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Introduction: The reliable and accurate detection of rare circulating tumor cells

(CTCs) from cancer patient blood samples promises advantages in both research

and clinical applications. Numerous CTC detection methods have been explored

that rely on either the physical properties of CTCs such as density, size, charge,

and/or their antigen expression profiles. Multiple factors can influence CTC

recovery including blood processing method and time to processing. This

study aimed to examine the accuracy and sensitivity of an enrichment-free

method of isolat ing leukocytes (AccuCyte
®

system) fol lowed by

immunofluorescence staining and high-resolution imaging (CyteFinder
®

instrument) to detect CTCs.

Method: Healthy human blood samples, spiked with cancer cells from cancer

cell lines, as well as blood samples obtained from 4 subjects diagnosed with

cancer (2 pancreatic, 1 thyroid, and 1 small cell lung) were processed using the

AccuCyte-CyteFinder system to assess recovery rate, accuracy, and reliability

over a range of processing times.

Results: The AccuCyte-CyteFinder system was highly accurate (95.0%) at

identifying cancer cells in spiked-in samples (in 7.5 mL of blood), even at low

spiked-in numbers of 5 cells with high sensitivity (90%). The AccuCyte-

CyteFinder recovery rate (90.9%) was significantly higher compared to

recovery rates obtained by density gradient centrifugation (20.0%) and red

blood cell lysis (52.0%). Reliable and comparable recovery was observed in

spiked-in samples and in clinical blood samples processed up to 72 hours

post-collection. Reviewer analysis of images from spiked-in and clinical
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samples resulted in high concordance (R-squared value of 0.998 and 0.984

respectively).

Discussion: The AccuCyte-CyteFinder system is as an accurate, sensitive, and

clinically practical method to detect and enumerate cancer cells. This system

addresses some of the practical logistical challenges in incorporating CTCs as

part of routine clinical care. This could facilitate the clinical use of CTCs in guiding

precision, personalized medicine.
KEYWORDS
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1 Introduction

Circulating tumor cells (CTCs) are malignant cells present in

the bloodstream, originating from solid tumors. They are

understood to be the ‘seeds’ of metastasis where cells shed by the

primary tumor circulate through the blood, and colonize distant

sites thereby forming metastatic tumors (1). The prognostic ability

of CTCs has been demonstrated in various cancer types where the

number of CTCs is an independent predictor of patient survival (2–

5). CTCs are a potential biomarker for screening high-risk

populations and for evaluating disease recurrence and metastatic

spread. Early detection may provide the opportunity for initiating

early treatment and thus, optimizing patient management (6–10).

CTCs analysis offers specific advantages over other biomarkers,

including the ability to undertake phenotypic characterization, in

real time, and in a minimally invasive manner. Because CTCs are

involved in tumor progression, they provide insights into

mechanisms of metastases, tumor dormancy, and through

longitudinal sampling, tumor evolution and emergence of

resistance. This can be undertaken by examination of their

phenotypic origins using surface-antigens or by single-cell -omic

analyses (11–13). The isolation of viable CTCs also allows for

culturing and characterization of live cells by ex vivo culture or

animal xenografts (14–16). Thus, the potential of CTCs goes

beyond prognostic and diagnostic purposes and may help direct

targeted, personalized treatments.

However, the detection and reliable identification of CTCs is

challenging due to the low number of CTCs in the peripheral blood

as well as the heterogeneity of CTCs (7, 17). Since their discovery in

1869 (18), numerous approaches have been developed to detect

these rare cells in the blood, however their sensitivity, specificity and

reproducibility varies widely (6, 7, 17). Many methods involve

sample processing steps to enrich for CTCs are either based on

their physical properties, such as size, density and charge using

filters or microfluidic devices (19–21); or based on surface

expression of biomarkers by immuno-magnetic capture

techniques using positive (such as CellSearch® for EpCAM) or

negative selection (22, 23). Although there are advantages to each of

these technologies, there are also limitations. Size-based capture will

not detect small CTCs and a universal CTC surface marker remains
02
elusive. Epithelial-based isolation platforms may fail to detect CTCs

following their downregulation of epithelial markers as they

undergo epithelial-to-mesenchymal transition (EMT) (24, 25).

Furthermore, isolation of nucleated blood cells by red blood cell

lysis may damage cells or remove CTCs. There is no gold standard

method to determine the total number of CTCs in a patient’s blood

making evaluation and comparison of these methods difficult.

CellSearch, which utilizes immunomagnetic isolation of epithelial

(EpCAM) CTCs, is the only FDA-approved platform for the

enumeration of CTCs in breast, prostate and colon cancers.

CellSearch® is one of the most studied platforms but its

performance varies widely (6, 7). An ideal CTC system should be

sensitive enough to detect low number of CTCs with extremely high

specificity to avoid false positive results, as well as be reliable for

repeatability and reproducibility to overcome the potential bias of

sample variability and CTC heterogeneity.

The liquid biopsy platform (RareCyte) is an enrichment-free

method that involves density-based sample processing to transfer

nucleated blood cells to standard glass slides (AccuCyte system)

followed by immunofluorescence staining and high resolution

scanning (CyteFinder instrument) to identify CTCs (26, 27).

Machine learning systems also assist the reviewer by rank ordering

candidate cells based on probability of being a CTC, resulting in

accurate counts and reviewer concordance. AccuCyte isolates the

nucleated cells using a density float-based system allowing for the

float to rest at the red blood cell-plasma interface (27). This study

evaluated CTC enumeration accuracy for blood samples using the

AccuCyte system compared to other white blood cell isolation

methods, examined different blood collection methods and

processing times, and comprehensively analyzed the overall

sensitivity, specificity, accuracy and precision of the AccuCyte-

CyteFinder system to detect CTCs.
2 Methods

2.1 Blood sample collection

Healthy human donor blood samples were obtained from

healthy volunteers after informed consent (Sydney Local Health
frontiersin.org
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District, Australia: 2019/ETH12590; Bloodworks Northwest,

Seattle, WA: IRB#20141589). Clinical blood samples from

subjects diagnosed with cancer (2 pancreatic, 1 thyroid, 1 small

cell lung) were obtained after informed consent (Sydney Local

Health District, Australia: 2019/ETH13813, 2021/ETH00378; St

Vincent's Hospital, Australia: 2020/ETH01283). The subjects were

at different disease stages: preoperative treatment naïve (thyroid);

recurrence undergoing second-line therapy (pancreatic);

progression after first-line therapy (small cell lung); and advanced

treatment naïve (pancreatic). All methods were carried out in

accordance with relevant guidelines and regulations.

Blood was collected using anticoagulant EDTA Vacutainer®

tubes (Becton-Dickinson) or AccuCyte® blood collection tubes

(RareCyte, Seattle, WA, USA) containing a proprietary preservative.
2.2 Source of cells for spike-in
recovery samples

AsPC-1 and Capan-2 (pancreatic), and PC3 and 22Rv1

(prostate) cancer cell lines, cells known to express CK and

EpCAM, were obtained from American Type Culture Collection

(ATCC, Manassas, VA, USA). All cell lines were maintained in

RPMI 1650 medium supplemented with 10% FBS. All cells were

cultured in a 37°C incubator with 5% CO2.
2.3 Generation of spike-in recovery
samples

Surrogate samples were generated using either Direct, Indirect-

Supplement, or Indirect-Pool Spike-in methods. To achieve 5 cell

spike-in samples, the Direct method was used where the spiked-in

cell concentration was adjusted to 200 cells per microliter, then

filtered to eliminate clusters. The cells were then aspirated into the

CellenONE® instrument (Scienion, Berlin). Operational criteria

were set to ensure deposition of single round objects one at a

time directly into an AccuCyte blood collection tube containing 7.5

mL of healthy blood. For the Indirect-Supplement method, the

volume of spike-in cells calculated to achieve the target cell number
Frontiers in Oncology 03
was added directly to the blood collection tube. This method was

used for experiments requiring a set number of cells per tube only.

For the Indirect-Pool method, healthy blood from multiple

AccuCyte blood collection tubes were obtained from a single

donor and pooled into an appropriate container. The volume of

spike-in cells calculated to achieve the target cell number was added

to the pool. This method was used for the linearity studies where

pools corresponding to each spiked-in level were achieved by serial

dilution. Because the pools contain the appropriate amount of

blood collection tube preservative, they were redistributed into

preservative-free evacuation tubes.
2.4 White blood cell isolation

Each blood sample (7.5 mL) was processed and white blood

cells (nucleated cells) were isolated using either the AccuCyte

system, density gradient media isolation or red blood cell (RBC)

lysis methods. AccuCyte involved adding the blood to a separation

tube and nucleated cells were collected into the isolation tube after

two centrifugation steps (Figure 1) (25). Density gradient media

isolation was achieved using LymphoprepTM (STEMCELL

Technologies) density gradient media and harvesting the

nucleated cell interface. RBC lysis involved incubating the blood

sample in RBC Lysis Buffer (G-Biosciences) and centrifugation to

pellet the nucleated cells.
2.5 Multiparametric high resolution
imaging (CyteFinder instrument)

Nucleated cells were spread onto 8 Superfrost® Plus slides

(Thermo Scientific) using a plastic CyteSpreader® device

(RareCyte) and allowed to dry for 1-2 hours at room temperature.

Slides were immunofluorescently stained using either RarePlex 0700-

MA or 1200-VA CTC staining kits (RareCyte) on the Autostainer

Link 48 (Dako–Agilent Technologies) or DISCOVERY ULTRA

(Roche) stainers, respectively. The RarePlex 0700-MA CTC Assay

kit includes a nuclear DAPI dye, anti-pan-cytokeratin (CK) antibody

detected with CF®488, anti-EpCAM antibody detected with CF®647,
FIGURE 1

CTC enumeration workflow using the AccuCyte-CyteFinder system. AccuCyte isolation involves transferring 7.5 mL of blood to a Separation Tube and
centrifuging to separate blood into the three main components: red blood cells, nucleated cell layer and plasma. A CyteSeal is applied between the red
blood cell and nucleated cell layer and plasma is removed. Another centrifugation results in the capture of nucleated cells into the isolation tube.
Nucleated cells are spread onto slides using the CyteSpreader device and then stained using RarePlex kits and an automated slide stainer. Slides are then
scanned on the CyteFinder instrument and analyzed using the CyteMapper software to identify rare cells based on their marker expression.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1141228
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Yeo et al. 10.3389/fonc.2023.1141228
and anti-CD45 antibody detected with R-phycoerythrin (PE). The

RarePlex 1200-VA CTC Assay includes a nuclear Hoechst dye, anti-

pan CK and anti-EpCAM antibodies detected with CF®647, and an

anti-CD45 antibody labelled with CF®555. Stained slides were

scanned on the CyteFinder digital immunofluorescent microscope

at 10X magnification. Exposure times for the 0700-MA CTC Assay

were 0.05s (DAPI), 0.025s (CK), 0.1s (EpCAM), and 0.1s (CD45); and

for the 1200-VA CTCAssay: 0.1s (Hoeschst), 0.1s (CK/EpCAM), and

0.4s (CD45). Image files were analyzed by automated software

(RareCyte) to define and rank score. This is performed using a

proprietary machine learning algorithm that was trained on an

annotated library containing thousands of images of clinical CTCs

from multiple epithelial tumor types and thousands of non-CTC

objects. The algorithm uses hundreds of variables which are

measured on each object of interest to determine if an object on

the slide is likely to be a CTC or not. Each object of interest is then

assigned a score from 0 to 100 (where 100 is the highest likelihood of

the object being a CTC and 0 the lowest) and ranked ordered. The

software then presents images of the objects of interest in a ranked

manner to a trained reviewer via the CyteMapper® imaging analysis

software (RareCyte) for final classification as CTC or not a CTC. A

CTC was defined as having a nucleus, CK/EpCAM staining and no

CD45 staining (27). A slide takes roughly 15mins to scan and 20mins

to analyze.
2.6 Data analysis

Data analysis including calculations of cell recovery and

concordance, was performed using GraphPad (Prism) or Excel

(Microsoft). All values were expressed as means ± standard error.

Differences between two means (student’s t-test) with p < 0.05 were

considered significant.
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3 Results

3.1 Accurate and consistent recovery at
each spike-in level examined

Recovery rates were measured for samples containing different

tumor spiked-in levels, from 30 to 800 cells, using the indirect-pool

method using the AsPC-1, Capan-2 and 22Rv1 cancer cells.

Recovery rate was 90.9% (R2 = 0.984) (Figure 2). To examine

recovery of low cell numbers, 5 PC3 cancer cells were each spiked

into 10 healthy blood samples using the direct method. For each of

these 5 cancer cell spike-in samples, identification of 2 or more

CTCs was required to be considered CTC-positive. Average

recovery was 80% (40 out of 50 total cells, median = 90%)

(Table 1). In parallel, 10 healthy blood samples from different

donors, without any spike-in cells, showed no tumor cells

(Supplementary Data). This resulted in a sensitivity of 90%,

specificity of 100% and accuracy of 95% (Table 2).
3.2 Recovery according to post-collection
processing time

The effect of blood incubation time after collection was

examined to determine CTC recovery rates using spike-in

samples of AsPC-1 and 22Rv1 cancer cells using the indirect-

supplement method and clinical blood samples. Spiked-in blood

were processed at <4 hours (where blood was collected using an

EDTA blood collection tube), 24 hours and 72 hours (AccuCyte

blood collection tube). No difference in recovery rates were

observed (Figure 3A). Clinical blood samples was collected in the

same manner from 4 subjects diagnosed with cancer (2 pancreatic, 1

thyroid, 1 small cell lung) (Table 3). No difference in CTC detection
FIGURE 2

Spike-in recovery for different levels of tumor cells in 7.5 mL of healthy blood. Varying numbers of pancreatic (AsPC-1, Capan-2) and prostate
(22Rv1) cancer cells were spiked into 7.5 mL of healthy blood samples with an overall recovery rate of 90.9% (R2 = 0.984).
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rates was observed at the different incubation times in either spike-

in or primary cancer samples (Figure 3B). The identified CTCs were

grouped based on their epithelial marker (CK/EpCAM)

fluorescence intensity (Figures 4A, B; Supplementary). Three

samples exhibited high proportions of CKhighEpCAMlow CTCs,
Frontiers in Oncology 05
one sample had high proportions of CKhighEpCAMhigh CTCs.

CKlowEpCAMhigh CTCs were detected in two samples.
3.3 Recovery rate according to white blood
cell isolation method

Nucleated blood cell isolation using the AccuCyte system was

compared to other methods such as density gradient media

isolation and RBC lysis. AccuCyte was found to be significantly

superior to density gradient media isolation (p=0.004) and RBC

lysis (p=0.030) (Figure 5).
3.4 Reviewer concordance

Cancer cell candidates are analyzed and rank-scored using

machine learning algorithms followed by reviewer confirmation.

To measure accuracy of cancer cell enumeration, reviewer

consistency in identifying cancer cells was examined. Two

reviewers, blinded to each other, were compared and found to be

concordant when examining healthy spiked in samples with up to

50 cancer cells per slide (R2 = 0.998) and in clinical samples with up

to 30 CTCs per slide (R2 = 0.984) (Figure 6). No false positive

samples were identified in 6 CTC-negative clinical samples by

either reviewer.
4 Discussion

This study demonstrates high sensitivity, specificity, accuracy,

and reproducibility of the AccuCyte-CyteFinder platform for the

detection of cancer cells with 90.9% recovery rate (R2 = 0.984;

Figure 2). This confirms previous studies where >90% recovery

rates were also observed (27–29). In addition, for the first time,
TABLE 2 Sensitivity, specificity and accuracy of detecting CTCs.

Replicate type No spike-in 5 cell spike-in

Test Positive (>1 CTC) 0 9

Test Negative (≤1 CTC) 10 1

Sensitivity 0.90

Specificity 1.00

Accuracy 0.95
TABLE 1 Recovery of rare cells using 5 spiked-in cells in healthy donor
blood.

Replicate Cells spiked-in Cells recovered Recovery (%)

1 5 5 100

2 5 3 60

3 5 3 60

4 5 4 80

5 5 5 100

6 5 5 100

7 5 5 100

8 5 5 100

9 5 1 20

10 5 4 80

Total 50 40 80
A B

FIGURE 3

Recovery rates were maintained across different blood incubation times. Recovery rates were similar when compared at time of collection (<4
hours), 24 and 72 hours in healthy spiked-in blood (A). Similar CTC enumerations were found at different incubation times in 4 subjects diagnosed
with cancer (CTC counts normalized to 24 hours) (B). n.s, not significant.
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consistently high recovery was observed with low number of spiked-

ins cells (samples with 5 cells spiked-in) (Table 1), resulting in a 90%

sensitivity and overall accuracy of 95%. Furthermore, we

demonstrated the ability to process blood for up to 72 hours post-

blood collection with no significant loss compared to day-of-draw

(Figure 3). This could have important logistical and clinical

implications as well as open opportunities for downstream analyses.

This study found that isolation of nucleated blood cells using

AccuCyte was superior to other nucleated blood cell isolation

methods (Figure 5). Isolation of nucleated blood cells by standard

methods can be highly variable with a reported maximum yield of

80% as well as user-dependency (30). The AccuCyte system

provided consistently high recovery of nucleated blood cells,

ensuring that rare cell populations such as CTCs can be reliably

identified. This study utilized staining of CK and EpCAM in

different immunofluorescent channels (Figure 4B). While this
Frontiers in Oncology 06
approach differed from other published studies using the same

platform that combine CK and EpCAM detection into the same

channel (27–29), high recovery rates and reviewer concordance was

maintained. Furthermore, recent studies have demonstrated that

this platform is analytically equivalent to CellSEARCH®, the only

FDA-approved CTC detection platform, in detecting CTCs (27, 28,

31, 32).

Several studies have utilized the AccuCyte-CyteFinder platform

to detect CTCs in various cancers such as prostate, breast, and lung

(9, 10, 26, 28, 29, 31–33). This study is the first to examine CTCs

using this platform in thyroid cancer. Although CTCs have been

found in numerous studies to be a prognostic marker (4, 6), the

clinical utility could not be examined due to the small patient

numbers. Clinical studies using this platform with longitudinal

blood samples are required to fully elucidate the clinical utility of

CTCs identified using this platform.
TABLE 3 Number of CTCs detected according to post-collection processing time.

Patient Cancer Status at blood collection CTC Numbers (7.5 mL blood)

<4 hour 24 hours 72 hours

1 Pancreatic cancer Recurrent cancer receiving second-line treatment 19 12 14

2 Pancreatic cancer Advanced cancer (treatment naïve) 14 20 20

3 Thyroid cancer Preoperative (treatment naïve) 10 15 11

4 Small cell lung cancer Progression after first-line treatment 157 136 137
A

B

FIGURE 4

Proportions of epithelial markers in clinical sample CTCs. CTCs identified in clinical samples of patients with pancreatic cancer (Patient 1 and 2),
thyroid cancer (Patient 3) and small cell lung cancer (Patient 4) had varying proportions of epithelial markers: cytokeratin (CK) and EpCAM (A).
Representative images are shown: CKhighEpCAMhigh (top), CKlowEpCAMhigh (middle), and CKhighEpCAMlow (bottom) (B). CK (green), EpCAM (red),
CD45 (yellow) and nuclear DAPI (blue). Magnification = 40X; scale bar = 50 mm.
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This study utilizes the standard CK/EpCAM biomarkers to

identify CTCs. However, CTCs are known to be heterogeneous, and

their expression of markers may vary (11, 12, 34). CTCs,

undergoing EMT, downregulate their expression of epithelial

markers (12, 35) where varying EpCAM expression was observed

in the clinical samples (Figure 4), however, further characterization

with mesenchymal markers is required. The AccuCyte-CyteFinder

platform allows for up to 7 different markers allowing for additional

non-epithelial biomarkers, potentially increasing CTC detection by

detecting those undergoing EMT. Additional biomarkers may also

be relevant to a specific tumor subtype, provide prognostic value, or

to facilitate patient selection for targeted therapies. For example,

PD-L1 for monitoring patients undergoing immunotherapy (10),

androgen receptor splice variant 7 (ARv7) for emergence of
Frontiers in Oncology 07
therapeutic resistance in prostate cancer (31), and assessing

biomarkers such as EGFR, HER2 or PD-L1 in esophageal cancer

(36). Furthermore, the platform has a single-cell retrieval device,

CellPicker™, where identified cells can be picked for single-cell

molecular characterization. This includes genomic analysis such as

TP53 mutations in breast cancer cells (27), APC mutations in

colorectal cancer (36), targeted mutational panels in prostate (31)

and lung cancer (33); and single-cell RNA sequencing as

demonstrated in breast cancer (29).

In summary, our study demonstrates the sensitivity and accuracy

of detecting rare cell populations such as CTCs for up to 72 hours

post-blood collection, making large clinical studies operationally

practical. Investigating the clinical utility of CTCs in cancer using

this platform warrants larger studies. The potential downstream
FIGURE 5

Recovery rates based on white blood cell isolation. Recovery rates from AccuCyte were superior compared to white blood cell isolation by density
gradient and red blood cell lysis in spiked-in healthy blood samples. * p<0.05, ** p<0.01.
A B

FIGURE 6

CTC reviewer concordance. Reviewers were concordant in identifying tumor cells (enumeration) in healthy spiked-in sample (A) and clinical sample
(B) slides.
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molecular profiling offers opportunities for clinical and research

applications especially for precision/personalized patient care.
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