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MicroRNAs (miRNAs) play vital roles in the post-transcriptional regulation of gene

expression. Previous studies have shown that miR-150 is a crucial regulator of B

cell proliferation, differentiation, metabolism, and apoptosis. miR-150 regulates

the immune homeostasis during the development of obesity and is aberrantly

expressed in multiple B-cell-related malignant tumors. Additionally, the altered

expression of MIR-150 is a diagnostic biomarker of various autoimmune

diseases. Furthermore, exosome-derived miR-150 is considered as prognostic

tool in B cell lymphoma, autoimmune diseases and immune-mediated disorders,

suggesting miR-150 plays a vital role in disease onset and progression. In this

review, we summarized the miR-150-dependent regulation of B cell function in

B cell-related immune diseases.
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1 Introduction

MicroRNAs (miRNAs) are a type of non-coding RNA molecule that is 20-22nt in

length. These RNAs inhibit gene expression by base-pairing targeted mRNAs to avoid

ribosomal translation as well as to recruit enzymes to destabilize targeted mRNAs in a

ribosome free state (1). Some of miRNAs have multiple target genes, which eventually

allows miRNA to regulate complex biological processes and form a complex regulatory

network, which is involved in cellular signaling, cross-species variation of gene expression,

and co-regulation of transcription factors (2, 3).

MIR-150 is located on human chromosome 19q13.33, downstream of the genes

encoding the ribosomal proteins L3a (Rpl13a) and S11 (Rps11) [UCSC Genome

Browser (http://genome.ucsc.edu/cqi-bin/hgGateway)]. As an important hematopoietic

cell-specific miRNA, miR-150 plays a key role in many hematopoietic lineages, especially

lymphocytes. miR-150 accumulates in the lymph nodes, the spleen, and the thymus (4, 5)

and is highly expressed in mature B cells and T cells, but does not express in the progenitor
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cells (6), indicating steady-state levels of miR-150 are the highest

during lymphocyte development (4). This stage-specific expression

pattern suggests that miR-150 may play a role in lymphocyte

development or function (7).

miR-150 is vital in both normal and malignant hematopoietic

processes. Studies have demonstrated that miR-150 is a potential

target for the treatment of various types of hematopoietic

malignancies (8). Low MIR-150 expression was present in Burkitt

lymphoma (BL) cell lines, such as Daudi (CVCL_0008), Raji

(CVCL_0511), BJAB (CVCL_5711), and Ramos (CVCL_0597).

Restoring MIR-150 expression can decrease the proliferation of

Daudi and Raji cells. Moreover, ectopic MIR-150 expression

impairs the differentiation of pro-B to pre-B stage (9). The

expression of MIR-150 in indolent primary cutaneous B-cell

lymphoma (10) and chronic lymphocytic leukemia (11) is

inversely related to patients’ survival time, helping the prognosis

of the disease. Patients with B-cell tumors expressing lower MIR-

150 have a worse prognosis and a shorter survival time. This implies

that miR-150 is highly relevant in the regulation of B-cell biology

regarding physiological conditions and disease states.

This review will summarize the role and mechanisms of miR-

150 in regulating B cell biological functions including development,

proliferation, differentiation, migration, activation, metabolism,

and apoptosis.
2 Effect of miR-150 on B
lymphocyte biology

The developmental characteristics of B cells are the sequential

expression of cell surface markers and the ordered rearrangement of

immunoglobulin heavy and light chain gene fragments (12).

Through the continuous rearrangement of heavy and light chain

loci, B progenitor cells (pro-B) gradually differentiate into precursor

B cells (pre-B) and immature B cells expressing membrane-bound

immunoglobulin M (IgM). Immature B cells migrate from the bone

marrow to the spleen and undergo transitional stages (TR,

including T1, T2, and T3) (13, 14). The transitional B cells that

enter the splenic follicles are transformed into follicular B cells (15).

The spleen, peritoneal cavity, and pleural cavity contain B1 cells

(15). B1a cells, a subset of B1 cells, are an important source of serum

low-affinity multi-specific IgM antibodies and are related to

autoimmunity (16).

The immune response of B cells is regulated by multiple

receptor signals and their corresponding molecules, including the

B-cell receptor (BCR)-mediated transmembrane signal. After

stimulation with an antigen, spleen tyrosine kinase is recruited to

BCR phosphorylating tyrosine residues and activating downstream

signaling pathways, enzymes, and molecules, such as growth factor

receptor bound protein 2-associated binding protein (GAB), and

phosphoinositide 3 kinase (PI3K). The activation of these targets

then triggers downstream BCR signaling. Upon activation of BCR

signaling, multiple response systems are initiated, including the

nuclear factor kappa B (NF-kB), the extracellular regulated protein

kinase (ERK), and the mitogen-activated protein kinase, and the

protein kinase B (AKT) pathways (17). The activations of different
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enzymes and different pathways lead to the synthesis, assembly, and

secretion of various proteins that affect the proliferation, apoptosis,

and activation of B cells as well as B cell-related diseases.

miR-150 enriches in B cells (18), and plays a key role in B cell

development and function (4, 7, 19). The ectopic expression of

MIR-150 significantly inhibits the differentiation of pro-B cells into

pre-B cells as well as affects the development of the entire B lineage

(4, 18). Spierings et al. (20) demonstrated that miR-150 regulated

the development of immature B-cells by preventing the transition

from T1 to T2/3 in peripheral lymphoid organs. Tan et al. (21)

found that the expression of MIR-150 was up-regulated within

three stages of B cell development including naïve B cells, germinal

center (GC) B cells, and memory B cells. Almanza et al. (22) showed

that primary B lymphocytes from the spleen of naïve adult mice

could synthesize and deliver MIR-150 antisense sequences (anti-

microRNA), thus regulating the expression of MIR-150. A large

number of studies have shown that miR-150 influences the

expression of many proteins, including MYB proto-oncogene

product (MYB), forkhead box factor P1 (FOXP1), and FMS

related receptor tyrosine kinase 3 (FLT3), as well as regulating B

cell survival (21, 23–25) and BCR signaling (26) (Figure 1).
2.1 MYB (HGNC:7545)

MYB is a transcription factor essential for normal lymphocyte

development and B cell growth (4, 7). MYB knockout in B cells

prevents the transition of pro-B cells to pre-B cells (24), consistent

with a defect in the lifespan of pre-B cells. This may be because

MYB-deficient B cells have reduced nuclear protein kinase cd
(PKCd) levels, thereby inhibiting the expression of the B-cell

activation factor receptor (BAFF-R), leading to decreased

sensitivity of the B cell to BAFF (the main determinant of naïve B

cell survival) (27). Fahl et al. (28) confirmed that MYB can

upregulate the expression of interleukin-7 receptor alpha-chain

(CD127) and enhance the expression of early B cell factor 1

(EBF1) (HGNC:3126) promoting the development and survival of

pro-B cells. MYB is downregulated in immature and mature B cells

and upregulated in progenitor lymphatic B cells, pro-B cells, and

pre-B cells. The “seed” region of MIR-150 is “complementary”

paired with two highly conserved 8-nt sites in the 3’UTR of the

MYB (7, 29). Ectopic expression of MIR-150 in progenitor B cells

downregulated MYB levels, and blocked the conversion of pro-B

cells to pre-B cells, thereby inhibiting the early development of B

cells (4, 6, 7). These studies suggest that miR-150 regulates B cell

development and lifespan through the inhibition of MYB.
2.2 FOXP1 (HGNC:3823)

The transcription factor FOXP1 is critical for early B cell

development (23). FOXP1 belongs to the forkhead box

transcription factor family, which is highly expressed in pro-B

and pre-B cells (23, 30). FOXP1 conserved 7-nt locus in its 3’UTR

is recognized as a MIR-150 “seed” region (29). FOXP1 is an

important regulatory factor of early B cell development and GC
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response (23, 31). FOXP1 deficient mice possessed severe B cell

development defects during the transition from pro-B to pre-B cells

(23, 24); furthermore, mature B cells were severely reduced within

the peripheral blood. This recapitulates the phenotype observed in

mice ectopically expressing MIR-150 in hematopoietic stem and

progenitor cells. FOXP1 is a transcriptional activator of

recombination-activating genes RAG1 (HGNC:9831) and RAG2

(HGNC:9832), which rearrange the immunoglobulin heavy chain

V(D)J IgH, promoting the transition of pro-B to pre-B cells in bone

marrow (23). Another study reports that FOXP1 ablation in

developing and mature B cells resulted in reduced numbers and

frequencies of both follicular and B1 cells impairing antibody

production upon T cell-independent immunization in vivo.

FOXP1-deficient B cells are prone to apoptosis even though they

exhibit an increased capacity to proliferate. The transcriptional

analysis further demonstrated that overexpression of B-cell

lymphoma 2 gene (BCL2) (HGNC:990) rescued the survival

defect of FOXP1-deficient mature B cells in vivo and restored the

numbers of peripheral B cells (32). FOXP1 may play antagonistic
Frontiers in Oncology 03
roles in regulating the GC response. FOXP1 is downregulated in

mature GC B cells and is inversely correlated with BCL6 (31).

Together, FOXP1 is a target of MIR-150 that controls the

proliferation, differentiation, and survival of B cells.
2.3 FLT3 (HGNC:3765)

FLT3 is a membrane-bound receptor tyrosine kinase that

participates in the proliferation, differentiation, and apoptosis of

hematopoietic cells (33). Jiang et al. (34) found that miR-150

directly targets the 3’UTR of FLT3. In B1a cells, Myb like, SWIRM,

andMPN domains 1 (MYSM1) recruits the transcription factor MYC

to the MIR-150 promoter and stimulates MIR-150 transcription,

thereby, reducing the expression of FLT3 in B1a cells, leading to a

reduction in proliferation and cell surface IgM levels (25). This study

reveals the importance of the MYSM1/miR-150/FLT3 pathway in

regulating the proliferation of B1a cells.
FIGURE 1

The physiological regulation of miR-150 on B cells. The miR-150 in B cells is directly or indirectly involved in the regulation of key aspects of B cell
proliferation, differentiation, development, and antibody secretion by inhibiting the target genes MYB, FOXP1, survivin (participating in the G2/M
phase of B cell cycle regulation), and FLT3 (by combining with the MYC gene to enhance T2/T3 BCR signaling). MYB, MYB proto-oncogene product;
PKCd, nuclear protein kinase cd; BAFF, B-cell activation factor; BAFF-R, B-cell activation factor receptor; CD127, interleukin-7 receptor alpha-chain;
EBF1, early B cell factor 1; FOXP1, forkhead box factor P1; ERAG, Rag enhancer; V(D)J IgH, immunoglobulin heavy chain; RAG1, recombination-
activating genes 1; RAG2, recombination-activating genes 2; Bcl-xl, an anti-apoptotic BCL1 family protein; BCL6, B-cell lymphoma 6; MYSM1, Myb
like, SWIRM and MPN domains 1; MYC, MYC protooncogene product; FLT3, FMS related receptor tyrosine kinase 3; IgM, immunoglobulin M; Smac/
DIABLO, second mitochondria-derived activator of caspase or direct IAP binding protein.
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2.4 Survivin (HGNC:593)

Survivin is one of the main inhibitors in the apoptosis (IAP)

family. It regulates B cell response to mitotic stimulation and cell

cycle progression. Survivin maintains the humoral response of B

cells (35) by sustaining the proliferation of B1 and B2 cells (36) and

inhibiting their apoptosis by antagonizing the pro-apoptotic protein

second mitochondria-derived activator of caspase or direct IAP

binding protein (Smac/DIABLO), a mitochondrial protein (37).

The 3’UTR of survivin contains a 6-nt locus complementary to the

MIR-150 “seed” (37). A study of GC B cells in normal tonsils found

that MIR-150 expression is inversely correlated with survivin.

Transfection of synthetic miR-150 inhibited the expression of

survivin in the DG75 cell line, indicating that miR-150 regulates

B cell survival by regulating the expression of survivin directly or

indirectly (21).
2.5 BCR

The fate of B cells depends on the balance between survival and

death signals induced by BCR. BCR signaling may lead to different

biological outcomes, depending on the signal strength and duration

of BCR, the differentiation stage of the B cells, and whether there is a

common stimulus signal (38). Upon activating BCR signaling,

immature B cells will stagnate and undergo apoptosis while

mature B cells will proliferate (39). Kluiver et al. (26) found that

high MIR-150 expression in the T2/T3 phase of transitional B cells

activates BCR signaling, resulting in the BCR-induced inhibition of

the growth and/or apoptosis of transitional B cells. Conversely,

decreased miR-150 in transitional B cells weakens the BCR

signaling and prevents BCR-induced apoptosis; thus, promoting

the outgrowth of self-autoreactive B cells, leading to autoimmune

diseases or even lymphomas.
3 miR-150 modulation in B
lymphocyte-related diseases

3.1 The role of miR-150 in
obesity-related diseases

Diabetes mellitus (DM) is the collective term for heterogeneous

metabolic disorders whose main finding is chronic hyperglycemia,

including type-1 diabetes mellitus (T1DM) and type-2 diabetes

mellitus (T2DM). Patients with T1DM exhibit decreased expression

levels of MIR-150 in peripheral blood mononuclear cells (PBMCs)

compared to healthy control subjects and T2DM patients (40).

NF-kB inhibited the apoptosis of pancreatic b cells and islet

inflammation by up-regulating the MIR-150 and down-regulating

p53 (HGNC:11998) up-regulated modulator of apoptosis, therefore,

preventing the occurrence and development of T1DM (41).

However, miR-150 levels and functions differ in two types of DM.

Meta inflammation is involved in the pathogenesis of obesity-

related diseases, including T2DM and cardiovascular diseases
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(42–45). During the occurrence of obesity, the absolute number

and relative proportion of adipose tissue B cells (ATB) in visceral

stromal cells increase significantly. ATBs are antigen-presenting

cells account for more than 20% of the stromal cell population

within the fat tissue of obese individuals (46, 47). Ying et al. (18)

found that miR-150 controls ATB function by inhibiting the

expression of BCR signaling-associated genes including ELK1

(ETS transcription factor) (HGNC:3321), ETF1 (eukaryotic

translation termination factor 1) (HGNC:3477), and MYB, and by

changing the surface characteristics of the major histocompatibility

complex II (MHC II), thereby regulating insulin resistance, obesity-

induced inflammation, and the glucose tolerance of adipose tissue.

MIR-150 knockout in ATBs increased the proportion and number

of ATB cells, MHC II expression, and the antigen presentation

ability of ATB cells, leading to the enhanced activity of T cells or

macrophages (Mj) and fat-induced inflammation and insulin

resistance. Knockout of MIR-150 also enhanced the expression of

inflammatory cytokines such as interferon g in adipose tissue. In

addition, upon the initiation of B cell response, the aberrantly

downregulated MIR-150 increases immunoglobulins production,

playing a critical role in obesity-induced insulin resistance (18, 46).

Consistently, Xiao et al. (7) demonstrates that MIR-150 knockout

animals had a multi-fold increase in IgA, IgG1, IgG2, and IgM

serum levels. The elevated serum immunoglobulin levels in MIR-

150-deficient animals are likely due to the increased response of

follicular B cells. Recently, He et al. (48) found that in T2DM

intestinal damp-heat syndrome patients, compared to healthy

people, the exosomal miR-150 was significantly upregulated, and

the total cholesterol and triglyceride contents of diabetic patients

were positively correlated with exosomal miR-150 expression.

Collectively, miR-150 plays a key role in ATB function by

regulating immune homeostasis within adipose tissue (Figure 2).
3.2 The effect of miR-150 on
B cell lymphoma

miR-150 is one of the most abundant miRNAs within three

mature B cell subsets: naïve, GC, and memory B cells (21). miR-150

is important in regulating the expression of genes associated with

BCR signaling (7, 11, 49–52). Recently, miR-150 started to receive

increasing attention due to its tumor suppressive role in

hematological malignancies (53). MIR-150 is downregulated in

several B-lymphocyte malignancies (49, 54–57), such as diffuse

large B-cell lymphoma (DLBCL) (55), mantle cell lymphoma

(MCL) (54), BL (9) and aggressive chronic lymphocytic leukemia

(CLL) (11). Besides, the MIR-150 is highly expressed in

lymphocyte-derived exosomes and is easily detectable and

significantly enriched in exosomes circulating in human blood

(58). Exosome-encapsulated miR-150 is being suggested as a new

class novel biomarker as diagnostic and predictive markers in the

development of B cell malignancies (59, 60). Abnormal expression

of MIR-150 results in dysfunction of important genes that perform

the function in the survival, proliferation, and aggressiveness in B

cell malignancies (61) (Table 1).
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3.2.1 miR-150 in FL
FL and a high-grade transformed follicular lymphoma (tFL) are

mediated by the MYC (HGNC:7553)/MIR-150/FOXP1 axis. MYC

in tFL B cells binds to the promoter of MIR-150 and inhibits its

expression in tFL patients (49). The low miR-150 levels in tFL

enhance the expression of FOXP1. A low level of miR-150 and a

high level of FOXP1 are associated with a short overall survival rate

(49). These studies indicate that the MYC/MIR-150/FOXP1 axis

determines the invasiveness and transformation of untransformed

FL B cells (49).

In contrast to normal differentiated cells, which rely primarily

on mitochondrial oxidative phosphorylation to generate the energy

needed for cellular processes, most cancer cells rely on aerobic

glycolysis, a phenomenon termed “theWarburg effect” (80). Even in

the context of the aerobic environment, the metabolism of cancer

cells leads to a high rate of glucose consumption through glycolysis

and the release of lactic acid (81). Tumor cells take up glucose

through the glucose transporter 1 (GLUT1) to maintain their

anabolic metabolism, growth, and reproduction. King et al. (82)

identified the GLUT1 encoding transcript solute carrier family 2

member 1 (SLC2A1) (HGNC:11005) as a target of MIR-150,

connecting miR-150 with the modulation of glucose uptake. Magi

et al. (66) confirmed that SLC2A1 is overexpressed in FL cells,

involved in the control of glucose metabolism, and is associated

with FL transformation (67). The downregulation of MIR-150 may
Frontiers in Oncology 05
promote FL transformation by enhancing glucose metabolism

through the upregulation of SLC2A1/GLUT1 in FL tumor cells.

3.2.2 miR-150 in CLL
CLL is a mature B-cell malignant tumor characterized by CD5+

B-cell clonal accumulation in peripheral blood, bone marrow, and

secondary lymphoid organs (83, 84). Low miR-150 levels are

associated with a poor prognosis in CLL, possibly due to

dysregulated BCR signaling (11). miR-150 influences BCR

signaling in CLL by regulating the expression of growth factor

receptor-bound protein 2-associated binding protein 1 (GAB1)

(HGNC:4066) and FOXP1 (11). Silencing FOXP1 in B cells

down-regulates basal and anti-m-induced phosphorylated AKT

levels (85). Furthermore, FOXP1 is a transcription factor that

controls the maturation of B cells by promoting the expression of

genes required for the rearrangement of immunoglobulin sub-genes

in mature B cells (23). Therefore, silencing FOXP1 reduces its

responsiveness to BCR stimulation (11). In addition, as an

important regulator of B cell activation, FOXP1 positively

regulates NF-kB signaling in malignant B cells. GAB1 up-

regulates the sensitivity of B cells to anti-m-induced AKT

phosphorylation. It is also an adaptor molecule that recruits PI3K

to the B cell membrane after sIg connection, activating AKT to

enhance the BCR signal. Silencing GAB1 in B cell lines affects the

magnitude of their cross-linking response to BCR directly (68). Low
FIGURE 2

Regulation of miR-150 in adipose tissue B cells on obesity-induced adipose tissue inflammation and insulin resistance. After being stimulated by
antigen, ATB regulate the expression of target genes ETF1, ELK1 and MYB by reducing miR-150 level, and enhancing the proportion of B cells with
MHC II on the cell membrane and the number of MHC II expressed on the B cell membrane so as to improve its antigen presentation ability and its
activity as well as enhancing the BCR signaling pathway and immune response, promoting the production of various types of immunoglobulins and
interferon, thereby regulating obesity-induced fat tissue inflammation and insulin resistance. ATB, adipose tissue B cells; ELK1, ETS transcription
factor; ETF1, eukaryotic translation termination factor 1; MYB, MYB proto-oncogene; MHC II, major histocompatibility complex II; Mj, Macrophages;
BCR, B-cell receptor.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1140813
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Hu et al. 10.3389/fonc.2023.1140813
levels of miR-150 in CLL patients increase BCR signaling by

increasing the levels of FOXP1 and GAB1 (11), resulting in the

increased invasiveness of CLL B cells. However, miR-150 was found

upregulated in CLL in both CD5- and CD5+ B cells and in 70kDa

zeta chain-related protein-positive and IgVH mutated patients in

certain cases (11, 59, 86), and it plays a critical role in the

hematopoiesis process, especially in the differentiation and

development of lymphoid lineage (8). Despite the large amount of

circulating miR-150, free or associated with serum proteins, the

CLL-derived exosomes can assemble miR-150 in order to protect it

from the RNase and thus sustain its pro-tumorigenic action (60,

70). Moreover, miR-150 present in CLL exosomes are transferred to

target cells and functionally active (87, 88). Additionally, expression

of MIR-150 in exosomes was significantly elevated in CLL-derived

exosomes compare to normal B cells and it further increased under

a-IgM stimulation. The data implicates the BCR signaling pathway

in the control of CLL exosome secretion and its conveyance of the

disease-relevant miR-150 (71). All the data above suggests that the

regulation of miR-150 in CLL development is beyond BCR

signaling and extremely complex.

miR-150 also targets Chemokine receptor 4 (CXCR4) which

regulates the migration of mature B cells to secondary lymphoid

tissue (89). Studies have shown that ischemia downregulates MIR-

150 in bone marrow-derived mononuclear cells, thereby upregulating

CXCR4, leading to enhanced cell migration (89). Similarly, the low

expression of MIR-150 upregulates CXCR4 in CLL, enhancing its

response to Chemokine ligand 12 (CXCL12). This leads to an increase
Frontiers in Oncology 06
in AKT and ERK signals, malignant B cells infiltration into lymph

nodes, and resistance of tumor cells to spontaneous or drug-induced

apoptosis (90–93). These studies revealed amiR150-dependent survival

pathway of tumor cells, which partly explains their unresponsiveness to

conventional chemotherapy.

3.2.3 miR-150 in DLBCL
Compared with memory B cells, miR-150 is much lower in other

peripheral B-cell subpopulations, such as naïve B cells and centroblasts

in DLBCL patients (55). Low MIR-150 expression is associated with

poor clinical outcome predictions in patients with primary

gastrointestinal DLBCL (57). Reduced miR-150 causes FOXP1

upregulation, promoting the growth and survival of B cells in

DLBCL by enhancing BCR and NF-kB signaling (62–65). The

upregulation of FOXP1 can promote CBP (b-catenin acetylation

through cAMP responsive element binding protein (CREB) binding

protein), and enhance Wnt signaling, thereby promoting cell growth

(72). The high expression of FOXP1 is associated with poor clinical

prognosis (73, 74). FOXP1 overexpression in DLBCL cells and human

primary B cells inhibit pro-apoptotic genes including BIK (BCL2

interacting killer) (HGNC:1051), EAF2 (ELL (eleven-nineteen lysine-

rich leukemia gene) -associated factor 2) (HGNC:23115), and HRK

(Harakiri) (HGNC:5185), and cooperates with NF-kB to promote B

cell survival (62). Therefore, miR-150 promotes the growth and

survival of DLBCL cells by regulating the expression of FOXP1, and

has a clinical value as a prognostic biomarker. DLBCL exosomes

promote cell proliferation, migration and angiogenesis in vitro (94),
TABLE 1 The effects of miR-150 on B lymphocytes malignant tumors.

Disease Samples miR-150 Putative targets Effect on
B cells Impact on disease Reference

FL Lymph node ↓
FOXP1 Apoptosis↓

Promote
(49, 62–65)

SLC2A1 Glucose metabolism↑ (66, 67)

CLL

Peripheral B cells
↓

(poor
prognosis)

FOXP1
Proliferation↑
Apoptosis↓

Promote

(11, 23, 31)

GAB1
Cross-linking response to

BCR↑
(11, 68)

CXCR4 Migration↑ (69)

CLL-derived
exosomes

↑
BCR

NA Promote (60, 70, 71)
Hematopoiesis

DLBCL Peripheral B cells ↓ FOXP1
Growth↑
Apoptosis↓

Promote
(55, 57, 62, 72–

74)

BL
(EBV-
positive)

Cell lines ↓
Survivin Proliferation↑

Promote
(9, 75)

MYB Differentiation↓ (9)

MALT
(Conjunctiva)

Lymphoma Tissue ↑ Cbl-b Proliferation↑

Promote

(76)

MALT
(Gastric)

Mice stomachs ↑ EGR2 Apoptosis↓ (77, 78)

MCL Lymph node ↓ NA NA NA (54, 56, 79)
FL, follicular lymphoma; CLL, chronic lymphocytic leukemia; DLBCL, diffuse large B-cell lymphoma; BL (EBV-positive), Burkitt lymphoma (Epstein-Barr virus-positive); MALT, mucosa-
associated lymphoid tissue; MCL, mantle cell lymphoma; FOXP1, forkhead box factor P1; SLC2A1, solute carrier family 2 member 1; GAB1, growth factor receptor-bound protein 2-associated
binding protein 1; CXCR4, Chemokine receptor 4; BCR, B-cell receptor;MYB, MYB proto-oncogene product; Cbl-b, Casitas B-lineage lymphoma proto-oncogene b; EGR2, early growth response
2; NA, Not available. ↑, increase; ↓, decrease.
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and they could induce the transformation of macrophages to a

protumor M2-like phenotype, and block the drug-induced apoptosis

of DLBCL cells (95).

3.2.4 miR-150 in BL
BL is a highly invasive B-cell lymphoma that consists of two

forms of BL differing in Epstein-Barr virus (EBV) infection status,

EBV-negative BL and EBV-positive BL. Four types of BL cell lines

have been identified: BJAB and Ramos cells are derived from EBV-

negative GC B cells, and Daudi and Raji cells are derived from EBV-

positive GC B cells. The expression level of MIR-150 is extremely

low in these four types of BL cell lines (9). A low miR-150 level leads

to a high expression level of survivin and MYB, promoting tumor

cell proliferation and preventing differentiation (75). When the

MIR-150 expression is increased in Daudi and Raji cells, cell

proliferation is significantly reduced while their differentiation is

induced (9, 75). These findings suggest that miR-150 can regulate

the expression of survivin andMYB and affect the proliferation and

differentiation of EBV-positive BL cells. Additionally, B cell–derived

exosomes released from EBV infected B cells are able to deliver their

content to B cells, and thereby, influence B cell biology (96). B cell

lymphoma-derived exosomes upregulated inhibitory receptors PD-

1 (programmed cell death protein 1), CTLA-4 (cytotoxic T

lymphocyte-associated antigen-4) and BTLA (B- and T-

lymphocyte attenuator), and induced apoptosis of T cells through

activation of Fas/Fas ligand pathway (94). Furthermore, the poor

prognosis of B-cell lymphoma patients with exosomal BCL6 and

MYC mRNA was observed at diagnosis (97).

3.2.5 miR-150 in MALT
Mucosa-associated lymphoid tissue lymphoma (MALT

lymphoma) is a type of B-cell NHL characterized by monoclonal

B-cell infiltration. Most MALT lymphomas occur in organs without

lymphoid tissues, such as the stomach, orbits, intestines, skin, lungs,

thyroid, parotid glands, soft tissues, bladder, kidneys, and the

central nervous system. Studies have shown that the expression of

MIR-150 in MALT lymphoma tissues is upregulated to various

degrees (76–78), suggesting miR-150 is a potential tumor marker

for monitoring MALT lymphoma. In the study of conjunctival

MALT lymphoma, highly expressed MIR-150 inhibited the

expression of casitas B-lineage lymphoma proto-oncogene b (Cbl-

b) (HGNC:1542), an E3 ubiquitin linker, promoting the

proliferation, migration, and invasion of lymphoma cells and

inhibiting apoptosis (76). In gastric MALT lymphoma, the

upregulated MIR-150 inhibited apoptosis and induced B cell

proliferation by inhibiting the expression of early growth

response 2 (EGR2) (HGNC:3239) of the B cells pro-apoptotic

genes (53, 77, 78).

3.2.6 miR-150 in MCL
MCL is a B-cell NHL with a high degree of malignancy. Studies

have found that MIR-150 expression in MCL is significantly

reduced (54, 56, 79); however, the mechanism by which miR-150

regulates B cells in MCL remains to be explored. Moreover, a study

shows that the cell-specific uptake of MCL exosomes by normal and
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MCL patients’ B-lymphocytes is in a lipid raft-dependent manner,

and MCL-derived exosomes preferentially internalized into

B-lymphocytes subsets (98).
3.3 Regulation of miR-150 in
autoimmune diseases

Previous studies showed that miR-150 might be a critical

regulator of gene expression during immune cell differentiation

and immune responses. Its regulatory function in the cellular

immune process contributes to host defense against invading

pathogens. Dysregulated expression of MIR-150 in immune cells

may result in autoimmune diseases (99). MIR-150 is upregulated or

downregulated in many autoimmune diseases, such as multiple

sclerosis (MS) (100), myasthenia gravis (MG) (101–103), systemic

lupus erythematosus (SLE) (104–106), rheumatoid arthritis (RA)

(107–109), and primary Sjogren’s syndrome (pSS) (110). Studies

have indicated that increased B cell activity and autoantibody

production are hallmarks of autoimmune diseases such as MS

(111), MG (103), SLE (112, 113), RA (114), and pSS (110). In the

following section, we will summarize the potential role of miR-150

on B cells and discuss the potential role of miR-150 in the

pathogenesis of autoimmune diseases (Table 2).
3.3.1 miR-150 in MS
MS is a complex inflammatory demyelinating disease of the

central nervous system. It is one of the most common causes of

neurological disability in young adults. Accumulated studies

showed that B cells play a critical role in MS pathogenesis (126).

B cells participate in the pathophysiological changes of MS in

various ways (127), including cytokine secretion and

autoantibody production promoting a humoral immune response

through the activation of complementary and antibody-dependent

cytotoxicity. B cells participate in MS pathogenesis as dedicated

antigen-presenting cells, amplifying autoimmune T cell responses

leading to an inflammatory cascade of demyelination and nerve

damage. Our recent research also demonstrated that suppressing

the production of CD19+B cells can ameliorate MS in an

experimental allergic encephalitis (EAE) mouse model (128).

Another study showed that circulating miR-150 levels are

elevated in the cell-free cerebrospinal fluid (CSF) of MS patients

(115), and correlated with the clinical activity of the disease. It is

widely acknowledged that enrichment of intrathecal oligoclonal

bands (OCBs), the products of clonally expanded B cells in the CSF,

is the most characteristic feature of MS (129). They also identified

that OCBs positive patients had higher miR-150 than OCB-negative

patients, indicating that miR-150 may associate with the products of

clonally expanded B cells within the CSF (130). In our previous

study within an EAE model, deletion of MIR-150 alleviates central

demyelination and axon damage and upregulates the number of

splenic CD19+B cells (100). The recent research shows that myeloid

extracellular vesicles (Evs) from cognitively impaired MS patients

expressed higher levels of MIR-150 compared to cognitively

preserved MS patients (116). Therefore, we speculate that miR-
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150 is one of the modulators of altered B cell activity and plays

multiple roles in the pathogenesis of MS.

3.3.2 miR-150 in MG
MG is a T cell-dependent chronic autoimmune neuromuscular

disease. 85% of patients suffer from muscle weakness due to anti-

acetylcholine receptor (AChR) antibodies at the neuromuscular

junction (103, 131). The main feature is ectopic B cell infiltration

leading to thymus hyperplasia (132–135). The number of regulatory

T cells (Tregs) in the thymus of MG patients is normal but

dysfunctional (136). Hence, Tregs are unable to control the

autoimmune response and prevent autoimmunity. Interestingly,

miR-150 is particularly relevant to the T cell maturation process (6,

137). A study by Punga (101) showed that circulating miR-150 in

the serum of patients with early-onset MG was significantly

upregulated, and the expression was reduced after thymectomy,

accompanied by improvement in symptoms. Another study of

patients with advanced MG showed a negative correlation

between the expression of circulating miR-150 and an

improvement in the patients’ clinical conditions (102). Cron et al.

(103) observed an upregulation of MIR-150 in the MG thymus

associated with the presence of thymic B cells. In situ hybridization

experiments showed that miR-150 was primarily expressed in the

epithelial region of thymus GCs. They also showed that the high

level of miR-150 secreted by B cells in thymic ectopic GCs affects the

development of T cells by locally inhibiting the expression of MYB,

resulting in T cell dysfunction and ultimately promoting the

occurrence and development of MG. Zhong et al. (117)

demonstrate that serum exosomal miR-150 decreased after low-

dose rituximab (RTX) treatment in patients with anti-AChR
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antibodies positive refractory MG, and alleviated symptoms of

MG, these results suggest that the relationship may be related to

miR-150 interactions with CD19+ and CD27+ B cells.

3.3.3 miR-150 in SLE
SLE is a heterogeneous autoimmune disease. The production

and development of the disease are closely related to B cells. Studies

have found that the severity of SLE and lupus nephritis (LN) is

related to circulating miR-150 in plasma. Several researches showed

that circulating miR-150 levels in SLE and LN patients were reduced

compared to healthy controls (120). In contrast, some studies found

that the expression levels of circulating miR-150 were upregulated

in the plasma of patients with SLE and stage III LN (121, 122). Sole

et al. demonstrated that miR-150, which promotes renal fibrosis

by downregulation of SOCS1 (antifibrotic protein suppressor of

cytokine signaling 1) (104), is significantly overexpressed in urinary

exosomes from patients with LN compared to healthy controls, and

MIR-150 expression levels increase progressively according to the

degree of LN chronicity index (CI), being most highly expressed in

the high CI group (123). The conflicting results of these studies may

be due to the limited number of samples studied. Also, the level of

circulating miR-150 may be related to the different disease courses

of SLE and LN.

Chen et al. (110) showed that the expression of MIR-150 in

CD19+IgD-CD27- double negative (DN) B cell subsets were

upregulated in SLE patients compared with healthy controls, and

the levels were positively correlated with the percentage of DN B

cells and plasmablasts. Previously, miR-150 was considered a sensor

for general lymphocyte activation induced by inflammation (138),

and that DN B cells can migrate into inflammatory tissue (118, 119),
TABLE 2 Regulation of miR-150 in autoimmune diseases.

Diseases miR-150 Samples Effection Clinical outcome Reference

MS

Cycling
miR-150↑

CSF B cell percentage↑ Aggravate diseases (115)

Evs miR-150↑ Serum Cognitively impaired Aggravate diseases (116)

MG
miR-150↑ Thymic GC B cells Tregs dysfunction Aggravate diseases (103)

Exosomal miR-150↑ Serum CD19+ and CD27+ B cell↑ Aggravate diseases (117)

SLE

miR-150↑ DN B cell Autoantibodies↑ Aggravate diseases (110, 118, 119)

miR-150↓ B1a cell
B1a cell proliferation↑

IgM↑
Aggravate diseases (25)

Cycling
miR-150*

Plasma NA NA (120–122)

Exosomal miR-150↑ Urine Renal fibrosis↑ Aggravate diseases (123)

RA
miR-150↑ PBMCs NA Aggravate diseases (108, 124)

miR-150↓ Human Synovial Tissue MMP14↑ VEGF↑ Relieve diseases (107)

pSS miR-150↓ PBMCs Autoantibodies↑ Aggravate diseases (110)

AIHA/ES miR-150↓ B cell Autoantibodies↑ Aggravate diseases (125)
SLE, systemic lupus erythematosus; RA, rheumatoid arthritis; pSS, primary Sjogren’s syndrome; MS, multiple sclerosis; MG, myasthenia gravis; DN B cell, IgD-CD27- double negative B cell;
PBMCs, peripheral blood mononuclear cells; CSF, cerebrospinal fluid; Evs, extracellular vesicles; GCs, germinal centers; Tregs, regulatory T cells; MMP14, matrix metalloproteinase; VEGF,
vascular endothelial growth factor; NA, Not available. ↑, increase; ↓, decrease.
*The studies showed conflicting results in SLE and LN.
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leading to an increase in the number of autoantibodies; thus,

promoting the development of disease. Jiang et al. (25) showed

that the percentage of FLT3+ B1 cells in SLE patients was

significantly higher than that of healthy controls, while the

MYSM1 levels in FLT3+ B1 cells from these patients decreased.

The surface IgM level was positively correlated with the percentage

of FLT3+ B1 cells. Further research showed that the level of miR-150

in circulating FLT3+ B cells in SLE patients was lower than that of

FLT3- B cells. It showed that the MYSM1/miR-150/FLT3 pathway

that inhibits B1a cell proliferation is defective in SLE patients. This

indicates that the reduction of miR-150 in the B1 cells of SLE

patients leads to an increase in the proportion of FLT3+ B cells. The

latter promotes the proliferation of B1a and the increase of surface

IgM levels, and promotes the disease course of SLE.

3.3.4 miR-150 in RA
RA is a chronic autoimmune disease characterized by the

infiltration of leukocytes into joints, causing the production of

inflammatory mediators and the destruction of cartilage and bone

(139). Rezaeepoor et al. (124) showed that miR-150 was

significantly increased in PBMCs in RA patients compared to the

healthy control group. The level of miR-150 in the synovial samples

of patients with RA synovitis is positively correlated with the

severity of the joint destruction and the high activity of the

disease (108). In addition, MIR-150 is significantly upregulated

during interleukin 17 (IL-17) cell differentiation (108), which is

important for the pathogenesis of RA (140, 141). Moreover, MIR-

150 is downregulated and matrix metalloproteinase 14 (MMP14)

while vascular endothelial growth factor (VEGF) are upregulated in

RA, and mesenchymal stem cell derived miR-150 exosomes inhibit

RA fibroblast-like synoviocytes migration and invasion, as well as

suppressing angiogenesis by downregulation of MMP14 and VEGF,

as a result, the symptoms of RA alleviate (107). Studies have pointed

out that excessive activation of B cells is key to promoting the

progression of RA (142, 143). However, whether miR-150 is

involved in the regulation of B cell function in RA is still unknown.

3.3.5 miR-150 in pSS
The latest research shows thatMIR-150 expression is significantly

down-regulated in pSS, and the percentage of DN B cells is also

reduced. This is probably due to the insufficient expression of MIR-

150, which leads to B cell differentiation and activation, and promotes

the production of specific self-antibodies, leading to the development

of pSS specific autoimmune processes (110).
3.3.6 miR-150 in AIHA/ES
Autoimmune hemolytic anemia (AIHA) and Evans syndrome

(ES) are two forms of B cell-mediated autoimmune cytopenia. B

lymphocytes synthesize and secrete autoantibodies and play crucial

roles in the pathogenesis of AIHA/ES. The study by Xing (125) reveals

that the level of miR-150 in B lymphocytes from AIHA/ES hemolysis

patients’ peripheral blood is significantly lower than that in the healthy

controls, and it partially reveals the severity of AIHA/ES, because of

the inverse correlation with total bilirubin (TBIL) concentration and

indirect bilirubin (IBIL) concentration and positive relation with the
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complement 3 (C3) level. This study also shows that MYB level in B

lymphocytes in the AIHA/ES group is much higher than that in the

remission group and healthy controls. The expression of MYB was

negatively related to hemoglobin and C3 and positively related to

TBIL and IBIL. These results indicate that the level of miR-150 and

MYB in B cell partially reveal the severity of the disease and the

immune ability. An early study (144) pointed that miR-150 negatively

regulated the endogenous MYB gene at both mRNA and protein

levels. It can be speculated that miR-150 regulates B lymphocytes in

AIHA/Evans syndrome through MYB, and the underlying

mechanism needs further study.
3.4 ceRNA network of lncRNA/miR150 in B
lymphocyte-related diseases

Competing endogenous RNA (ceRNA) is a multi-hub network

consisting of long non-coding RNA (lncRNA), miRNA, and mRNA,

where lncRNAs act as endogenous molecular sponges of miRNAs to

regulate the expression of mRNAs (145). Its regulatory mechanism is

involved in carcinoma initiation, progression and invasion (146–148).

LncRNA/miRNA-associated ceRNA can work as circulating

prognostic biomarkers offering prognostic value in B lymphocyte-

related diseases. Mara et al. (149) have been constructed an intricate

network comprising Metastasis Associated Lung Adenocarcinoma

Transcript 1 (MALAT1) (HGNC:29665)-Enhancer Of Zeste 2

Polycomb Repressive Complex 2 Subunit) EZH2 (HGNC:3527)-MYC-

MIR-150-MYB to explore the development progression and prognosis

of non-Hodgkin lymphomas (NHL) (150). MALTA1 is involved in

both somatic hypermutation and class-switch recombination in B cell

activation (151). OverexpressedMALAT1 interacts with EZH2which is

highly expressed in B-cell lymphomas, facilitating the complex binding

to MIR-150 promoter region which increases MYC expression (152,

153). Moreover, MALAT1 codes a retained lncRNA which sponges

miR-150 and unleashes MYB from miR-150-mediated repression,

promoting lymphoma cells proliferation and inhibiting apoptosis

(149, 154, 155). Few studies on the ceRNA network involve miR-150

in B cell-related disorders. This is worth exploring in depth.
4 Conclusion and perspectives

As a core in the regulatory network, miR-150 is highly

expressed in B cells, playing a key role in B cell development,

proliferation, differentiation, and survival. In malignant tumors

related to B cells, miR-150 controls different signal axes by

regulating the multiple genes that affect the proliferation,

differentiation, metabolism, and apoptosis of malignant B cells,

ultimately affecting the invasion and progression of the tumor.

However, many questions remain to be addressed.

Firstly, miR-150 affects the growth and development of B cells

and immune response by inhibiting the target genes MYB, FOXP1,

FLT3, survivin, and BCR signaling. However, it is important to

explore how miR-150 regulates the sensitivity of autoreactive B cells

to BCR stimulation: locating target gene in self-reactive B cells and

enhancing the sensitivity to BCR stimulation. Furthermore, miR-
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150 was shown to be a biomarker of various autoimmune diseases.

However, how abnormally expressed MIR-150 regulates the

function of B cells and controls the development of the disease

need to be further studied. With advanced techniques such as

transcriptomics and gene editing, it would be possible to unfold

autoimmune disease pathogenesis of miR-150 and identify new

targets for therapeutic intervention.

Secondly, ATB-derived miR-150 is to regulate the insulin

resistance of adipose tissue and immune homeostasis, especially its

expression level and roles in ATB cells regarding brown, beige, and

white adipose tissue need to be investigated. Moreover, the regulation

of miR-150 on normal B cell metabolism is uncertain. Besides,

whether downregulation of MIR-150 by inducing the SLC2A1/

GLUT-1 axis adjust glucose metabolism in B-cell lymphoma evokes

new directions for the mechanistic understanding and treatment of B-

cell malignant tumors. By using metabolomics and proteomics

techniques, it is possible to identify specific metabolites and

molecules that are crucial for B cell function. Furthermore, the

impact of particular interventions on B cell metabolism could be

investigated using animal models and cell culture methods. Selectively

targeting important enzymes or chemicals involved in B cell

metabolism, may help us comprehend the role of intracellular

metabolism in B cell-related disease.

Thirdly, the exosome-associated miR-150 derived from specific

lymphocyte subsets could help confirm whether circulating miR-150

activates specific B cell subsets occurring at distant sites. These lines of

inquiry should benefit the assessment of pathogenic immune

response during the course of cancers, auto-immune diseases and

their treatments, as well as significantly contributing to the close,

prompt monitoring of clinical trials with novel immune-regulatory

medications, particularly in the early stages of clinical development.

Understanding the impact of miR-150 in B cell-related disorders

would provide new avenues for targeted therapies.
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