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Emerging biomarkers and
potential therapeutics in
gynecological cancers
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and Lianwen Zheng*

Reproductive Medical Center, Department of Obstetrics and Gynecology, The Second Hospital of
Jilin University, Changchun, China
Ovarian, endometrial, and cervical cancer are common gynecologic

malignancies, and their incidence is increasing year after year, with a younger

patient population at risk. An exosome is a tiny “teacup-like” blister that can be

secreted by most cells, is highly concentrated and easily enriched in body fluids,

and contains a large number of lncRNAs carrying some biological and genetic

information that can be stable for a long time and is not affected by ribonuclease

catalytic activity. As a cell communication tool, exosome lncRNA has the

advantages of high efficiency and high targeting. Changes in serum exosome

lncRNA expression in cancer patients can accurately reflect the malignant

biological behavior of cancer cells. Exosome lncRNA has been shown in

studies to have broad application prospects in cancer diagnosis, monitoring

cancer recurrence or progression, cancer treatment, and prognosis. The

purpose of this paper is to provide a reference for clinical research on the

pathogenesis, diagnosis, and treatment of gynecologic malignant tumors by

reviewing the role of exosome lncRNA in gynecologic cancers and related

molecular mechanisms.
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1 Introduction

An exosome is a cell-secreted nanoscale vesicle containing DNA, proteins, lipids, RNA,

metabolites, cytokines, transcription factor receptors, and other biologically active

substances (1). Its composition is similar to that of parental cells and can be used as a

“fingerprint” to identify relevant cells and provide specific signals that can be traced in

circulating blood (2). The composition is similar to that of parental cells and can be used to

identify relevant cells by providing specific signals that can be traced in circulating blood.
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Long noncoding RNAs (lncRNAs) are noncoding RNAs that are

abundant in the cytoplasm and nucleus (3). They do not have

protein-coding functions, but they can influence cancer

development in a variety of ways and can be specifically sorted

into the exosome (4). Despite the presence of RNA enzymes in the

blood, lncRNAs can persist due to exosome protection (5, 6).

Tumor-derived exosomes (TDE) lncRNAs can contribute to

cancer progression in a variety of ways by altering the tumor

microenvironment, the epithelial-mesenchymal transition (EMT),

and angiogenesis, as well as playing a role in cancer growth

maintenance and stabilization. Because cancer invasion,

metastasis, treatment, and drug resistance are all intertwined, it is

of great scientific importance to mine and explores the exosome

lncRNAs that affect malignant biological behavior, as this can help

to further investigate the mechanism of cancer development and

provide new ideas and strategies for cancer treatment (7, 8).

2 Overview of the exosome

2.1 Discovery and distribution of exosome

Exosomes were discovered by Johnstone et al. in the study of

extracellular cytoplasmic fusion of reticulocyte multivesicular

bodies (9), are 30-150 nm in diameter (10), have a phospholipid

bilayer structure, and belong to the extracellular vesicle family.

Exosomes released from cells into the extracellular compartment

are found in a variety of body fluids, including saliva, breast milk,

blood, urine, amniotic fluid, and vaginal/alveolar lavage fluid (11).

The endosomal sorting complex required for transport (ESCRT) is

made up of the complexes ESCRT-0, I, II, and III, as well as co-

proteins like apoptosis-linked gene 2-interacting protein X (ALIX)

and vacuolar protein sorting 4 (VPS4). Several studies have

confirmed the importance of ESCRT in exosome biosynthesis

(12). Exosome production, on the other hand, is not entirely

dependent on ESCRT mechanisms such as the ceramide

mechanism. It was discovered that mouse oligodendrocytes

secreted lipoprotein-carrying exosomes normally even after

ESCRT inhibition and that cellular exosome secretion was

reduced after ceramide synthesis inhibition, implying a regulatory

role for ceramide in exosome synthesis. Exosomes are produced by

cellular self-selection, and exosomes from different cells can carry

different “cargo” (13). Under various physiological and pathological

conditions, the same cell can produce multiple exosomes containing

additional genetic information (14) (Figure 1).
2.2 Functions of exosome

Exosomes can create a pre-metastatic microenvironment

suitable for cancer cell growth, regulate the glucose and lipid

metabolism of target cells, counteract the body’s immune defense,

and promote and cooperate with cancer development by

transferring lncRNA to recipient cells and mediating material

transport and information exchange.

Exosome has been confirmed as a circulating biomarker for

various breast, colorectal, and bladder cancers in numerous studies
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(15). On January 21, 2016, the first exosome-based cancer diagnostic

product was launched in the United States (16). The exosome is a

natural lipid vesicle that can be used as a gene therapy carrier and has

significant development potential in the field of cancer therapy (17).

Exosomes can cross the blood-brain barrier and transport drugs and

genes (e.g., proteins, lipids, DNA, and RNA) into tissues, effectively

preventing their degradation (18). The drugs could not penetrate the

blood-brain barrier in the control group of zebrafish embryos treated

with conventional drugs, but in the experimental group, in which the

anti-cancer drugs adriamycin and paclitaxel were integrated into the

exosome and then introduced into zebrafish embryos, large number

of exosomes could penetrate the blood-brain barrier and allow the

drugs to reach the cancer cells directly (19). In advanced cancers,

clinical trials targeting dendritic cell-derived exosomes (DEX) have

been conducted (20). Cancer exosomes are known to play an essential

role in the distant compartment effect, a recently discovered

mechanism that effectively targets cancers and inhibits distant

metastasis (21); As a result, the exosome is expected to be a novel

and efficient drug delivery system. Exosomes can be used for gene

therapy by transfecting siRNA into the exosome and successfully

silencing genes using the exosome as a vector, according to

research (22).
3 Overview of lncRNAs

3.1 Biogenesis of lncRNAs

The noncoding region of the human genome contains

approximately 88% of single nucleotide polymorphisms. Non-

coding RNA is classified into two types based on its length:

LncRNA and short-stranded noncoding RNA. LncRNA is a class

of single-stranded RNA molecules with sizes less than 200 nt, the

majority of which are found in the nucleus and some in the

cytoplasm, and are classified as sense lncRNA, antisense lncRNA

(AS lncRNA), bidirectional lncRNA, intronic lncRNA, and

intergenic lncRNA (23). When compared to most protein-coding

genes, lncRNAs have better cell specificity and relatively stable local

secondary and tertiary structures, making them easier to detect in

body fluids and capable of interacting with DNA, RNA, or proteins.

They play an essential role in the physiological and pathological

processes of the body (24). LncRNAs participate in a variety of

biological pathways, including cell growth, by regulating gene

transcription and post-translational expression. By regulating

innate and adaptive immunity, lncRNAs can participate in a

variety of immune pathways, and dysregulation of their

expression levels can disrupt immune homeostasis. It is

anticipated that it will be one of the most promising biomarkers

for disease diagnosis and prognosis (25) (Figure 2).
3.2 LncRNAs are involved in
gene expression

LncRNAs are important regulators at the epigenetic,

transcriptional, and post-transcriptional levels (26). Epigenetic
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silencing or activation of target genes: lncRNAs can regulate gene

expression at the epigenetic level via DNA methylation,

demethylation, histone modification, and chromosome

remodeling (27). MEG3 expression was found to be significantly

reduced in glioblastoma due to DNA methyltransferase I-mediated

hypermethylation of the MEG3 promoter, which downregulated

MEG3 expression in gl ioblastoma and inhibited p53

protein activation.

Transcriptional level: Long noncoding RNAs (lncRNAs) can

interact with transcription factors, enhancers, and promoters to

regulate RNA transcription, localization, and stability (28). The

lncRNA Gas5 can compete with the glucocorticoid response

element (GRE) for binding to the glucocorticoid receptor (GR),

preventing GR transcriptional activation and resulting in an

autoimmune response. In breast cancer, low Gas5 expression

increased cancer cells’ survival during starvation. P21-associated

noncoding RNA with DNA damage activation (lncRNA PANDA)

was found to promote osteosarcoma cell proliferation. Further

research revealed that the lncRNA PANDA inhibited apoptosis in

normal human fibroblasts by binding to transcription factors that

prevented it from binding to apoptosis-related gene promoters.

Long noncoding RNA homeobox (HOX) A11 antisense lncRNA

(HOXA11-AS) was discovered to bind to transcription factor WD

repeat domain 5 (WDR5) in the promoter region, promote -catenin

transcription, and activate the Wingless-Type MMTV Integration

Site Family (WNT) signaling pathway, accelerating cancer

metastasis in vivo.

Post-transcriptionally, lncRNAs can form RNA dimers with

target mRNAs via complementary base pairing, obstruct

transcription factor binding, or directly recruit specific translation
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repressor proteins to regulate mRNA shearing, translation, and

degradation (29). KLF4 is a transcriptional activator of vascular

endothelial growth factor (VEGF). The lncRNA H19 can bind to

miR-7, allowing miR-competitive endogenous RNA (ceRNA-7) to

release translational repression of KLF4 and activate the KLF4/

VEGF signaling pathway. Stable knockdown of exosome lncRNA

H19 can significantly affect KLF4 and VEGF mRNA and protein

expression levels, which affect the formation of the pre-metastatic

microenvironment, inhibit cancer cell migration and invasion, and

regulate the tumor microenvironment and vascular normalization.

During the progression of hepatocellular carcinoma, the expression

level of long noncoding RNA-activated by transforming growth

factor beta (lncRNA-ATB) was increased and directly linked to IL-

11, which altered IL-11 tertiary structure, increased the stability of

IL-11 mRNA, induced IL-11 autocrine, triggered the signal

transducer and activator of transcription 3 (STAT3) pathway, and

promoted cancer metastasis and organ colonization. The first

lncRNA with trans-activation, HOX transcript antisense RNA

(HOTAIR), acts as a pro-oncogene in a variety of cancer cells,

including breast cancer and hepatocellular carcinoma (30).

HOTAIR, a lncRNA with sponge adsorption for miR-122, can

regulate cancer cell epithelial-mesenchymal transition (31).
4 Exosome lncRNAs and tumor

The early and precise diagnosis of malignant cancers has become

a hot research topic. Cancer occurrence and progression are

dependent on the interaction between cancer cells and the tumor

microenvironment. In addition to intercellular contact and the
FIGURE 1

Exosomes: A cell-to-cell transit system in the human body with pleiotropic functions. Exosomes are extracellular vesicles generated by all cells and
they carry nucleic acids, proteins, lipids, and metabolites. They are mediators of near and long-distance intercellular communication in health and
disease and affect various aspects of cell biology (1).
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release of soluble factors, cancer cells can communicate with the

tumor microenvironment via exosomes (32). The TDE transports

molecules such as content DNA, miRNA, and lncRNA that reflect

genetic or signaling changes originating in cancer cells (33). lncRNA

enters the recipient cells via the exosome and acts as a signaling

mediator to coordinate cellular functions among cancer cells, creating

a microenvironment conducive to cancer cell metastasis at a distant

site (34–36). In cancer progression, lncRNAs can serve two purposes.

MALAT1 (metastasis-associated lung adenocarcinoma transcript1)

can promote or inhibit breast cancer metastasis by activating or

inactivating neighboring prometastatic transcription factors (37).

DEAD-box RNA helicase 3 (DDX3) also plays a dual role in the

progression of lung cancer. On the one hand, DDX3 can activate the

WNT signaling pathway, facilitating lung cancer metastasis. DDX3,

on the other hand, can inhibit lung cancer progression by activating

the MDM2/Slug/E-cadherin signaling pathway (38). The lncRNA

HOTAIR can affect the co-localization and activity of vesicle-

associated membrane protein 3 (VAMP3) and synaptosomal-

associated protein 23 (SNAP23) to promote the fusion of MVB

with the plasma membrane to promote HCC exosome secretion,

confirming that lncRNAs have the function of promoting cancer

exosome secretion and providing a new idea for the study of cancer

lncRNAs (Figure 3).
4.1 Exosome lncRNAs and
tumor microenvironment

The tumor microenvironment is made up of a variety of cells,

including cancer cells and stromal cells like endothelial cells,

fibroblasts, adipocytes, and mesenchymal stem cells (39).

Tumorigenesis, progression, and metastasis are all affected by the

characteristics of cancer cells as well as the interaction between

cancer cells and stromal cells in the tumor microenvironment (40).

The exosome, which is released into the extracellular environment

via paracrine or autocrine signaling pathways and causes receptor

cell-related phenotypic changes (27), is a critical communication

mediator for primary tumor microenvironment alterations.

Different exosome lncRNA sources play different roles (41).

Cancer cells and tumor-associated macrophages (TAMs) may be
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important sources of exosomes in the tumor microenvironment

(42). TDE, by remodeling the extracellular matrix (ECM) and

inducing angiogenesis, creates a microenvironment favorable for

cancer cell metastasis at distant sites (43). Cancer parenchymal cells

use the exosome to transport biogenetic information to the

extracellular space, transforming normal stromal cells and

promoting cancer cell proliferation, apoptosis, migration,

invasion, and prognosis (44, 45). Carcinoma-associated fibroblasts

(CAFs), macrophages, and other cells secrete lncRNA-containing

exosomes to promote cancer development and malignancy (46).

LINC00092 was found to be significantly elevated in paraneoplastic

fibroblasts in OC, along with elevated chemokine (C-X-C motif)

ligand 14 (CXCL14), which was associated with metastasis and poor

prognosis in OC (47).
4.2 Exosome lncRNA and
tumor angiogenesis

The formation of neovascularization is an important

environment for cancer genesis and development, and blood

vessels provide sufficient oxygen and nutrients for cancer

cell metastasis and growth (48). TDE can help with cancer

angiogenesis and extracellular matrix remodeling by dynamically

regulating different cells in the tumor microenvironment. The

cancer vasculature is typically disorganized as a result of adjacent

cancer cells compressing new blood vessels, resulting in tortuous

and malformed vessels. Endothelial cells are loosely connected, and

permeability and leakiness increase, allowing cancer cells to spread

quickly into the vasculature and then develop distant metastases

(49). As a result, anti-cancer cell angiogenesis will emerge as a novel

therapeutic strategy. Cancer cells’ exosome lncRNA can act on

endothelial cells in the microenvironment to promote cancer

angiogenesis. Exosomes secreted by cancer stem cells invade

endothelial cells, deliver lncRNA H19 to their target cells, and

stimulate HUVEC angiogenesis by synthesizing and releasing

VEGF (50). In preparation for cancer growth and metastasis,

glioma cells were found to promote angiogenesis by increasing

the expression of endothelial cell pro-angiogenic factor VEGFA via

exosome lncRNA CCAT and lncRNA HOTAIR (51). The exosome

lncRNA Small nucleolar RNA host gene 16 (SNHG16)/miR-4500/

N-acetylgalactosamine-transferase 1 (GALNT1) axis has been

linked to tumor angiogenesis.
4.3 Exosome lncRNAs and
tumor metastasis

Metastasis is a fundamental challenge in cancer therapy because

cancer cells and the tumor microenvironment regulate cancer

proliferation and metastasis (52). TDE lncRNAs can promote

malignant growth by interacting with the microenvironment and

cancer cells, resulting in increased cancer proliferation and

metastasis (53). During rapid growth, cancer cells cause internal

tissue hypoxia and promote upregulation of hypoxia-inducible

factor (HIF-1) expression, stimulating cancer cells to secrete
FIGURE 2

The role of lncRNAs in regulating cellular processes. LncRNAs play a
critical role in the regulation of cell proliferation, cell apoptotic
death, cell cycle, cell migration and invasion, epithelial-
mesenchymal transition (EMT), cancer stem cells, DNA damage and
drug resistance in cancer (25).
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exosomes with enhanced angiogenic and metastatic potential and

promoting cancer invasion and metastasis (54). According to

studies, exosome lncRNA 91H is highly expressed in patients’

serums with colorectal cancer and usually decreases after surgery.

lncRNA 91H has been shown to promote cancer migration and

invasion by regulating the expression of heterogeneous nuclear

ribonucleoprotein K (HNRNPK) (55). HOTAIR, an exosome

lncRNA, has been linked to bladder cancer progression, and

knocking it out in uroepithelial bladder cancer cell lines inhibits

EMT (56). MALAT1, an exosome-derived lncRNA that promotes

cancer cell migration and prevents cancer cell apoptosis, was found

to be positively related to the TNM stage and lymph node

metastasis in NSCLC (57). It has been demonstrated that

exosome-derived epidermal growth factor receptor (EGFR)

protein in lung cancer cells induces the formation of tolerogenic

dendritic cells (DCs), which in turn inhibits the anti-cancer effects

of CD8+ T cells by inducing the production of regulatory T cells

(Treg), and ultimately Treg promotes cancer immune escape (58).

Elucidating the molecular mechanisms of cancer metastasis may

lead to the development of more effective cancer therapeutic

strategies (59).
4.4 Exosome lncRNA and cancer
drug resistance

It is critical to investigate the specific mechanisms of innate or

acquired drug resistance in cancer cells (60); Cancer cells and

stromal cells in the tumor microenvironment can help spread

cancer drug resistance by secreting exosomes (61). Exosomes can

affect cell sensitivity to drugs via the following mechanisms (62).

Exosomes directly wrap anti-cancer drugs, reducing their

effectiveness. Exosomes transport bioactive molecules that

compete for binding targets with anti-cancer drugs. Drug-
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resistant cells transmit drug-resistance information to sensitive

cells via exosome-derived bioactive small molecules. Drug

sensitivity information is transmitted from sensitive cells to drug-

resistant cells via exosome-derived bioactive small molecules.

Resistance to chemotherapeutic drugs could be improved by

interfering with receptor cells with lncRNA, which could

be a new therapeutic approach (63). lncRNA regulators of

reprogramming (ROR) were found to be highly expressed in

hepatocellular carcinoma cells (64). Drug resistance was found to

be increased when hepatocellular carcinoma cells were treated with

exosomes containing a high concentration of lncRNA ROR (65).

Infection of lncRNA ROR in hepatocellular carcinoma cells with

RNAi resulted in adriamycin sensitivity, and cancer cells may use

exosomes and lncRNA to enhance drug resistance in nearby cells.

Celastrol is thought to be therapeutic for a variety of cancers. When

compared to free celastrol and celastrol exosome preparations, anti-

cancer activity was significantly increased, with no liver or

nephrotoxicity (66). Paclitaxel-resistant breast cancer cells can be

induced by delivering the lncRNA SNHG15 to sensitive cells via

exosomes. The exosome lncRNA KCNQ1OT1 is a critical molecule

mediating radiotherapy resistance in lung cancer A549 cells. The

use of CAFs as an entry point for reversing radiotherapy resistance

in lung cancer cells provides a critical theoretical foundation.

Investigating the effect of exosome lncRNAs on drug resistance

will aid in elucidating the molecular mechanism of cancer drug

resistance and provide new ideas for overcoming or reversing drug

resistance (67).
5 Exosome lncRNA and
gynecologic malignancies

5.1 Exosome lncRNA and ovarian cancer

Ovarian cancer (OC) is the most difficult to diagnose and has

the worst prognosis of all malignant cancers of the female

reproductive system, causing serious health problems in women

(68). The pathogenesis of OC is complex, the early clinical

symptoms are subtle, and the metastatic potential is high. When

most patients are diagnosed, they are already in an advanced stage

of the disease (69), so radical surgery cannot be used, the treatment

effect is inadequate, and more than 70% of OC patients have a

recurrence. The Food and Drug Administration (FDA) has

approved only two biomarkers, CA125 and HE4, as diagnostic

biomarkers for OC (70). CA125 is widely used in clinical settings,

but it has some limitations (71). CA125, for example, is less sensitive

in early-stage OC and can be elevated in pregnancy, pelvic

inflammatory disease, endometriosis, and other conditions. In the

presence of conditions such as acute and chronic renal insufficiency,

HE4 can also indicate gynecological diseases and abnormal changes

(72). As a result, a new reliable marker is required for the early

detection of OC (73).

Exosome lncRNA can be used as a non-invasive diagnostic and

screening tool, requiring only a small amount of fresh or frozen

blood from OC patients and simultaneously analyzing for DNA,
FIGURE 3

Exosomes play an important role in mediating the interaction
between cancer cells and both immune cells and stromal cells
within the cancer microenvironment. Exosomal lncRNAs from
cancer cells can promote immune modulation, angiogenesis, cancer
proliferation, metastasis, and drug resistance (35).
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RNA, and protein. Exosomes can be extracted from the urine and

blood of OC patients using a human recombinant S100A8 protein

aptamer bound to cell membrane HSP70 (74). CD24 was found in

exosomes from malignant ascites and in vitro cancer cells. This

marker has been used to predict the prognosis of OC,

demonstrating the exosome’s utility as a minimally invasive

biopsy (75). Experiments with magnetic nanobeads revealed that

many HER2-positive exosomes were found in the serum of OC

patients (76). Chen et al. (77) discovered that CA125 levels were

higher in exosomes than in serum, that serum exosome-derived

CA125 improved the sensitivity of OC diagnosis, and that serum

HE4 combined with exosome CA125 improved the diagnostic

efficiency of OC. Zhang et al. (78) examined the circulating

exosomes in the plasma of OC patients and identified seven

biomarkers with diagnostic ability, including HER2, EGFR, Folate

Receptor (FR), CA-125, Epithelial Cell Adhesion Molecule

(EpCAM), CD24, and (CD9+CD63), and demonstrated that these

exosome biomarkers not only distinguished OC patients from

benign subjects but also differentiated early and advanced OC,

indicating the MALAT1 is a long noncoding RNA that is involved

in the angiogenesis and metastasis of OC. Sun et al. (79) discovered

that the lncRNA MALAT1 plays an important role in the

development of OC by mediating the Janus kinase 2 (JAK2)/

STAT3 signaling pathway, promoting OC cell proliferation, and

inhibiting cancer cell apoptosis. Jin et al. (80) discovered that the

lncRNA MALAT1 could increase OC cell proliferation while

inhibiting cancer cell apoptosis via the PI3K-protein kinase B

(PKB, AKT) signaling pathway, enhancing OC cell invasion,

migration, and EMT function. Some researchers discovered that

the expression level of serum exosomes (81) was higher when

testing the expression of serum exosome MALAT1. MALAT1

expression was significantly higher in epithelial OC patients than

in controls, and it was associated with an advanced International

Federation of Gynecology and Obstetrics (FIGO) stage, a high

histological grade, and lymph node metastasis. Increased serum

exosomeMALAT1 expression was associated with a progressive

metastatic epithelial OC phenotype and a poor prognosis,

suggesting that it could be used as a prognostic or predictive

biomarker for epithelial OC. The HOXA transcript at the distal

tip (HOTTIP), a homeobox lncRNA, is critical in the progression of

OC. HOTTIP overexpression was found to increase IL-6 expression

and secretion in OC cells. IL-6 activated the STAT3 pathway by

binding to IL-6 receptors on the surface of neutrophils surrounding

cancer cells, increasing the expression of PD-L1 on the surface of

neutrophils, inhibiting T cell activity further, accelerating OC

immune escape, and ultimately promoting cancer cell growth and

metastasis (82). The lncRNA NEAT1 was found to be significantly

overexpressed in ovarian cancer cells compared to normal human

ovarian epithelial cells. Through sponge adsorption of miR-36,

lncRNA NEAT1 may promote ovarian cancer cell proliferation by

upregulating fibroblast growth factor (FGF) 9.

The use of exosomes for vaccine preparation is a novel approach

in cancer immunotherapy. TDE has low immunogenicity, a low

drug attrition rate, and easy tissue diffusion, making it suitable for

use as a drug or gene carrier for targeting OC and as a cancer

vaccine to inhibit cancer growth. The cytotoxicity of paclitaxel-
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loaded macrophage exosomes against drug-resistant P-gp

transfected Manin-Darby canine kidney epithelial cells

(MDCKMDR1) cell line was increased more than 50-fold, and

the anti-cancer effect of the drug-loaded exosomes was

demonstrated (83). Farrukh et al. (84) discovered that exosome

delivery of anthocyanin had a strong therapeutic effect on both

drug-sensitive and drug-resistant human ovarian cancer cells and

that its therapeutic activity was synergistically enhanced when

combined with cisplatin. The co-culture of the hypoxic OC cell

line exosome (HEX) with cancer cells during cisplatin treatment

improved cell survival, according to Kalpana et al. (85).

Simultaneously, a known inhibitor, STAT3, inhibited exosome

release. Exosome release and cisplatin treatment increased

apoptosis, indicating that HEX can promote OC metastasis and

increase chemoresistance, and could be a new mechanism for

cancer metastasis and chemoresistance, as well as a therapeutic

intervention to improve clinical outcomes.
5.2 Exosome lncRNA and
endometrial carcinoma

Endometrial carcinoma (EC) is one of the most common

malignant cancers of the female reproductive system (86),

accounting for 20%–30% of all malignancies of the female genital

tract. In recent years, the incidence of EC has been increasing year

after year, and the age of onset has gotten younger. EC can be

diagnosed clinically based on symptoms such as vaginal bleeding or

increased fluid discharge, but a definitive diagnosis requires further

examination improvement. Fear of diagnostic scraping and

hysteroscopy causes some patients to postpone their investigation,

delaying the best time for diagnosis and treatment. Those who do

not receive timely treatment at an early stage frequently have poor

prognoses and survival rates. When the presence of lesions in the

endometrium is determined through diagnostic scraping, the

distribution of lesions cannot be accurately grasped, and small

local lesions may be missed, increasing the rate of EC

misdiagnosis. The clinical treatment of EC is primarily surgical,

with the decision to combine radiotherapy based on high-risk

factors. There are few adjuvant treatment options for advanced

and recurrent cancers. As a result, identifying practical early

diagnostic markers and precise therapeutic targets is critical.

Exosome lncRNA regulates EC proliferation and invasion

primarily through angiogenesis, EMT, and immune regulation,

among other things. Exosome lncRNA promotes the formation of

a tumor microenvironment by transforming related cells, which not

only speeds up normal cell proliferation but also changes the

biological characteristics of nearby and distant non-cancer cells,

allowing cancer cells to spread. Through related signaling pathways,

some lncRNAs can effectively promote EC cell proliferation and

enhance EC cell invasion, migration, and EMT function, thereby

promoting cancer growth (87). Some lncRNAs, on the other hand,

can effectively inhibit cancer cell proliferation, block the cell cycle

process, and promote cancer cell apoptosis via related signaling

pathways, which may be related to the composition of the tumor

microenvironment, particularly CAFs (88).
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MEG3 is a long noncoding RNA with anti-cancer properties

(89). Reduced expression of MEG3, which inhibits cancer cell

proliferation, migration, and invasion and promotes apoptosis,

has been linked to cancer development and progression (90, 91).

MEG3 activity is controlled by both TP53-dependent and TP53-

independent mechanisms. The TP53 gene is mutated in the

majority of human cancers, and it functions as a transcription

factor, controlling the expression of many target genes and thus

inhibiting cancer development and growth. The differential

expression of TP53 in normal and cancerous tissues suggests that

MEG3 could be used to assess cancer staging and prognosis (92).

Guo et al. examined the expression of MEG3 and Notch signaling

molecules in EC tissues and cell lines using real-time quantitative

PCR and Western blotting. MEG3 expression was found to be

significantly downregulated in EC tissues, whereas Notch protein

expression was found to be upregulated in both. MEG3

downregulation inhibits EC proliferation by inhibiting the Notch

signaling pathway (93). In EC patients, low expression of exosome

lncRNA MEG3 in plasma predicts more high-risk factors, a higher

recurrence rate, and a worse prognosis. By comparing the serum

expression levels of lncRNA ROR and miR-29 in EC patients and

healthy women and using ROC curves to assess the diagnostic value

of both in EC, Serum lncRNA ROR and miR-29 levels were found to

be significantly higher in EC patients than in healthy women. The

expression levels in patients with TNM stages I–II increased

dramatically, indicating the combined serum level (94). MALAT1

overexpression is associated with a poor prognosis for EC, implying

that MALAT1 could be used as a novel biomarker and diagnostic

target for EC (95).

The primary issue with cancer drug therapy is cancer drug

resistance, particularly in recurrent cancers where acquired

drug resistance renders the therapeutic effect ineffective.

Exosome-mediated lncRNA communication in the tumor

microenvironment has been shown in studies to be one of the

reasons for increased drug resistance. It is possible to inhibit the

production or uptake of an exosome-carrying “oncogene” and

promote the production or uptake of an exosome-carrying

“oncogene” based on the fact that exosomes can transport

proteins and nucleic acids related to cancer invasion, metastasis,

angiogenesis, and drug resistance. This opens up a new avenue for

the future use of exosomes in the treatment of EC. The engineered

exosome is more effective in targeting therapy than the original

exosome, and it also reduces cytotoxicity and significantly inhibits

tumor growth (96). Exosome lncRNAs play an important role in the

development of EC, opening up new avenues for the early diagnosis

and treatment of EC patients. They may also become an important

tool in monitoring the progression and prognosis of EC in

the future.
5.3 Exosome lncRNA and cervical cancer

Cervical cancer (CC) is one of the most common cancers in

women. According to data, more than 500,000 people are diagnosed

with CC each year, with the majority of deaths occurring in

developing countries (97, 98). As a result, CC is a global public
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health issue that should not be underestimated (99). Despite the fact

that chemotherapy combined with targeted therapy can improve

overall survival (OS), progression-free survival (PFS), and cancer

mortality in CC patients, cancer incidence continues to rise. The

prognosis of advanced CC, which has a low local control rate and is

prone to distant metastasis, is influenced by high-risk factors. The

treatment effect is frequently poor, with only a 60% 5-year survival

rate (100). As a result, improving early diagnosis of CC, identifying

therapeutic targets, and investigating biomarkers that can indicate

prognosis have emerged as top priorities in CC basic and clinical

research (101).

Because of the impact of exosome LncRNA on the tumor

microenvironment and its biological properties, it has the

potential to become a cancer biomarker for CC patients, which

has important clinical implications in cancer screening, treatment

detection, and prognosis evaluation (102). Exosomes from HeLa

cells in CC have been shown to promote distant metastasis by

inducing endothelial cell endoplasmic reticulum stress and

disrupting vascular endothelial cell integrity, thereby disrupting

tight endothelial junctions (103). When CC HeLa cell exosomes

were injected into mice, they found increased vascular permeability

and cancer metastasis. The primary mechanism involved the CC

HeLa cell exosome regulating the expression of closed junction

proteins. Immunity against CC was improved in a mouse model of

CC by increasing the cytotoxic activity of DEX-induced CD8+ T

cells against cancer cells, prompting CD8+ T cell proliferation, and

increasing IFN secretion (104).

HOXA11 is a recently discovered and researched lncRNA (105).

HOXA11-AS has been shown in studies to promote cancer cell

proliferation by regulating the expression of miR-124, miR-140-5p,

LATS1, PADI2, and other genes (106–108). Exosome lncRNA

HOXA11-AS may increase the expression of SRY-related high-

mobility group box 4 (SOX4) in endothelial cells, increasing the

proliferative capacity of endothelial cells involved in cervical cancer.

According to the ROC curve, the specificity of lncRNA gradually

increased during hepatocarcinogenesis (GIHCG), and the

sensitivity was 88.75% in distinguishing between healthy people

and CC patients. In the future, lncRNA GIHCG could be used to

predict CC (109). HOTAIR and MALAT1 lncRNAs were found to

be significantly overexpressed in exosomes isolated from the lavage

fluid of CC patients (111.112). The lncRNA MEG3 was found to be

significantly reduced and correlated with cancer stage, metastasis,

and other factors. Chen et al. demonstrated that MEG3 can inhibit

cervical cancer cell proliferation, invasion, and migration by

regulating the Rac1 and PI3K/AKT/MMP-2/9 signaling pathways

(110). When compared to non-neoplastic cervical tissues, the

expression of lncRNA MEG3 was significantly downregulated in

the histopathological grading of cervical intraepithelial neoplasia

(CIN) in CIN 2 and CIN3. According to one study, MEG3

expression was reduced in cervical tissues, and it was associated

with cancer size, lymph node metastasis, high-risk HPV infection,

and the FIGO stage. In vitro, ectopic expression of MEG3 may

inhibit the proliferation of human CC cells HeLa and C-33A. The

researchers discovered that NF-kappaB interacting lncRNA

(NKILA) inhibits proliferation and promotes apoptosis in cervical

squamous cells by down-regulating miRNA-21 expression.
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LncRNA ArfGAP with the RhoGAP domain, ankyrin repeat, and

PH domain 1 antisense RNA (ARAP1-AS1) can promote proto-

oncogene c-Myc translation in cervical cancer by separating dimers

and promoting tumorigenesis (59). Furthermore, through

interactions with recombinant Polypyrimidine Tract Binding

Protein 1 (PTBP1), LncRNA surfactant associated 1 (SFTA1P)

promoted the degradation of tropomyosin 4 (TPM4) mRNA and

the progression of cervical cancer (52). These findings support

MEG3’s critical role in the molecular etiology of CC and point to

MEG3’s potential use in the treatment of CC (111) (Table 1).
6 Conclusion

Exosomal lncRNA has a wide range of research applications

(114). Exosome lncRNAs regulate a variety of pathophysiological

processes, including cancer cell genesis, invasion, metastasis, and

vascular neogenesis, as well as mediate cancer drug resistance and
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play an important role in cancer development. Exosome lncRNA

is thought to be a novel marker for gynecologic cancer diagnosis,

efficacy evaluation, and prognosis prediction. Exosome lncRNA

research is still in its early stages, and its functions are not fully

understood. There are the following flaws: The specificity of

exosome lncRNA as a molecular marker for gynecological

tumor diagnosis has yet to be determined; The technology of

exosome in vitro synthesis as a carrier of targeted therapeutic

drugs has yet to be improved; Exosome lncRNAs play a role in a

variety of cancers, and multiple exosome lncRNAs have the same

cancer action target, but their interaction is still unknown, making

it difficult to fully resolve their regulatory network. The above

problems can be solved one by one with the rapid development of

proteomics, high-throughput sequencing, transcriptomics, and

bioinformatics analysis, and researchers will have a better

understanding of the mechanisms of exosome-derived lncRNAs

in the development of gynecological malignancies and their

clinical applications.
TABLE 1 The expression and functions of exosomal lncRNAs in gynecological cancers.

Cancer types Specimen source Exosomal lncRNAs Functions References

OC Cells LINC00092 Metastasis (47)

OC Cells MALAT1 Proliferation (79)

OC Cells HOTTIP Metastasis (82)

OC Cells MEG3 Drug resistance (36)

OC Cells GIHCG Proliferation (34)

OC Cells PTAR Metastasis (34)

OC Cells MORT proliferation (73)

OC Cells HOTAIR Metastasis (86)

OC Cells NEAT1 proliferation (86)

OC Cells H19 Proliferation (86)

OC Cells HOXA11 Biomarkers (105)

EC Cells MEG3 Proliferation (93)

EC Cells ROR Proliferation (94)

EC Cells MALAT1 Biomarkers (95)

EC Cells DLEU1 Metastasis (87)

EC Cells HOTAIR Metastasis (86)

EC Cells NEAT1 Metastasis (86)

EC Cells H19 Proliferation (86)

CC Cells ARAP1-AS1 Proliferation (59)

CC Cells NKILA Proliferation (59)

CC Cells MORT proliferation (73)

CC Cells HOXA11 Proliferation (105)

CC Cells GIHCG Biomarkers (109)

(Continued)
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Glossary

lncRNAs Long non-coding RNAs

TDE Tumor-derived exosomes

EMT Epithelial-mesenchymal transition

ESCRT Endosomal sorting complex required for transport

ALIX Apoptosis-linked gene 2-interacting protein X

VPS4 Vacuolar protein sorting 4

DEX Dendritic cell-derived exosomes

AS lncRNA Antisense lncRNA

MEG3 Maternally expressed gene 3

GRE Glucocorticoid response element

GR Glucocorticoid receptor

PANDA P21-associated noncoding RNA DNA damage-activated

HOX Homeobox

HOXA11-AS A11 antisense lncRNA

WDR5 WD repeat domain 5

WNT Wingless-type MMTV Integration Site Family

KLF4 Kruppel like factor 4

VEGF Vascular endothelial growth factor

ceRNA Competitive endogenous RNA

ATB Activated by transforming growth factor beta

HOTAIR HOX transcript antisense RNA

MALAT1 Metastasis-associated lung adenocarcinoma transcript 1

DDX3 DEAD-box RNA helicase 3

VAMP3 Vesicle associated membrane protein 3

SNAP23 Synaptosomal-associated protein 23

TAMs Tumor-associated macrophages

ECM Extracellular matrix

CAFs Carcinoma-associated fibroblasts

C-X-C motif Chemokine

CXCL14 ligand 14

SNHG16 Small nucleolar RNA host gene 16

GALNT1 N-acetylgalactosaminyltransferase 1

HIF-1a Hypoxia-inducible factor

HNRNPK Heterogeneous nuclear ribonucleoprotein K

EGFR Epidermal growth factor receptor

DCs Dendritic cells

PI3K Phosphoinositide 3 kinase

ROR Regulators of Reprogramming

(Continued)
F
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OC Ovarian Cancer

FDA Food and Drug Administration

FRa Folate Receptor-a

EpCAM Epithelial cell adhesion molecule

JAK2 Janus kinase 2

PKB AKT, PI3K-protein kinase B

FIGO The International Federation of Gynecology and Obstetrics

HOTTIP HOXA transcript at the distal tip

FGF Fibroblast growth factor

MDCKMDR1 P-gp transfected Manin-Darby canine kidney epithelial cells

HEX Hypoxic OC cell line exosome

EC Endometrial Carcinoma

CC Cervical Cancer

OS Overall Survival

PFS Progression-free Survival

SOX4 SRY-related high-mobility-group box 4

GIHCG Gradual increase during hepatocarcinogenesis

CIN Cervical intraepithelial neoplasia

NKILA NF-kappaB interacting lncRNA

ARAP1-AS1 ArfGAP with RhoGAP domain, ankyrin repeat, and PH
domain 1 antisense RNA

SFTA1P Surfactant associated 1, pseudogene

TPM4 Tropomyosin 4

PTBP1 Polypyrimidine Tract Binding Protein 1.
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