shown that genes such as PIK3CA,

TP53, and CDH1 are among the most frequently mutated genes

in breast cancer and are directly or indirectly responsible for breast

cancer development and progression. Besides, PIK3CA and TP53

have been reported to be implicated in cancer immunotherapy.

Immune checkpoint inhibitors (ICBs) are an important class of

anti-cancer therapeutics that block the T-cell inhibitory molecules

PD-1 and PD-L1, while TMB levels may reflect the potential for

immunogenicity and are associated with the response to ICBs (41,

57, 58). We detected differences in mutations in PIK3CA, TP53,

CDH1 and GATA3 between the different risk groups, and an

elevated level of TMB score in the high-risk group. These data

demonstrated that high- and low-risk group patients had distinct

mutational landscape.

Several researches have reported that centrosomes are closely

related to immunity, for example, centrosome defects can promote

immune escape of tumor cells (12). Therefore, we focused on

investigating the differences in immune cell subset composition

between the different risk groups. The tumor microenvironment

(TME) is mainly composed of tumor cells and non-tumor cells
Frontiers in Oncology 14
during tumor growth, which reveals a dynamic balance in the

process of tumorigenesis, growth and metastasis (59). Immune

cells exert a specific role in the TME, where they form an

independent TIME that influences cancer progression and

treatment response. As the basis of anti-tumor therapy, T cells

are an important component of tumor infiltrating immune cells

(60). Studies have shown that infiltrating CD8+ T cells are a

favorable factor for immunotherapeutic response. Tumor-

associated macrophages (TAM) have been shown to directly and

indirectly regulate PD-1/PD-L1 expression in the tumor

environment, where M1-type macrophages have been shown to

have anti-tumor effects (61). Therefore, understanding the TME

characteristics of breast cancer is a promising approach to improve

the response rate of breast cancer immunotherapy. In our

centrosome-related prognostic model, patients in the high-risk

group exhibited a suppressive immune microenvironment with

low infiltration of M1 macrophages and CD8+ T cells, implying

that patients in the high-risk group had a lower cytotoxic capacity.

In addition, enrichment analysis and anti-cancer immune

circulation indicated that patients in the high-risk group were

under an immunosuppressive state. Besides, we further confirmed

that patients in the high-risk group harbored lower composition of

lymphocytes at single-cell resolution based on the public single-cell

dataset, especially T and B lymphocytes. These data may shed light

on the reasons for the poor prognosis of patients in the high-

risk group.

Given the heterogeneity of the immune status of patients in

different risk groups, we further analyzed the response of these

patients to immunotherapy. We found that patients in the high-risk

group were resistant to anti-CTLA4/PD-1/PD-L1 therapy, and we

also validated the stability of CRSS-predicted immunotherapy in

additional immunotherapy datasets, including urothelial tumors

(IMvigor210) and high-grade melanoma immunotherapy cohort

(GSE35640), all of which illustrated that the high-risk group was

resistant to anti-cancer immunotherapy. We also found that

patients who responded to NAC had a higher CRSS in the breast

cancer cohort (GSE123845). Furthermore, we calculated the IC50 of

multiple common breast cancer chemotherapy drugs such as

tamoxifen, bortezomib, and we found that patients in the high-

risk group may be more sensitive to these chemotherapy drugs.

Undeniably, there are still some limitations of our study. First,

this study lacks validation of laboratory data and clinical data, so the

value of centrosome-related prognostic models and the assessment

of clinical applicability possibilities need to be further validated in

larger prospective trials. Second, further experimental studies are

needed to elucidate the biological functions of these 3 genes. Finally,

because of the significant immunological and clinical prognostic

differences between patients with metastatic and non-metastatic

breast cancer, further consideration of the impact of metastasis

is required.

In summary, we developed a novel centrosome-related

prognostic model to predict the prognosis of breast cancer

patients, which provides a new reference for breast cancer

treatment. According to our prediction model, patients with low

expression levels of protective genes and high expression levels of

risk genes will obtain higher CRSS, and patients in the high-risk
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group were resistant to immunotherapy. In addition, we predict

that some chemotherapeutic agents may be sensitive in the high-

risk group. Combining this information with clinicopathological

features, we constructed a column line graph to quantify the risk

assessment of individual patients. The centrosome-related

prognostic model may be a practical tool to select high- and low-

risk patients who may benefit from diverse treatments, thus

facilitating personalized management of breast cancer.
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SUPPLEMENTARY FIGURE 1

Functional analysis of centrosome-related DEGs and multivariate Cox
regression analysis of forest plots (A) GO enrichment of downregulated

centrosome-related DEGs. (B) KEGG pathways of downregulated
centrosome-related DEGs. (C) Multivariate Cox regression analysis of

prognostic factors based on cross-validation and least partial likelihood
deviation further argued for independent prognostic factors.

SUPPLEMENTARY FIGURE 2

Subgroup survival analysis and functional analysis between high/low-risk

groups (A) Kaplan–Meier survival for OS curve of the patients in the high/
low-risk groups in stage I breast cancer patients. (B) Kaplan–Meier survival for

OS curve of the patients in the high/low-risk groups in stage II breast cancer
patients. (C) Kaplan–Meier survival for OS curve of the patients in the high/

low-risk groups in stage III breast cancer patients. (D) Kaplan–Meier survival

for OS curve of the patients in the high/low-risk groups in stage IV breast
cancer patients. (E) Kaplan–Meier survival for OS curve of the patients in the

high/low-risk groups in LumA breast cancer patients. (F) Kaplan–Meier
survival for OS curve of the patients in the high/low-risk groups in LumB

breast cancer patients. (G) Kaplan–Meier survival for OS curve of the patients
in the high/low-risk groups in Her2 breast cancer patients. (H) Kaplan–Meier

survival for OS curve of the patients in the high/low-risk groups in Basal breast

cancer patients. (I) GO enrichment of centrosome-related DEGs in high-risk
subgroup. (J) KEGG pathways of centrosome-related DEGs in high-

risk subgroup.

SUPPLEMENTARY FIGURE 3

Immune cell infiltration in high/low-risk subgroups. (A) Different estimated

proportions of XCELL immune cell types in high/low-risk subgroups. (B)
Different estimated proportions of TIMER immune cell types in high/low-
risk subgroups. (C) Different estimated proportions of QUANTISEQ immune

cell types in high/low-risk subgroups
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