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Introduction: Gliomas are still considered as challenging in oncologic

management despite the developments in treatment approaches. The

complete elimination of a glioma might not be possible even after a treatment

and assessment of therapeutic response is important to determine the future

course of actions for patients with such cancers. In the recent years radiomics

has emerged as a promising solution with potential applications including

prediction of therapeutic response. Hence, this study was focused on

investigating whether morphometry-based radiomics signature could be used

to predict therapeutic response in patients with gliomas following radiotherapy.

Methods: 105 magnetic resonance (MR) images including segmented and non-

segmented images were used to extract morphometric features and develop a

morphometry-based radiomics signature. After determining the appropriate

machine learning algorithm, a prediction model was developed to predict the

therapeutic response eliminating the highly correlated features as well as without

eliminating the highly correlated features. Then the model performance

was evaluated.

Results: Tumor grade had the highest contribution to develop the morphometry-

based signature. Random forest provided the highest accuracy to train the prediction

model derived from the morphometry-based radiomics signature. An accuracy of

86% and area under the curve (AUC) value of 0.91 were achieved for the prediction

model evaluated without eliminating the highly correlated features whereas

accuracy and AUC value were 84% and 0.92 respectively for the prediction model

evaluated after eliminating the highly correlated features.

Discussion: Nonetheless, the developed morphometry-based radiomics

signature could be utilized as a noninvasive biomarker for therapeutic

response in patients with gliomas following radiotherapy.
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Introduction

Glioma is the most common cancer or malignant tumor

among primary brain tumors and other central nervous system

tumors (1). A glioma can be life-threatening depending on the

location and the rate of growth. Gliomas are graded on a scale of

Grade I to IV according to the World Health Organization (2).

Also, they can be categorized as slow growing (Grade I and II) and

fast growing (Grade III and IV) tumors. However, usage of

different glioma classifications can be seen (3–5). The aggressive

forms of gliomas can result in death within few months. The

complete elimination of gliomas might not be possible even after a

treatment due to their complex and infiltrative nature. Therefore,

assessment of therapeutic response is important to determine the

efficacy of the given treatment and for future decision-making.

Thus, the predictive analytics related to clinical outcomes such as

therapeutic response has become popular in the clinical setting.

Even though there are predictive biomarkers such as isocitrate

dehydrogenase 1 (IDH) and 1p/19q co-deletion used in gliomas

considering their molecular profiling (6–8) the use of molecular

biomarkers has practical barriers for the wide application due to

the cost of testing as well as limited resources. In contrast, an

imaging biomarker such as radiomics is less expensive and non-

invasive. Hence, application of radiomics is more favorable

compared to molecular biomarkers. Nevertheless, radiomics

itself is not a mature field (9). Especially there were limited

number of studies with respect to the application of radiomics

studies to assess the therapeutic response in patients with gliomas

after receiving radiotherapy. Moreover, most of the studies had

focused on non-morphometr ic features compared to

morphometric features. Since only morphometric features can

reflect the geometric aspects of a tumor there is a need to further

investigate the usefulness of morphometry-based radiomics

features for making predictions in disciplines like radiotherapy.

Hence, this study was aimed at developing a prediction model

using a morphometry-based radiomics signature to predict

therapeutic response for patients with gliomas following

radiotherapy and exploring whether the model performance was

affected by the highly correlated features.
Results

The clinical information related to therapeutic response was

available for 105 patients and that information was missing for 5

patients. Thus, the patients without relevant information and

irrelevant information were excluded from this study. In this

dataset gliomas were classified as astrocytoma, oligodendroglioma,

mixed glioma and glioblastoma multiforme (GBM). Also, they

were graded on a scale of Grade II to IV. According to the

clinical data the presence and absence of tumor after treatment

indicated 81% and 19% respectively. Among the selected patients

54% of them were males and 46% of them were females. Table 1

shows further demographic and clinical information related to this

study sample.
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TABLE 1 Characteristics of patients in this study sample.

Characteristics Number of patients
(%),

n = 105

Age (years)
Mean ± standard deviation
Range

52 ± 15
18 – 76

Gender
Male
Female

57 (54.29)
48 (45.71)

Race
White
Black or African American
Asian
Not available

93 (88.57)
8 (7.62)
2 (1.90)
2 (1.90)

Vital status
Alive
Dead

43 (40.95)
62 (59.05)

Glioma classification
• Astrocytoma

- Supratentorial, frontal lobe
- Supratentorial, temporal lobe
- Supratentorial, parietal lobe

• Oligodendroglioma
- Supratentorial, frontal lobe
- Supratentorial, temporal lobe
- Supratentorial, parietal lobe

• Mixed glioma
- Supratentorial, frontal lobe
- Supratentorial, temporal lobe
- Supratentorial, parietal lobe

• Glioblastoma multiforme

15 (14.29)
7 (6.67)
5 (4.76)
3 (2.86)
14 (13.33)
10 (9.52)
3 (2.86)
1 (0.95)
14 (13.33)
6 (5.71)
7 (6.67)
1 (0.95)
62 (59.05)

Glioma grade
II
III
IV

14 (13.33)
29 (27.62)
62 (59.05)

Median survival
Grade II
Grade III
Grade IV

117.4 months
3.9 months
15.6 months

Type of radiation
External beam radiotherapy
Other (i.e., implants, combination of

methods)

102 (97.14%)
3 (2.86%)

Fractionation schedules
63 Gy in 35#
61.2 Gy in 34#
61 Gy in 33#
61 Gy in 34#
60 Gy in 30#
60 Gy in 50#
60 Gy in 60#
60 Gy in 33#
60 Gy in 23#
59.4 Gy in 33#
59.4 Gy in 30#
57 Gy in 30#
54 Gy 27#
54 Gy 30#
50.4 Gy 28#
50.4 Gy 30#
18 Gy in 1#
Not available

1 (0.95)
1 (0.95)
1 (0.95)
1 (0.95)
53 (50.48)
1 (0.95)
2 (1.90)
1 (0.95)
1 (0.95)
11 (10.48)
3 (2.86)
1 (0.95)
3 (2.86)
5 (4.76)
1 (0.95)
1 (0.95)
1 (0.95)
17 (16.19)
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Figures 1, 2 display an example of the contoured tumor ROIs

(10) on a series of MR image slices in Neuroimaging Informatics

Technology Initiative (NIfTI) format and the corresponding

segmented ROIs obtained from a patient with GBM. Figure 3

displays resized images with a contoured ROI and corresponding

segmented ROI taken from Figures 1, 2. Similar examples are shown

in Supplementary Figure 1–6 Twenty features having the highest

impact on predicting the therapeutic response were selected as most

predictive features according to the scores obtained from ANOVA

f-test. The contribution of those individual features for the

development of radiomics signature is illustrated in the Figure 4

and tumor grade had the highest impact tumor type for developing

the radiomics signature.

Based on these scores a Rad-score was calculated as given below.

Rad-score = Grade*28.7848 + Volume_mesh*27.9530 +

Volume_voxel *27.9388 + Volume_CH*23.1763 + Area_CH*22.6319

+ Surface_area*20.6406 + Surface_to_volume_ratio*16.1088 + Major_

axis_ length*15 .7395 + Minor_axis_ length*14 .1963 +

Maximum_distance*13.8473 + Centre_of_mass_shift*13.2133 + Least

_axis_length*12.8249 + Integrated_intensity*11.6341 +

Volume_density_AEE*4.3956 + Area_density_AEE*3.2322 +

Age*2.2917 + Volume_density_MVEE*1.8574 + Volume_

den s i t y *CH_1 . 7 642 + Ar e a_d en s i t y _MVEE*1 . 3 962

+ Tumor_type*0.9832

The selected machine learning algorithm was random forest as

it indicated the highest classification accuracy (81.59%) according

to Table 2. A significant difference in accuracy was demonstrated

between Gaussian naïve Bayes and all the other algorithms. i.e.,
Frontiers in Oncology 03
logistic regression and Gaussian naïve Bayes (p-value = 0.006),

linear discriminant analysis and Gaussian naïve Bayes (p-value =

0.001), k-nearest neighbors classifier and Gaussian naïve Bayes (p-

value = 0.012), classification and regression tree and Gaussian naïve

Bayes (p-value = 0.032), support vector machine and Gaussian

naïve Bayes (p-value = 0.001), random forest and Gaussian naïve

Bayes (p-value = 0.003).

Table 3 presents the performance evaluation metrics of the

trained model before optimizing the hyperparameters whereas

Table 4 presents the performance evaluation metrics of the

trained model after optimizing the hyperparameters. The

classification reports obtained after both random search and grid

search were similar (Table 4). The initial accuracy was 82%

according to Table 3 and an accuracy of 86% was achieved after

optimizing hyperparameters. Hence, the finally constructed model

was able to predict the absence or presence of tumor after

radiotherapy with 86% accuracy. The performance metrics in

terms of precision, recall, f1-score for the prediction of absence of

tumor yielded 91%, 81% and 86% respectively. The precision, recall,

f1-score for the prediction of presence of tumor yielded 82%, 92%

and 87% respectively (Table 4).

Figure 5A shows the confusion matrix prior to hyperparameter

tuning. It shows that the initial model was able to predict 20

responses correctly as “absence of tumor” and 22 responses

correctly as “presence of tumor” with 3 false negatives and 6 false

positives. Based on this confusion matrix following performance

metrics were calculated using the equations (3) (4) (5) and (6). The

achieved accuracy was 82%. Precision, recall and f1-score were
FIGURE 1

Contoured ROIs (yellow) showing GBM on contrast enhanced T1-weighted MR images. Adapted from CBICA Image Processing Portal; https://ipp.cbica.
upenn.edu/. A web accessible platform for imaging analytics; Center for Biomedical Image Computing and Analytics, University of Pennsylvania.
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calculated separately for the two classes (i.e., absence of tumor and

presence of tumor). For the absence of tumor precision was 87%,

recall was 77% and f1-score was 82%. Likewise, precision, recall and

f1-score for presence of tumor were 79%, 88% and 83%,

respectively. Using the confusion matrix shown in Figure 5B

these performance metrics were calculated for the model after

hyperparameter tuning as well. The confusion matrices obtained

after both random search and grid search were similar (Figure 5B).

Accordingly final model achieved an accuracy of 86%. The
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precision, recall and f1-score were 91%, 81% and 86%,

respectively for the absence of tumor and 82%, 92% and 87%,

respectively for the presence of tumor.

The constructed model was able to predict the therapeutic

response with an AUC value of 0.92 according these ROC curves.

When the model was evaluated after grid search AUC value

was 0.91.

During the process of model development after elimination of

highly correlated features, the correlation matrix shown in Figure 6
FIGURE 2

Segmented ROIs corresponding to the contoured ROIs shown in Figure 1. Adapted from CBICA Image Processing Portal; https://ipp.cbica.upenn.
edu/. A web accessible platform for imaging analytics; Center for Biomedical Image Computing and Analytics, University of Pennsylvania.
BA

FIGURE 3

(A) A contoured ROI (yellow) and (B) corresponding segmented ROI are shown (Magnification ×15; (A) relative to a slice in Figure 1 and (B) relative to
a slice in Figure 2).
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was obtained. According to it voxel-based volume, spherical

disproportion, asphericity, compactness 1, compactness 2, convex

hull volume, convex hull area, volume density based on AABB, area

density based on AABB and volume density based on OMBB were

identified as highly correlated features. After removing these

features, a morphometry-based radiomics signature was

developed with the sixteen features using the highest ANOVA f-

test scores. Therefore, the new Rad-score could be given as:

Rad-score = Grade*28.7848 + Volume_mesh*27.9530 + Surface_

area*20.6406 + Surface_to_volume_ratio*16.1083 + Major_

axis_ length*15 .7395 + Minor_axis_ length*14 .1963 +

Maximum_3D_diameter*13.8473 + Centre_of_mass_shift*13.2133 +

Least_axis_length*12.8249 + Integrated_intensity*11.6341 + Volume

_density_AEE*4.3956 + Area_density_AEE*3.2322 + Age*2.2917 +

Volume_density_MVEE*1.8574 + Volume_density_CH*1.7642 +

Area_density_MVEE*1.3962

Random forest exhibited higher accuracy (i.e., 83.26%)

compared to other algorithms during ten-fold cross validation

(Supplementary Data). Therefore, it was identified as the most

appropriate algorithm to train the prediction model in this

approach as well (Table 5). However, there was no significant

difference between any of the tested algorithms.

In this approach the developed prediction model achieved an

accuracy of 82% with the random forest before optimizing

hyperparameters (Table 6). Precision, recall and f-score for

absence of tumor after treatment were 84%, 81% and 82%

respectively and for presence of tumor after treatment were 81%,
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84% and 82% respectively. The achieved accuracy after

hyperparameter tuning using grid search was 84% with precision,

and f1-score for absence of tumor after treatment indicating 91%,

77% and 83% respectively and for presence of tumor after treatment

indicating 79%, 92% and 85% respectively (Table 7).

Figures 7A, B illustrate the confusion matrices before and after

hyperparameter tuning for this new prediction model. As before

same performance metrics could be calculated from these

confusion matrices.

This model was able to predict the therapeutic response with an

AUC-ROC of 0.92 after grid search.
Discussion

This study focused on developing a morphometry-based

radiomics signature for the prediction of therapeutic response in

patients with glioma after receiving radiotherapy. A prediction

model was built using the most predictive features without

removing the highly correlated features as well as removing the

highly correlated features. The model built after eliminating the

highly correlated features yielded a lesser accuracy (84%) compared

to the model built without removing correlated features (86%).

Therefore, elimination of the highly correlated features had not

improved the accuracy. However, AUC value for the model built

after eliminating highly correlated features was slightly higher

(0.92) than the AUC value obtained without eliminating the
FIGURE 4

Bar graph showing the role of individual features that contributed to the developed radiomics signature.
TABLE 2 Performance of tested algorithms using cross validation.

Algorithm Accuracy (%) Standard deviation (SD)

Logistic regression 77.27 0.11

Linear discriminant analysis 81.52 0.10

k-nearest neighbors classifier 76.44 0.10

Classification and regression tree 77.35 0.10

Gaussian naïve Bayes 67.20 0.08

Support vector machine 78.11 0.07

Random forest 81.59 0.09
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highly correlated features (0.91). In addition, random search and

grid search yielded similar values for the accuracy, precision, recall

and f1-score but slightly different values for AUC when evaluated

for the model built without eliminating highly correlated features.

In addition to the morphometric features age, gender, tumor

type and grade also exhibited prediction ability according to this

study. Especially tumor grade has shown the highest contribution to

the developed signature. Previous studies had also utilized the

demographic or clinical features to construct models aiming to

improve the outcome prediction. For example, the model

constructed by Patel et al. also included both clinical features

such as age and radiomics features to evaluate the prediction of

therapeutic response in patients with GBM following radiotherapy.

Their sample was also inclusive of TCIA data. Further, they had

identified sphericity and elongation as important morphometric

features to build the model whereas this study identified mesh-

based volume, surface area etc. are more important compared to

those two features. While this study used ANOVA f-test for feature

selection and random forest to train the model they had used

random forest for feature selection and Naïve Bayes to train the

model. Besides their AUC value of 0.8 and accuracy of 74% were

lesser than the AUC value and accuracy obtained in this study (11).

Pan et al. also developed a radiomics signature to predict the

response of 152 patients having GBM treated with radiotherapy and

only one morphometric feature, i.e., minor axis length was included

as a predictive feature. In contrast this study included 105 patients

with glioma following radiotherapy and several morphometric

features were selected to build the radiomics signature. They too

had included data from TCIA. Unlike this study they had used

Boruta for the feature selection. They had used several machine

algorithms including random forest whereas the random forest was

determined as the most appropriate algorithm to train the model in

this study. In addition to the grid search which they had used,

random search was also used for hyperparameter optimization in
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this study. However, they had achieved an AUC of 0.98 and an

accuracy of 94% both of which were higher than the values obtained

in this study (12). Another study had evaluated therapeutic

response after chemoradiotherapy in GBM patients who were

selected from TCIA as well. Similar to our study they too had

used ANOVA for feature selection. Yet, they had selected linear

discriminant analysis to develop the model. However, their

accuracy (82.3%) is lesser than the accuracy achieved in this study

but the AUC value is slightly higher than that of this study (92%).

Besides, they had constructed their model based on non-

morphometric features (13). Zhang et al. had developed four

models to predict therapeutic response for patients with

postoperative residual gliomas treated with chemoradiotherapy

but none of them had identified any morphometric feature as a

predictive feature. Nevertheless, they had built the prediction

models using multiple logistic regression and only one model had

better AUC with low accuracies for all four models (14).

Thus, the results obtained in our study are comparable to

previously conducted studies in certain areas and differ in some

areas. In addition, there were a limited number of studies

specifically related to patients with gliomas following radiotherapy

and they were also focusing mostly on non-morphometric features

such as texture, wavelet, etc. According to the findings in this study

morphometric features showed a higher contribution for the

developed radiomics signature indicating their predictiveness of

therapeutic response following radiotherapy. The prediction

accuracy of 86% and AUC value of 0.91 concludes that

morphometry-based signature could be utilized as a noninvasive

biomarker for therapeutic response in patients with glioma.

According to this study the elimination of highly correlated

morphometric features did not improve the accuracy of the

prediction model.

Not only high-quality images (i.e., images without artifacts and

distortions) clinical information such as therapeutic response is also
TABLE 4 Classification report for the model performance after hyperparameter tuning.

Precision (%) Recall (%) F1-score (%) Support

Absence of tumor 91 81 86 26

Presence of tumor 82 92 87 25

Accuracy 86 51

Macro average 87 86 86 51

Weighted average 87 86 86 51
fro
TABLE 3 Classification report for the model performance prior to hyperparameter tuning.

Precision (%) Recall (%) F1-score (%) Support

Absence of tumor 87 77 82 26

Presence of tumor 79 88 83 25

Accuracy 82 51

Macro average 83 82 82 51

Weighted average 83 82 82 51
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required for making predictions and finding such databases with

reliable data was practically difficult. Furthermore, radiotherapy is

an integral component in the treatment of gliomas but there are

other systemic therapies such as chemotherapy that might be used

as treatment options. If such treatment was used, that also affect the

therapeutic response. Due to the unavailability of treatment specific

information the confounding effects of such treatment were not

considered in this study. Further, the application of machine

learning algorithms, which is the current trend in predictive

modelling, needs large sample size for training and evaluating the

model. Having access to large sample sizes is practically difficult and

it was a major limitation in this study as well.

Like radiomics deep learning, a subfield of machine learning, is

rapidly gaining worldwide popularity and it is successfully applied

in various areas. Unlike machine learning it is more efficient and has

the capability to produce extremely high-level data representations.

However, these advantages of deep learning highly depend on

massive amounts of data (15). Therefore, machine learning is

preferable for this study since our dataset is not that large.
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Furthermore, computational demand is comparatively high for

deep learning. Thus, the performance is limited by the available

computing power (16). In that perspective also machine learning

was more appropriate for our task. Even though deep learning

makes it less suitable for our study considering the above facts

future direction of predicting therapeutic response should focus on

building a deep learning model with large dataset. Nevertheless,

establishment of large-scale datasets is mandatory for building

prediction models based on either machine learning or deep

learning techniques.

Moreover, the external validation is important to determine the

model’s reproducibility and generalizability. Yet, it was not possible

to find the appropriate data which was suitable for this study.

Therefore, it is another limitation in this type of study. On the other

hand, prediction models are never truly validated as pointed out by

Calster et al. (17).

In addition, consideration of the clinical utility of radiomics

models are also important. Up to date a large number of studies

were done but implementation in clinical context is still challenging.
FIGURE 6

Correlation matrix.
BA

FIGURE 5

Confusion matrices for the model performance (A) prior to hyperparameter tuning (B) after hyperparameter tuning.
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Still radiomics is not clinically implemented since there are

limitations for integrating radiomics in radiotherapy practice (18).

There are advantages of using morphometric features compared to

other categories of radiomics features. For example, morphometric

features are insensitive to normalization (19) as well as to pixel

space resampling or interpolation (20). Also, they were less affected

by the noise which is favorable for their utilization in radiation

oncology (21).

The robustness and repeatability of these features are also

important for achieving the optimum benefit in clinical

applications and morphometric features had exhibited highest

repeatability and robustness (22–24). However, there are factors

affecting their repeatability and robustness. For example, the image

sequence or image contrast may impact the robustness and

repeatability of a morphometric feature for a particular study (19,

25). In addition to the type of image (26, 27), image acquisition

parameters (28) and software platform (29) could also affect the

reliability of these features. Moreover, the robustness of extracted

morphometric features may vary depending on the method of

segmentation (30–33). Delineation or the contouring of ROI is
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mostly done manually and that is a time-consuming procedure.

Both manual and semi-automatic segmentation are subject to

interobserver variability as well as intra-observer variability

affecting the reproducibility and reliability of radiomics analysis

(34–37). Lack of standardization and harmonization methods is

also a problem in obtaining reliable results (38).

Therefore, it is necessary to take the above factors into

consideration when incorporating morphometric features into a

radiomics model which would be clinically implementable

and acceptable.
Methods

110 patients with pathologically confirmed gliomas following

radiotherapy were retrospectively evaluated. All the patients had

magnetic resonance imaging (MRI) scans prior to treatment and

had received radiotherapy for the primary tumor site. All the images

were obtained as multimodal scans (i.e., T1-weighted, Gd-enhanced

T1-weighted, T2-weighted, T2-weighted FLAIR) (39). Therapeutic
TABLE 6 Classification report for the new model performance prior to hyperparameter tuning.

Precision (%) Recall (%) F1-score (%) Support

Absence of tumor 84 81 82 26

Presence of tumor 81 84 82 25

Accuracy 82 51

Macro average 82 82 82 51

Weighted average 82 82 82 51
fro
TABLE 7 Classification report for the new model performance after hyperparameter tuning.

Precision (%) Recall (%) F1-score (%) Support

Absence of tumor 91 77 83 26

Presence of tumor 79 92 85 25

Accuracy 84 51

Macro average 85 84 84 51

Weighted average 85 84 84 51
TABLE 5 Performance of tested algorithms using cross validation to develop new model.

Algorithm Accuracy (%) Standard deviation (SD)

Logistic regression 78.94 0.11

Linear discriminant analysis 81.44 0.12

k-nearest neighbors classifier 78.11 0.11

Classification and regression tree 78.18 0.10

Gaussian naïve Bayes 74.70 0.11

Support vector machine 79.85 0.09

Random forest 83.26 0.07
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response was obtained from clinical data during treatment follow-

up and the response after radiotherapy to primary tumor site was

considered as the therapeutic response for this study excluding

response after radiotherapy to recurrent tumor or reirradiation.

This study used segmented as well as non-segmented

deidentified images and clinical data obtained from Brain Tumor

Segmentation (BraTS) datasets (10), The Cancer Imaging Archive

(TCIA) and Genomic Data Commons (GDC) Data Portal (40) in

compliance with their data usage policies and restrictions (39, 41–

45). Segmented images referred to as already segmented glioma

regions of interest (ROIs) obtained from the BraTS dataset. Those

segmentations had been done manually and were approved by

expert board-certified neuroradiologists. The non-segmented

images are the images obtained without ROI delineation and then

ROIs were segmented manually. However, all the images were

reviewed by an experienced board-certified radiologist after

segmentation. Then necessary changes were incorporated prior to

feature extraction.

The image processing and feature extraction were performed

for all the patients using MATLAB 2014a. Normalization with

respect to signal intensities and voxel sizes were not considered in

this study prior to feature extraction as they do not have a huge

impact on morphometric features (19, 46). According to the

previous studies there was no uniformity in selecting the

morphometric features or morphometric features being identified

as predictive features. Therefore, this study included 29

morphometric features according to the image biomarker

standardization initiative (IBSI) (47) considering their potential to

yield different outcomes.

After feature extraction supervised learning method was applied

to build a model for predicting therapeutic response following

radiotherapy. The feature analysis including the model

construction was done using Python 3.7. The steps of

constructing the model are illustrated in the Figure 8.

During the data preprocessing stage data was cleaned or tidied

first in order to facilitate analysis. The unwanted and irrelevant

observations as well as duplicate observations were removed,

missing values were identified with a heatmap and removed

accordingly to clean the data. Then the variables such as gender

and therapeutic response were labeled. For example, therapeutic

response had been evaluated in terms of absence and presence of

tumor following radiotherapy. Such information was collected
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using the standard forms and documents (48). Since that could be

treated as a binary classification, they were labeled using two tags. In

addition, it was ensured that the dataset was structured in a manner

so that each column, row and cell represented a variable, an

observation and a single value respectively. The unequal

distribution between the two classes (i.e. presence of tumor and

absence of tumor following radiotherapy) can lead to over

classification and the model will be biased towards the majority

class. Therefore, synthetic minority oversampling technique

(SMOTE) was used as a measure of solving class imbalance prior

to model construction (49). Then features of the entire dataset were

normalized to ensure the consistency. Here, the normalization

refers to having zero mean value with unit variance for all the

feature values. With normalization the values were rescaled and the

significance of any outliers that might present due to the broad

range of feature variabilities were reduced. Following equation gives

the normalized feature value x

x   = X−min (X)
max (X)−min (X) (1)

where X is the original value.

After normalization the dataset was divided into two sets as

training (70%) and test (30%) datasets. The train-test split was

stratified to preserve the same proportions of data in each class as

observed in the original dataset. In addition to the morphometry-

based features age, gender, tumor type and grade were also included

to find out their potential for predicting therapeutic response. Then

the most predictive twenty features to forecast the therapeutic

response were selected from the training dataset using Analysis of

Variance (ANOVA) f-test. ANOVA f-test was used to compare the

variances between the two classes and within the classes for each

feature and determine whether there was a significant difference

between the two classes for that particular feature. The ratio

between these two variances were given as the f-test score.

Therefore, f-test score can be give as:

f − test   score   = Variance   between   the   classes   (Mean   Square   for  Classes)
Variance  within   the   classes   (Mean   Square   for  Error) (2)

The f-test score reflects how much it impacts the therapeutic

response. Hence, a radiomics signature was developed based on f-

test scores of the selected features. After that, the most appropriate

machine learning algorithm to predict the therapeutic response was

selected using ten-fold cross validation to validate the efficiency of
BA

FIGURE 7

Confusion matrices for the new model performance (A) prior to hyperparameter tuning (B) after hyperparameter tuning.
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the model that was going to be constructed. Since the evaluation of

therapeutic response involved two output classes only classification

machine learning algorithms such as logistic regression, linear

discriminant analysis, k-nearest neighbor, classification and

regression trees, Gaussian naïve Bayes, support vector machine

and random forest were used to determine the most suitable

algorithm in this study.

The average accuracy was calculated for all the above

mentioned algorithms. The algorithm with the highest accuracy

was chosen to train the prediction model. In addition, the two-

sample p-value test (one-tailed) with 95% confidence level was

performed to determine whether there was a significant difference

between the accuracies of the tested algorithms. Using the most

appropriate machine learning algorithm and the selected

normalized features the prediction model was trained for the

developed radiomics signature. Once the model was constructed

its performance was evaluated in terms of accuracy, precision, recall

and f1-score using the test dataset. Accuracy is the ratio of the

number of correct predictions to the total number of predictions

and it can be given as:

Accuracy =   TP+TN
TP+FP+TN+FN (3)

where TP is true positive, TN is true negative, FP is false positive

and FN is false negative.

Precision is the ratio of the correct positive predictions to the

total positive predictions and it can be given as:

Precision =   TP
TP+FP (4)

Recall or sensitivity is the ratio of correct positive predictions to

the actual positive predictions and it can be given as:

Recall =   TP
TP+FN (5)

f1 - score is the weighted average of precision and recall. It can

be given as:

F1 − score =   2*
Precision*Recall
Precision+Recall

(6)

Then the hyperparameters i.e., the parameters that reflect the

structure of the model, were tuned considering the obtained results
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as a baseline in performance with default hyperparameter settings.

The hyperparameter tuning is the process for determining the

appropriate combination of parameters which maximizes the

model performance. During this optimization procedure the

model configuration that resulted in the optimal performance in

terms of maximizing accuracy or minimizing error was found out.

In this study random search and grid search were used to optimize

the hyperparameters. While random search finds out the optimal

hyperparameters from random points in the parameter grid defined

by the bounded domain of hyperparameter values, grid search finds

out the optimal hyperparameters from every point in the parameter

grid. After optimizing the hyperparameters the model performance

was evaluated again using the area under curve-receiver operating

characteristic (AUC-ROC) curve in addition to the previously

mentioned performance evaluation metrics.

Next, the above mentioned process was repeated to develop a

prediction model after removing highly correlated features. To

eliminate the highly correlated features a correlation matrix was

computed by calculating correlation coefficients for each

morphometric feature during data preprocessing and the

dependence of one morphometric feature on another was

identified. Then highly correlated features as indicated by the

correlation coefficients greater than 0.95 were removed. Then the

rest of the steps were repeated as before.
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