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Purpose: To investigate the utility of preoperative multiparametric magnetic

resonance imaging (mpMRI)-based clinical-radiomic analysis combined with

machine learning (ML) algorithms in predicting the expression of the Ki-67

proliferative index and p53 tumor suppressor protein in patients with

meningioma.

Methods: This multicenter retrospective study included 483 and 93 patients

from two centers. The Ki-67 index was classified into high (Ki-67≥5%) and low

(Ki-67<5%)-expressed groups, and the p53 index was classified into positive

(p53≥5%) and negative (p53<5%)-expressed groups. Clinical and radiological

features were analyzed using univariate and multivariate statistical analyses. Six

ML models were performed with different types of classifiers to predict Ki-67 and

p53 status.

Results: In the multivariate analysis, larger tumor volumes (p<0.001), irregular

tumor margin (p<0.001), and unclear tumor-brain interface (p<0.001) were

independently associated with a high Ki-67 status, whereas the presence of

both necrosis (p=0.003) and the dural tail sign (p=0.026) were independently

associated with a positive p53 status. A relatively better performance was yielded

from the model constructed by combined clinical and radiological features. The

area under the curve (AUC) and accuracy of high Ki-67 were 0.820 and 0.867 in

the internal test, and 0.666 and 0.773 in the external test, respectively. Regarding

p53 positivity, the AUC and accuracy were 0.858 and 0.857 in the internal test,

and 0.684 and 0.718 in the external test.

Conclusion: The present study developed clinical-radiomic ML models to non-

invasively predict Ki-67 and p53 expression in meningioma using mpMRI

features, and provides a novel non-invasive strategy for assessing cell

proliferation.
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▪ Larger tumor volumes, irregular tumor margin, and unclear

tumor-brain interface were independently associated with a

high Ki-67 status.

▪ Presence of both necrosis and the dural tail sign were

independently associated with a positive p53 status.

▪ A relatively better performance was yielded from the model

constructed by combined clinical and radiological features.
Introduction

Meningioma constitutes about one-third of primary central

nervous system intracranial tumors with an annual incidence of

about 5 per 100,000 individuals (1). More seriously, its incidence

seems to rise constantly, and recurrence can occur causing significant

morbidity and mortality (2). To date, it is difficult to evaluate and

predict the biological behavior of meningioma. Therefore, mitotic

and cell proliferation indices, tumor suppressor genes, angiogenesis

intensity, inflammatory markers, histopathological results, and

genetic and immunological levels should be considered in further

risk assessments (3). However, because these variables are generally

based on qualitative criteria, informational objectivity may be

overshadowed (4). Therefore, the need for further quantitative

criteria has emerged, triggering the quest for immunohistochemical

markers of prognostic significance, which has been a routine practice

in pathological diagnosis (5).

There are two quantitative and objective criteria used for the

assessment of biological behavior as cell proliferative markers: Ki-67

and p53, which are most actively studied in meningioma for

monitoring tumor aggressiveness, and objectively predicting

tumor behavior in clinical intervention (4). The fact that the

expression of Ki-67 and p53 can only be determined by using

surgical or biopsy specimens from tumors remains a challenge in

clinical practice. However, these are invasive procedures and may

increase the risk of bleeding and the possibility of tumor metastasis

(6, 7). Moreover, given that the evaluation of both markers relies on

an expert pathologist’s decision, interobserver result variations are

inevitable. Hence, it is essential to find an easy and non-invasive

method for preoperatively assessing Ki67 and p53 expression to

guide the surgical strategy decision and for prognostic prediction

in meningioma.

Currently, as a quantitative method, radiomic analysis (RA)

with machine learning (ML) algorithms, which can extract high-

throughput computational features including tumor size, shape,

texture patterns, and gray-level intensity from medical images, has

attracted considerable interest in neurooncological research (8).

Although recent studies (8, 9) identified ML-based RA using

magnetic resonance imaging (MRI) datasets as a promising tool
eviations: MRI, magnetic resonance imaging; LASSO, least absolute

kage and selection operator; LDA, linear discriminant analysis.
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for grading meningioma, its ability to stratify the Ki-67 status in

meningioma has been rarely studied (10, 11). Moreover, to our

knowledge, the feasibility and value of the RA-based strategy on

multiparametric MRI (mpMRI) for characterizing the p53 status in

meningioma have not been validated.

In the present study, we set out to overcome the shortcomings

of the manual assessment of Ki-67 and p53 and yet take advantage

of the probable favorable role of both markers in the management

of meningioma. We designed and suggested the use of ML-assisted

methods with mpMR images for a more accurate prediction of

tumor cells and Ki-67 and p53 expression, which may help

prognosticate the heterogeneous clinical behavior, and reduce

time-consuming and costly procedures.

Thus, the present study aimed to investigate the utility of

preoperative mpMRI-based RA combined with ML algorithms in

predicting the Ki-67 proliferative index and p53 tumor suppressor

protein expression in patients with meningioma. Moreover, we

developed ML classifiers trained with clinical-radiological features

from qualitative MR imaging assessment, and further, the

performances of these models were validated by an external dataset.
Methods

Patients

This multicenter retrospective study was approved by the

institutional review board of Chonnam National University

Hospital, and was in conformation with the ethical guidelines of

the 2008 Declaration of Helsinki. The requirement for written

informed consent was waived due to the retrospective nature of

the study. The patient selection flow chart is shown in Figure 1.

From January 2014 to December 2021, 535 patients from Center A

and 129 patients from Center B, who underwent a preoperative

MRI, were initially recruited. The inclusion criteria were as follows:

1) histologically confirmed meningioma with a definite grade

[according to the 2021 World Health Organization Classification

of Tumors of the Central Nervous System (12)] and 2) available

standard MR scans before any clinical intervention including biopsy

and radiotherapy, consisting of T1- and T2-weighted images

(T1WI, T2WI), T1-contrast enhanced (T1-CE), fluid-attenuated

inversion recovery (FLAIR), and apparent diffusion coefficient

(ADC) data. The exclusion criteria were as follows: 1) ambiguous

pathological grade (n = 16); 2) incomplete MRI sequences and the

presence of significant motion artifacts on MR scans (n = 27); 3)

irrelevant intracranial disease history (n = 16); and 4) a history of

surgery or treatment before MRI (n = 29). Finally, 483 patients and

93 patients from Center A and Center B, respectively, were retained.
Immunohistochemistry

Histopathologic data were determined based on the surgically

removed tissue. In all patients, the Ki-67 labeling index and p53

expression were assessed by immunohistochemistry (IHC) and

quantified by a pathologist. Although these expressions were
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determined as a prognostic predictor for patients with meningioma,

the optimal threshold value had not yet been identified. Previous

studies (10, 11, 13) defined a cut-off point for high Ki-67 expression

at ≥ 5% positive cells, demonstrating that the recurrence rate of

meningioma was higher in patients with a Ki-67 labeling index of

5% or more. The samples in the present study were classified

into high Ki-67 expression (Ki-67 ≥ 5%) and low Ki-67

expression (Ki-67 < 5%). For p53 status, wild-type or nuclei with

positive staining of < 5% was considered negative, whereas an

abnormal complete absence or nuclei with positive staining of ≥ 5%

considered as positive (14, 15), which was based on previous reports

that the progression-free survival decreased remarkably at a p53-

positive rate of 5% (16), and expressed p53 protein of ≥ 5% was

frequently observed in recurrent meningioma with malignant

transformation (17).
Frontiers in Oncology 03
MRI protocols

Preoperative MRI studies were performed at the two centers. In

center A, all MR imaging examinations were performed on 3T

scanners (Magnetom TimTrio, Skyra, Vida; Siemens Healthcare).

They used similar imaging protocols, which included the following

sequences: T1WI (TR/TE = 2400 − 2540 ms/9.4 ms; matrix = 384 ×

269), T2WI (TR/TE = 3500 − 3700 ms/100 − 105 ms; matrix = 448

× 311), FLAIR (TR/TE 7000 ms/80 − 96 ms; matrix = 384 × 230),

and T1-CE (TR/TE 149 − 164 ms/3 − 4.4 ms; matrix = 480 × 381).

An FOV of 230 mm × 230 mm, slice thickness of 4 mm, and no gap

were applied in all images. The contrast-enhanced MR scans were

acquired after a bolus injection of 0.2 mL/kg of contrast agent.

Diffusion-weighted imaging (DWI) was acquired with the following

parameters: TR/TE = 5200 − 5500 ms/72 − 80 ms, matrix = 128 −
FIGURE 1

Flowchart of the study population including the inclusion and exclusion criteria.
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160 × 128 − 160, FOV = 230 mm × 230 mm, slice thickness = 4 mm,

no slice gap, and two b values (b = 0 and 1000 s/mm2). ADC maps

were automatically generated on the MR system.

In Center B, mpMRI was performed using 3T MR scanners

(MAGNETOM TimTrio, Vida; Siemens Healthcare, Discovery 750;

GE Healthcare, Ingenia CX: Philips Healthcare). The detailed

protocols included the following sequences: T1WI (TR/TE = 2000

− 2400 ms/10 − 13 ms; matrix = 320 − 256 × 230 − 287), T2WI (TR/

TE = 3000 − 6000 ms/80 − 100 ms; matrix = 400 − 512 × 259 − 400),

FLAIR (TR/TE 4800 − 9400 ms/88 − 340 ms; matrix = 256 − 384 ×

204 − 264), and T1-CE (TR/TE 287 − 350 ms/2.5 − 4.6 ms; matrix =

320 − 400 × 224 − 321). An FOV of 230 − 240 mm × 230 − 240 mm,

slice thickness of 5 mm, and a gap of 0.5 mm were applied in all

images. T1-CE images were acquired after a bolus injection of 0.2

mL/kg of contrast agent. DWI was acquired with the following

parameters: TR/TE = 4300 − 7600 ms/54 − 78.9 ms, matrix = 120 −

160 × 120 − 160, FOV = 240 mm × 240 mm, slice thickness = 4 mm,

no slice gap, and two b values (b = 0 and 1000 s/mm2). ADC maps

were automatically generated on the MR system.
Radiological evaluation of MRI data

Two neuroradiologists with 8 and 13 years of experience in

brain MR imaging, who were blinded to the pathological results,

reviewed the MR images. They evaluated the radiological

characteristics of the meningioma as a mostly qualitative

interpretation with regard to tumor volume (mm3), edema

volume (mm3), edema/tumor volume ratio, ADC value (×10-3
Frontiers in Oncology 04
mm2/s), internal enhancement characteristics of the main tumor

(homogeneous or heterogeneous), necrosis and the dural tail sign

(presence or absence), tumor margin (regular or irregular), and

tumor-brain interface (clear or unclear).
Image preprocessing and
tumor segmentation

A schematic showing the process of image processing and ML

analysis is shown in Figure 2. Image preprocessing was required to

standardize radiomic feature extraction. Before analysis, N4 bias

correction was applied to remove low-frequency intensity

nonuniformity from the T1-CE, T1WI, T2WI, and FLAIR images

using Advanced Normalization Tools (18). Subsequently, image

preprocessing for each of the patients included coregistration of all

MRI sequences upon its corresponding axial thin-cut (0.5 mm) T1-

CE sequence, and resampling of the images to 1 × 1 × 1 mm3

resolution. Subsequently, to minimize inherent differences in pixel

intensities across three different MR scanners, the gray-level

intensity for all image volumes was scaled in the range of 0 − 255

after removing pixels with outlier values (19).

Among all MRIs, contrast-enhanced images most clearly

describe the tumor boundary and were selected for radiomic

feature extraction. The entire tumor volumes were segmented to

create the volume of interest (VOI) of T1-CE images with a

semiautomatic method based on a signal intensity threshold and

edge-based algorithms. Peritumoral edema was then identified on

the FLAIR sequence, using the 3D slicer software (version 4.11,
FIGURE 2

Overview of the radiomic analysis framework used to develop a machine-learning model to predict Ki-67 and p53 expression in patients with
meningioma. LASSO, least absolute shrinkage and selection operator; SVC, support vector classification; ETC, extra tree classification; RF, random
forest; LDA, linear discriminant analysis; AUC, areas under the curve; ROC curve, receiver-operating characteristic curve.
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Boston, MA, USA) to satisfy image segmentation by the

neuroradiologists blinded to patients’ clinical information with

Ki-67 and p53 levels (18).
Radiomic feature extraction

The radiomic features were retrieved using an open-source

python package, PyRadiomics v2.2.0. In total, 1605 radiomic

features were initially retrieved, including three-dimensional

shape features (n = 14) from enhancing tumor and peritumoral

edema regions, first-order radiomic features (n = 18), and higher-

order radiomic features from four different matrices, including

gray-level co-occurrence matrix (GLCM) (n = 24), gray-level size

zone matrix (GLSZM) (n = 16), gray-level run length matrix

(GLRLM) (n = 16), neighboring grey tone difference matrix

(NGTDM) (n = 5), and gray-level dependence matrix (GLDM) (n

= 14). Next, the radiomic features were standardized by removing

the mean and scaling to unit variance.

Regarding feature reproducibility, 30 images from randomly

selected patients were chosen to evaluate the reproducibility of the

radiomic features. The tumor segmentation and feature extraction

were performed by two neuroradiologists twice at one-week

intervals. The intraclass correlation coefficient (ICC) was used to

assess the interobserver reproducibility of radiomic features based

on a two-way mixed effects model and ICC values ≥ 0.70 or 0.90 was

c on s i d e r e d good o r e x c e l l e n t r e p r odu c i b i l i t y f o r

subsequent investigation.
Feature selection and classifier model
training for radiomic analysis

The extensive number of extracted texture features must be

selected properly at first to avoid overfitting the ML algorithms. For

clinical features and radiological features, multivariate logistic

regression was performed to select the significantly correlated

features for the ML model, and p-values < 0.05 were considered

statistically significant in the multivariate analysis. Moreover, for

radiomic features, three methods were independently used to select

relatively important features, including least absolute shrinkage and

selection operator (LASSO), support vector classification

(LinearSVC), and extra tree classification (ETC) (11). The

misclassification error was determined by a tuning parameter

(Lambda). As the Lambda gets smaller, some coefficients may be

shrunk towards zero (20) (Supplementary Figure 1). We then

selected the Lambda for which the cross-validation error was

the smallest.

Three radiomic-based ML models and three combined clinical-

radiologic and radiomic-based ML models were established for a

five-fold cross-validation to predict the Ki-67 and p53 expression in

patients with meningioma. The patients from Center A were

randomly split into training and independent test sets at a ratio

of 4:1; patients from Center B were used as the external test group.

Random forest (RF) and linear discriminant analysis (LDA) were

used as ML classifiers. Furthermore, considering that the
Frontiers in Oncology 05
performance of the classifier would be influenced by the

imbalanced sample ratio between low-grade and high-grade

groups for Ki-67, and negative and positive groups for p53, the

Adaptive Synthetic Sampling Approach for Imbalanced Learning

with default parameter was performed to balance the sample

numbers (21). To evaluate the performance of radiomics-based

predictive models for Ki-67 and p53 expression, area under the

curve (AUC), receiver operating characteristic curve (ROC curve),

accuracy, sensitivity, and specificity were calculated for both the test

and validation sets using Python programming language

(version 3.9).
Statistical analysis

Percentages and frequencies were used for categorical variables,

and means and standard deviation were used for continuous

variables. Univariate analysis was conducted to select the

significant clinical and radiological characteristics in Ki-67 low-

and high-expression groups, and p53 positive and negative groups

in the training cohort. Multivariate analysis was then performed to

construct a clinical-radiological model. A p-value < 0.05 was

considered to represent statistical significance. Interobserver

agreement was evaluated by calculating the ICCs of the extracted

features, and only the radiomic features with high ICCs (ICCs ≥

0.75) were taken into modeling. Statistical analysis was performed

with IBM SPSS statistics for windows version 22 (SPSS Inc,

Chicago, IL).
Results

Clinical characteristics

The clinical characteristics and demographics of the 576

patients are summarized in Table 1. The mean patient age was

59.89 ± 13.05 years (range: 22 − 88), and the sex ratio of the study

cohort was Male: Female =167: 409. For the 483 cases from Center

A, the mean Ki-67 level was 4.41 ± 6.95% (range: 1 − 60), consisting

of 299 patients with Ki-67 < 5% and 184 patients with Ki-67 ≥ 5%.

For the 93 cases from Center B, the mean Ki-67 level was 3.13 ±

4.07% (range: 1 − 20), consisting of 68 patients with Ki-67 < 5% and

25 patients with Ki-67 ≥ 5%. In addition, the proportion of patients

with a p53-positive status was 242 cases (50.10%) in Center A and

54 cases (58.06%) in Center B.
Clinical and radiological features related to
the Ki-67 and p53 indexes

The results of the univariate analysis indicated that larger tumor

volumes (p < 0.001), the presence of the dural tail sign (p = 0.01),

irregular tumor margin (p = 0.03), and unclear tumor-brain

interface (p < 0.001) were significantly associated with a high Ki-

67 expression. In the multivariate analysis that was performed using

the variables showing significant p-value in the univariate analysis,
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larger tumor volumes (p < 0.001), irregular tumor margin (p <

0.001), and unclear tumor-brain interface (p < 0.001) were

independently associated with a high Ki-67 expression.

In the univariate analysis, the presence of necrosis (p = 0.001),

the dural tail sign (p = 0.04), and an irregular tumor margin (p =

0.03) were significantly associated with a positive p53 status.

Multivariate analysis revealed that the presence of both necrosis

(p < 0.001) and the dural tail sign (p = 0.03) were independently

associated with a positive p53 status. All outcomes from the

univariate and multivariate analyses are demonstrated in Table 2.
Radiomic feature selection

Based on the results of feature selection, 20 radiomic features

were determined to be important and were separately introduced

into predictive models wrapped by the RF and LDA algorithms. The

distribution of each selected feature is demonstrated in Table 3.

Three radiomic-based models were constructed based on radiomic

features, and three combined clinical-radiologic and radiomic

models were constructed using different combinations of

radiomic features and clinical features.
Frontiers in Oncology 06
The diagnostic performance of the
prediction models

Among the radiomic-based predictive models for Ki-67 and p53

expression, a relatively better performance was yielded from the

model constructed by the features selected by LASSO and classified

by RF. The AUC, accuracy, sensitivity, and specificity of high Ki-67

were 0.756, 0.813, 0.576, and 0.936 in the internal test, respectively,

and the model showed a decline in these indexes in the external test

(external AUC: 0.677, accuracy: 0.751, sensitivity: 0.516, and

specificity: 0.837). Concerning the positive p53 status, the AUC,

accuracy, sensitivity, and specificity were 0.729, 0.731, 0.743, and

0.715 in the internal test, respectively. These indexes were 0.614,

0.631, 0.506, and 0.722, respectively, in the external test.

When clinical and radiological features were combined, this

approach through LASSO and RF showed improvement and

achieved the highest performance among all the models for

predicting a high Ki-67 expression. This was with an AUC of

0.820, accuracy of 0.867, sensitivity of 0.671, and specificity of 0.969

in the internal test, and an AUC of 0.666, accuracy of 0.773,

sensitivity of 0.435, and specificity of 0.896 in the external test.

Regarding the prediction of positive p53 status, the AUC, accuracy,
TABLE 1 Clinical and radiological characteristics of the patients.

Characteristics
Center A Center B

(n = 483) (n = 93)

Mean age (years) 59.44 ± 13.34 59.79 ± 13.17

Men 149 (30.85%) 18 (19.35%)

Tumor volume (cm3) 35.99 ± 35.78 27.76 ± 25.24

Edema volume (cm3) 36.59 ± 52.92 24.82 ± 42.13

Edema/tumor volume ratio 1.38 ± 3.45 1.30 ± 3.47

ADC value (×10-3 mm2/s) 0.80 ± 0.20 0.79 ± 0.23

Enhancement

Homogeneous 282 (58.39%) 60 (64.52%)

Heterogeneous 201 (41.61%) 33 (35.48%)

Presence of necrosis 104 (21.53%) 16 (17.20%)

Presence of dural tail 385 (79.71%) 79 (84.95%)

Tumor margin

Regular 276 (57.14%) 71 (76.34%)

Irregular 207 (42.86%) 22 (23.66%)

Tumor-brain interface

Clear 393 (81.37%) 82 (88.17%)

Unclear 90 (18.63%) 11 (11.83%)

Ki-67 ≥ 5% 184 (38.10%) 25 (26.88%)

Ki-67 < 5% 299 (61.90%) 68 (73.12%)

p53 positive 242 (50.10%) 54 (58.06%)

p53 negative 241 (49.90%) 39 (41.94%)
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sensitivity, and specificity were 0.858, 0.857, 0.877, and 0.894 in the

internal test, and 0.684, 0.718, 0.462, and 0.905 in the external test.

The ROC curves of the LASSO and RF models are illustrated in

Figure 3. All model performances are demonstrated in Table 4 for

Ki-67 and Table 5 for p53.
Discussion

ML using radiomic features derived from preoperative MR

images may provide prognostic insights to predict the biological

behavior of meningioma. To our knowledge, this is a novel study

that establishes a radiomic classifier using mpMRI images to predict

both Ki-67 and p53 expression. In the present study, we trained an

ML MRI radiomics-based model that can be used to assess the

predictive efficiency of a Ki-67 proliferation index of ≥ 5% and p53

positive expression and to help guide surgical timing and the choice
Frontiers in Oncology 07
of operative strategy. Ki-67 and p53-associated features were each

screened by feature selection approaches including the LASSO,

LinearSVC, and ETC. Then, different ML models of RF and LDA

could predict Ki-67 and p53 expression. On the other hand, it is

important to be aware of the problem of overfitting that occurs

when the learning algorithm describes the random error or noise

instead of the underlying data relationship. Consequently, in this

study, the Bootstrap method and cross-validated prediction were

applied to strengthen the robustness of the obtained data.

Subsequently, an ML-based prediction model incorporating

mpMRI features showed good diagnostic performance for

predicting Ki-67 and p53 expression with an average AUC of

0.736 and 0.701, respectively, from three radiomic-based ML

models in the internal dataset.

Furthermore, our ML classifier was built using both clinical-

radiological variables and tumoral radiomic features, and the

resultant integrated clinical-radiomic models achieved validation
TABLE 2 Univariate and multivariate analyses for predicting Ki-67 and p53 expression.

Univariate analysis Multivariate analysis

Parameters b (95% CI) p-value b (95% CI) p-value

Ki-67

Age (years) 0.00 (0.00 − 0.00) 0.82 – –

Sex 0.03 (-0.05 − 0.11) 0.43 – –

Tumor volume (cm3) 0.00 (0.00 − 0.00) 0.00 17.74 (12.06 − 23.42) 0

Edema volume (cm3) 0.00 (0.00 − 0.00) 0.93 – –

Edema/tumor volume ratio 0.00 (-0.01 − 0.02) 0.77 – –

ADC value (×10-3 mm2/s) -0.10 (-0.29 − 0.09) 0.28 – –

Enhancement -0.05 (-0.14 − 0.04) 0.28 – –

Necrosis 0.08 (-0.03 − 0.18) 0.15 – –

Dural tail 0.13 (0.03 − 0.23) 0.01 0.06 (0.00 − 0.13) 0.07

Tumor margin 0.11 (0.01 − 0.20) 0.03 0.24 (0.16 − 0.32) 0

Tumor-brain interface 0.18 (0.06 − 0.31) 0.00 0.18 (0.11 − 0.24) 0

p53

Age (years) 0.00 (0.00 − 0.00) 0.66 – –

Sex 0.06 (-0.03 − 0.14) 0.18 – –

Tumor volume (cm3) 0.00 (0.00 − 0.00) 0.33 – –

Edema volume (cm3) 0.00 (0.00 − 0.00) 0.11 – –

Edema/tumor volume ratio 0.00 (-0.01 − 0.02) 0.7 – –

ADC value (×10-3 mm2/s) 0.02 (-0.22 − 0.19) 0.88 – –

Necrosis 0.18 (0.07 − 0.30) 0.00 0.10 (0.03 − 0.17) 0

Dural tail 0.11 (0.01 − 0.22) 0.04 0.07 (0.01 − 0.14) 0.03

Tumor margin 0.12 (0.01 − 0.22) 0.03 0.06 (-0.02 − 0.14) 0.14

Tumor-brain interface -0.06 (-0.19 − 0.08) 0.41 – –
fron
Bolded values are significant at p < 0.05.
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for classifying a Ki-67 of ≥ 5% and identifying p53 positivity with an

average AUC of 0.791 and 0.811 from all ML models in the internal

dataset, respectively. The clinical-radiomic model outperformed,

indicating the potential use of radiomics in predicting Ki-67 and

p53 expression. Overall, our results indicate that the Ki-67 and p53

status can be predicted using non-invasive radiological data, and

that an ML approach that integrates multivariate features is more

effective and robust than individual features (22). Hypothetically,

we supposed that the performance in the test set should be slightly

attenuated because it seems unlikely that whatever model that

performs best on the training set would perform equally well on

every other unseen data set. Further studies with the inclusion of

more data are required to strengthen these findings.
Frontiers in Oncology 08
Similar to our findings, few studies (10, 11) applied radiomic-

based ML to predict the Ki-67 expression in meningioma. The

models involving multiparametric feature sets from multiple MR

sequences, including T1WI, T2WI, T1-CE, and FLAIR were

superior to models involving single-sequence feature sets (23).

Another recent study (11) demonstrated that the clinical-

radiologic model outperformed the single radiomic model,

showing an AUC of 0.810 and 0.557 from the LASSO and LDA

models in the internal test and external test, respectively. On the

other hand, a study that used a single radiomic model reported that

p53 status in patients with glioma can be quantitatively predicted

through 86 radiomic features from preoperative MRI, with an

accuracy of 65.2% (AUC = 71.9%) (24). As the first study on the
TABLE 3 The numbers of selected features via different approaches.

LASSO SVC ETC

Feature No. Feature categories Feature No. Feature categories Feature No. Feature categories

Ki-67

T1-weighted 5
First-order (n = 2), GLRLM
(n = 1),
GLDM (n = 2)

4
First-order (n = 3), GLDM
(n = 1)

4
First-order
(n = 4)

T1-CE 7
First-order (n = 4), GLSZM
(n = 2),
GLRLM (n = 1)

8

First-order (n = 3), GLCM
(n = 2),
GLSZM (n = 2), GLDM (n
= 1)

7

First-order
(n = 5), GLSZM
(n = 1),
Shape (n = 1)

T2-weighted 5
First-order (n = 3), GLSZM
(n = 1),
GLRLM (n = 1)

4
First-order (n = 3), GLRLM
(n = 1)

6

First-order
(n = 4), GLCM
(n = 1),
GLSZM
(n = 1)

FLAIR − − 1 First-order (n = 1) − −

ADC 3
First-order (n = 2), GLSZM
(n = 1)

3
First-order (n = 1), GLRLM
(n = 2)

3
First-order
(n = 3)

p53

T1-weighted 4
First-order (n = 2), GLRLM
(n = 1),
GLDM (n = 1)

5
First-order (n = 2), GLRLM
(n = 2),
GLDM (n = 1)

4
GLSZM
(n = 2), NGTDM
(n = 2)

T1-CE 6
First-order (n = 1), GLSZM
(n = 2),
NGTDM (n = 3)

7
GLCM (n = 1), NGTDM (n
= 4),
GLDM (n = 2)

7

First-order
(n = 1), GLCM
(n = 2),
NGTDM
(n = 4)

T2-weighted 3
First-order (n = 1), GLSZM
(n = 2)

1 First-order (n = 1) 1
First-order
(n = 1)

FLAIR 4
First-order (n = 2), GLRLM
(n = 1),
GLDM (n = 1)

4
First-order (n = 1), GLSZM
(n = 2),
GLDM (n = 1)

4

First-order
(n = 1), GLCM
(n = 1),
GLSZM
(n = 2)

ADC 3
First-order (n = 2), GLSZM
(n = 1)

3
First-order (n = 2),
NGTDM (n = 1)

4

First-order
(n = 1), GLCM
(n = 2),
GLSZM
(n = 1)
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FIGURE 3

Comparison of receiver operating characteristic curve for prediction of Ki-67 and p53 expression in the internal and external validation dataset by
the different models with LASSO and RF performance.
TABLE 4 Predictive model performance for Ki-67 in the internal and external test.

Models
Features/

classification
Test Accuracy 95% CI AUC 95% CI Sensitivity 95% CI Specificity 95% CI

Radiomics

Lasso+RandomForest Internal test 0.813 0.73 - 0.89 0.756 0.666 - 0.845 0.576 0.407 - 0.75 0.936 0.876 - 0.986

External test 0.751 0.669 - 0.83 0.677 0.567 - 0.778 0.516 0.322 - 0.708 0.837 0.753 - 0.917

Lasso+LDA Internal test 0.813 0.74 - 0.88 0.756 0.669 - 0.841 0.576 0.405 - 0.741 0.937 0.873 - 0.985

External test 0.753 0.66 - 0.83 0.679 0.582 - 0.779 0.518 0.344 - 0.708 0.839 0.753 -0.921

LinearSVC+RandomForest Internal test 0.796 0.71 - 0.87 0.721 0.634 - 0.81 0.487 0.31 - 0.656 0.955 0.901 - 1

External test 0.751 0.67 - 0.83 0.615 0.526 - 0.719 0.317 0.142 - 0.5 0.913 0.845 - 0.972

LinearSVC+LDA Internal test 0.795 0.71 - 0.87 0.72 0.636 - 0.811 0.486 0.323 - 0.648 0.954 0.898 - 1

External test 0.753 0.67 - 0.83 0.616 0.526 - 0.708 0.321 0.156 - 0.5 0.91 0.845 - 0.972

ExtraTree+RandomForest Internal test 0.773 0.689 - 0.85 0.733 0.636 - 0.821 0.608 0.448 - 0.769 0.857 0.765 - 0.94

External test 0.783 0.7 - 0.86 0.698 0.603 - 0.796 0.515 0.333 - 0.694 0.882 0.8 - 0.946

ExtraTree+LDA Internal test 0.771 0.69 - 0.85 0.729 0.635 - 0.822 0.6 0.428 - 0.766 0.859 0.77 - 0.937

External test 0.785 0.7 - 0.87 0.7 0.598 - 0.811 0.518 0.32 - 0.718 0.882 0.807 - 0.951

Clinics+
Radiomics

Lasso+RandomForest Internal test 0.867 0.81 - 0.93 0.82 0.741 - 0.897 0.671 0.514 - 0.821 0.969 0.923 - 1

External test 0.743 0.66 - 0.82 0.712 0.611 - 0.808 0.643 0.45 -0.809 0.78 0.684 - 0.875

Lasso+LDA Internal test 0.866 0.79 - 0.93 0.817 0.727 - 0.896 0.665 0.499 - 0.818 0.968 0.919 - 1

External test 0.777 0.69 - 0.85 0.67 0.569 - 0.771 0.441 0.25 - 0.631 0.899 0.823 - 0.96

LinearSVC+RandomForest Internal test 0.846 0.77 - 0.91 0.796 0.705 - 0.88 0.639 0.47 - 0.8 0.953 0.893 - 1

External test 0.732 0.64 - 0.82 0.628 0.534 - 0.74 0.403 0.217 - 0.613 0.854 0.774 - 0.925

LinearSVC+LDA Internal test 0.847 0.77 - 0.91 0.796 0.705 - 0.881 0.639 0.468 - 0.794 0.953 0.892 - 1

External test 0.731 0.64 - 0.81 0.626 0.516 - 0.725 0.398 0.206 - 0.577 0.854 0.767 - 0.931

ExtraTree+RandomForest Internal test 0.815 0.74 - 0.89 0.757 0.67 - 0.843 0.576 0.407 - 0.743 0.938 0.876 - 0.985

External test 0.773 0.68 - 0.85 0.666 0.562 - 0.767 0.435 0.25 - 0.629 0.896 0.823 - 0.96

ExtraTree+LDA Internal test 0.815 0.74 - 0.89 0.758 0.663 - 0.838 0.578 0.4 - 0.736 0.937 0.873 - 0.985

External test 0.744 0.66 - 0.83 0.713 0.614 - 0.82 0.644 0.444 - 0.826 0.781 0.684 - 0.873
F
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p53 status in meningioma, when constructing the clinical-

radiologic model with mpMRI in our study, the accuracy was

0.854 (AUC = 0.856) compared to that of our single radiomic

model (accuracy: 0.731; AUC = 0.728).

Through various ML algorithms applied to RA, we finally

extracted two sets of 20 Ki-67- and p53-related features from

each patient, which consisted of the first-order features adding

more advanced high-order features. The entropy belongs to the

GLCM feature pool reflecting the intensity of the spatial

distribution, which means that the larger entropy value represents

a greater tumor heterogeneity (25). Regarding the uniformity of the

tumor texture of the GLSZM, high-grade meningiomas are featured

by a larger proportion of tissue disruption, and thus a higher

heterogeneity of the distribution of cells in the tumor lesions

compared with low-grade lesions (25). The non-uniformity of the

GLRLM is another important radiomic feature, which is sensitive in

reflecting the heterogeneity within the contoured area, such as

positive capsular enhancement, an indistinguishable tumoral

border, and heterogeneous tumor enhancement (26). The

NGTDM features, including busyness, contrast, and coarseness,

may reflect microscopic heterogeneity within the tumors (27). The

heterogeneous distribution of cell density was quantified by these

features in our study. Dependency uniformity features of the
Frontiers in Oncology 10
GLDM were found to be significantly effective in predicting the

Ki-67 proliferation index in meningioma (11). These radiomic

features can be used to reflect the spatial heterogeneity of

meningioma of different pathological grades for Ki-67 and p53.

In particular, our study revealed that the radiomic features

derived from T1-CE images contributed the highest number of

selected features in both Ki-67 and p53, which were useful for

predicting immunohistochemical markers of meningioma. It has

been reported that most meningiomas exhibit a marked

enhancement on T1-CE images because of abundant blood

supply in which the tumor boundaries can be clearly exhibited.

Moreover, when comparing the diagnostic performance among

T1WI, T2WI, and T1-CE sequences, a predictive model to obtain

more robust results using presurgical T1-CE data showed a

satisfactory capability to differentiate the pathological grade of

meningioma (18, 28). Based on these findings, we successfully

developed an ML model based on T1-CE images for predicting

Ki-67 and p53 expression.

After multivariate analysis of clinical features with the

expression of Ki-67 and p53, we found that there were significant

correlations−consistent with the findings of other studies (29, 30).

Regarding the association of tumor necrosis with high Ki-67

expression, it could be assumed that a high proliferation of Ki-67
TABLE 5 Predictive model performance for p53 in the internal and external test.

Models Features/classification Test Accuracy 95% CI AUC 95% CI Sensitivity 95% CI Specificity 95% CI

Radiomics

Lasso+RandomForest Internal test 0.731 0.649 - 0.81 0.729 0.642 0.815 0.743 0.618 - 0.84 0.715 0.585 - 0.842

External test 0.631 0.54 - 0.73 0.614 0.516 - 0.71 0.506 0.355 - 0.666 0.722 0.599 - 0.828

Lasso+LDA Internal test 0.731 0.65 - 0.82 0.728 0.644 - 0.811 0.744 0.627 - 0.854 0.713 0.584 - 0.837

External test 0.636 0.55 - 0.74 0.619 0.527 - 0.717 0.516 0.357 - 0.681 0.721 0.599 - 0.839

LinearSVC+RandomForest Internal test 0.71 0.62 - 0.8 0.719 0.635 - 0.803 0.653 0.534 - 0.769 0.786 0.666 - 0.895

External test 0.657 0.57 - 0.75 0.637 0.547 - 0.726 0.515 0.365 - 0.657 0.759 0.655 - 0.866

LinearSVC+LDA Internal test 0.71 0.62 - 0.8 0.719 0.63 - 0.806 0.654 0.523 - 0.775 0.783 0.653 - 0.894

External test 0.657 0.56 - 0.74 0.636 0.542 - 0.733 0.509 0.361 - 0.666 0.763 0.655 - 0.866

ExtraTree+RandomForest Internal test 0.659 0.56 - 0.75 0.656 0.559 - 0.751 0.674 0.546 - 0.792 0.639 0.499 - 0.772

External test 0.733 0.64 - 0.82 0.692 0.611 - 0.777 0.437 0.292 - 0.589 0.946 0.88 - 1

ExtraTree+LDA Internal test 0.657 0.56 - 0.75 0.655 0.556 - 0.743 0.672 0.538 - 0.793 0.638 0.477 - 0.777

External test 0.73 0.64 - 0.82 0.69 0.612 - 0.773 0.435 0.285 - 0.593 0.944 0.883 - 1

Clinics+
Radiomics

Lasso+RandomForest Internal test 0.857 0.79 - 0.92 0.858 0.786 - 0.921 0.877 0.759 - 0.944 0.894 0.755 - 0.95

External test 0.731 0.64 - 0.81 0.7 0.615 - 0.767 0.436 0.294 - 0.581 0.944 0.872 - 1

Lasso+LDA Internal test 0.854 0.789 - 0.92 0.856 0.782 - 0.924 0.851 0.758 - 0.947 0.855 0.736 - 0.954

External test 0.719 0.64 - 0.8 0.683 0.603 - 0.767 0.458 0.314 - 0.6 0.908 0.823 - 0.967

LinearSVC+RandomForest Internal test 0.794 0.71 - 0.87 0.793 0.704 - 0.869 0.8 0.689 - 0.896 0.787 0.644 - 0.902

External test 0.71 0.62 - 0.8 0.683 0.593 - 0.767 0.516 0.355 - 0.666 0.85 0.75 - 0.938

LinearSVC+LDA Internal test 0.793 0.72 - 0.88 0.792 0.712 - 0.871 0.8 0.685 - 0.91 0.784 0.655 - 0.9

External test 0.707 0.619 - 0.8 0.678 0.585 - 0.77 0.506 0.349 - 0.659 0.85 0.759 - 0.933

ExtraTree+RandomForest Internal test 0.782 0.7 - 0.87 0.782 0.693 - 0.869 0.779 0.666 - 0.883 0.784 0.651 - 0.913

External test 0.718 0.63 - 0.8 0.684 0.601 - 0.763 0.462 0.319 - 0.609 0.905 0.83 - 0.98

ExtraTree+LDA Internal test 0.786 0.7 - 0.87 0.785 0.7 - 0.871 0.784 0.677 - 0.889 0.788 0.659 - 0.9

External test 0.73 0.65 - 0.81 0.689 0.609 - 0.767 0.433 0.289 - 0.575 0.945 0.875 - 1
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may exhaust the oxygen supply of their vascular system, resulting in

prolonged hypoxia and subsequent necrosis with decreased

cellularity (31). Thus, preoperatively, a larger tumor volume,

irregular tumor margin, and unclear tumor-brain interface, and

the presence of necrosis and the dural tail sign may potentially

influence the histological status of the Ki-67 and p53 indexes,

representing the development and growth of meningioma.

Our primary experiments have demonstrated the clinical

feasibility of predicting tumor immunohistochemical markers

based on mpMRI images of patients with meningioma, and

provide further information regarding tumor proliferation and

relevant biological behavior before any invasive examinations.

Moreover, in the different types of ML classifiers successfully

conducted in this study, different classifiers demonstrated

different predictive performances, implying that the choice of the

classifier model type had an important influence on the outcomes.

In clinical practice, the approach for predicting the Ki-67 and p53

indexes may provide guidance regarding the imaging surveillance

and decision-making regarding surgical intervention. When

expecting the increased risk of meningioma development, the

patients diagnosed who elevated Ki-67 and p53 could be

counseled to earlier undergo surgery to maximize the extent of

tumor resection with minimizing the associated risk of morbidities.

This study has several limitations. First, this study used manual

segmentation, which is regarded as the gold standard. However, it

may have suffered from significant interreader bias and is time-

consuming. Although automatic segmentation is fast, accuracy and

reproducibility should be considered. Second, due to the

retrospective study design, potential selection bias might have

been present. Third, the methodology of this study was mainly

restricted to ML algorithms, and advanced deep learning (DL)

methods can provide an end-to-end approach without complicated

preprocessing steps. Thus, DL models should be investigated in

future studies. Fourth, we did not thoroughly investigate the

biological process behind each selected radiological and radiomic

feature. Further experiments such as radiogenomics analysis may be

required to solve this issue, which may further enhance our

understanding of the disease. Fifth, we did not perform for

predicting recurrence risk of meningioma due to the small

number of patients with recurrent meningioma. Therefore, a

larger number of recurrent patients in a prospective study may be

necessary to further investigation.

In conclusion, this study has developed clinical-radiomic ML

models to non-invasively predict the expression of Ki-67 and p53 in

meningioma using mpMRI features and provides a novel non-

invasive strategy for assessing cell proliferation.
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