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Strategies to target the cancer
driver MYC in tumor cells

Leonie I. Weber and Markus Hartl*

Institute of Biochemistry and Center of Molecular Biosciences (CMBI), University of
Innsbruck, Innsbruck, Austria
The MYC oncoprotein functions as a master regulator of cellular transcription

and executes non-transcriptional tasks relevant to DNA replication and cell cycle

regulation, thereby interacting with multiple proteins. MYC is required for

fundamental cellular processes triggering proliferation, growth, differentiation,

or apoptosis and also represents a major cancer driver being aberrantly activated

in most human tumors. Due to its non-enzymatic biochemical functions and

largely unstructured surface, MYC has remained difficult for specific inhibitor

compounds to directly address, and consequently, alternative approaches

leading to indirect MYC inhibition have evolved. Nowadays, multiple organic

compounds, nucleic acids, or peptides specifically interfering with MYC activities

are in preclinical or early-stage clinical studies, but none of them have been

approved so far for the pharmacological treatment of cancer patients. In

addition, specific and efficient delivery technologies to deliver MYC-inhibiting

agents into MYC-dependent tumor cells are just beginning to emerge. In this

review, an overview of direct and indirect MYC-inhibiting agents and their modes

of MYC inhibition is given. Furthermore, we summarize current possibilities to

deliver appropriate drugs into cancer cells containing derailed MYC using viral

vectors or appropriate nanoparticles. Finding the right formulation to target

MYC-dependent cancers and to achieve a high intracellular concentration of

compounds blocking or attenuating oncogenic MYC activities could be as

important as the development of novel MYC-inhibiting principles.

KEYWORDS

transcriptional regulation, protein-protein interaction, cell proliferation, tumorigenesis,
cell penetrating peptides, nanoparticles
1 MYC: An oncogenic transcription factor with
pleiotropic functions

1.1 The MYC oncogene and its
protein product

MYC gene is one of the most frequently deregulated oncogenes in many cancer types

and a hallmark in the majority of human cancers (1). The v-myc oncogene was originally

discovered as the transforming principle in avian leukemogenic retroviruses (2–5). The

gene regulator MYC (c-MYC) and its paralogs MYCN (N-Myc) and MYCL (L-Myc) are
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bHLH-LZ proteins encompassing a protein dimerization domain

(helix-loop-helix, leucine zipper) and a DNA contact surface (basic

region), which are both located in the carboxyl-terminus (Figure 1).

The amino-termini of MYC proteins mediate crucial cellular

functions including transcriptional regulation. MYC proteins

form heterodimers with the MYC-associated factor X (MAX)

protein typically binding to a canonical DNA sequence element

termed E-box in the promoter regions of multiple MYC target genes

(6) (Figure 1). The bHLH-LZ proteins MYC and MAX are

evolutionary conserved having functional homologs in primitive

metazoans and pre-metazoans (6–8), suggesting that basic

functions of MYC arose very early in the evolution of

multicellular organisms.
Frontiers in Oncology 02
MYC represents the hub of a network controlling the expression

of approximately 30% of the human genes and regulates

fundamental cellular processes like growth, proliferation,

differentiation, metabolism, and apoptosis (6). Acting mainly as a

transcription factor, the principal function of MYC is specific gene

regulation, but MYC also executes additional tasks implicated in

DNA replication and chromatin remodeling (6, 9). Therefore, MYC

facilitates the assembly of protein complexes at the origin of

replication (ORI) by interacting with proteins from the pre-

replicative complex like CDT1, whose underlying gene itself is a

transcriptional MYC target (10–12) (Figure 1). Overexpression of

MYC enhances replication origin activity, which subsequently

induces replicative stress leading to DNA damage and checkpoint
A B
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FIGURE 1

MYC structure and relevant protein and DNA interactions. (A) Schematic depiction of the human MYC paralogs MYC (c-Myc), MYCN (N-Myc), and
LMYC (L-Myc) and of human MAX. The conserved dimerization and DNA binding regions (bHLH-LZ) in the carboxyl-terminal regions are depicted in
pink/orange, and the MYC boxes (MB) in the amino-terminal transactivation regions are in yellow. (B) Structure of the human MYC/MAX bHLH-LZ
domains binding to the E-box (5′-CACGTG-3′). The image was created from the PDB entry 1NKP. (C) Selected MYC protein interaction partners and
their positions where they bind the MYC protein surface. (D) Simplified illustration of the transcriptional amplification model. At low MYC
concentrations, only high-affinity binding sites are occupied, leading to transcriptional regulation of target genes. At high MYC levels, as it occurs in
most cancer cells, also targets with low-affinity binding sites are bound by MYC, causing aberrant expression of cell transformation-associated MYC
target genes. (E) Scheme showing MYC interactions with proteins of the pre-replicative complex at the onset of DNA replication leading to initiation
of bidirectional DNA synthesis.
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activation pointing to a critical MYC function in DNA synthesis,

which is aberrantly activated in cancer cells (10, 13).

Due to the regulation of thousands of genes, MYC can be

regarded as a globally acting transcription factor (14) binding with

its C-terminal bHLH-LZ region sequence specifically to double-

stranded DNA in the relevant target promoter regions. The N-

terminal transactivation domain of MYC contains several

conserved motifs termed MYC boxes, from which MYC box II

binds to chromatin-remodeling co-activators being components of

several histone acetyltransferase (HAT) complexes (15) (Figure 1).

MYC also interacts with the TATA box binding protein (TBP) and

with other basal transcription factors leading to re-activation of

paused RNA polymerase II upon phosphorylation, indicating that

MYC has specific and general functions in transcriptional activation

(14, 15). So far, it has not been possible to ascribe the oncogenic

properties of MYC to a defined and complete set of target genes, and

results from recent investigations suggest that the principal MYC

function exceeds that of a typical sequence-specific binding gene

regulator (14, 15). Instead, MYC may act as a universal amplifier of

gene expression rather than regulating a distinct set of target genes.

Accordingly, in tumor cells, the promoters of all actively transcribed

genes are activated by MYC leading to non-linear amplification of

pre-existing transcriptional activities (14) (Figure 1). The amplifier

model also explains how ectopic MYC increases the efficiencies of

other transcription factor programs, suggesting that MYC acts as a

superior master switch in global transcriptional regulation (11).

Furthermore, recent comprehensive analyses of gene expression

revealed that during MYC-initiated tumorigenesis, gene expression

changes follow a distinct pattern, which is associated with

embryonic , r ibosomal biogenes is , and t issue- l ineage

dedifferentiation processes (16).

Concerning MYC-repressed genes, which are almost as

numerous as the upregulated ones, there exist additional MYC-

associated repressive mechanisms. MYC interacts with other

transcription factors such as MIZ-1 or SP1 converting MYC from

a transcriptional activator into a transcriptional repressor (6, 14, 15,

17) (Figure 1). ManyMYC-repressed genes are involved in cell cycle

regulation where MYC downregulates the expression of distinct cell

cycle inhibitors or genes mediating cell growth arrest (18).

Interactions of MYC with MIZ-1 or SP1, and chromatin

accessibility influenced by epigenetic modifications could lead to

specific target gene repression, thereby defining a more selective

amplification model (19). Alternatively, gene repression may be

more indirect and caused by MYC-induced upregulation of

repressive components and other repressive mediators like

distinct microRNAs (14, 15). Transcriptional transactivation of

MYC/MAX complexes is further antagonized by MAX/MXD1

heterodimers that compete for E-box binding. These protein

complexes repress canonical targets by recruitment of histone

deacetylases (HDACs) and corepressors leading to chromatin

closing (6, 15).

Multiple proteins have been identified, which interact with

MYC and enable MYC for processes such as promoter DNA

binding, chromatin modification, or regulation of gene

transcription. In fact, the combination of multiple protein–

protein interactions is a prerequisite for MYC in order to
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function as an oncoprotein. MYC interactions occur through

conserved regions such as the transactivation domain containing

the MYC homology boxes (MB), the basic region, and the helix-

loop-helix-leucine-zipper region (bHLH-LZ) (18) (Figure 1). On

the way to achieving a comprehensive view including the dynamics

of components regulating MYC-dependent transcription and DNA

replication in a quantitative manner, a model has been recently

proposed concerning the differential partitioning and trafficking of

the largely unstructured MYC protein. In this model, MYC is part

of an interaction network between multiple gene–regulatory

complexes and factors, thereby energetically modulating the

transcriptional process (11).
1.2 MYC-associated signaling pathways

MYC is frequently found deregulated in cancer cells, which are,

apart from tumorigenesis-caused genomic instability and epigenetic

reprogramming, featured by aberrant activation of proto-oncogenes

or inactivation of tumor suppressor genes. In normal tissues,

growth-promoting signals are carefully controlled leading to

cellular homeostasis, whereas in cancer cells, these functions are

derailed. Growth-promoting signals are largely transmitted by

growth factors, which bind to cell surface receptors containing

intracellular tyrosine kinase domains. From here, the signal

branches into multiple and complex transduction pathways

mediated mainly by serine/threonine protein kinases to regulate

cell cycle progression, cell growth, survival, and energy metabolism.

This is then finally accomplished by transcription factors

representing the nuclear endpoints of cellular signaling (20).

Hence, all key players in cellular signal transduction are encoded

by genes, which are normally required to coordinate proper cell

metabolism, proliferation, and differentiation, and in many cases,

their relevant functions had been elucidated after their

identification as transforming principles in highly oncogenic

avian and murine retroviruses carrying mutated versions in their

genomes (2, 3, 5).

Representing an effector of multiple signaling pathways, MYC

acts as a master switch in cell proliferation and differentiation. In

particular, the mitogen-activated protein kinase (MAPK) and the

phosphatidylinositol-3-phosphate kinase (PI3K) pathways

mediating cell growth and survival end in activation of the

nuclear MYC protein at the post-translational level (21–23)

(Figure 2). Both signaling routes synergistically regulate MYC

protein stability by phosphorylation of distinct residues in MYC

box I (MBI), one of several conserved MYC segments in the

transactivation domain, leading to MYC accumulation during the

initial stage of cell proliferation (24, 25). The MBI in the

transactivation domain of MYC contains a canonical

phosphodegron with two interdependent phosphorylation sites

critical for the regulation of MYC stability and function. From

the remaining MYC boxes, MBII contributes to gene activation and

protein degradation, whereas MBIII and MBIV are implicated in

transcriptional repression and apoptosis (26). Multiple

transcriptional target genes of MYC subsequently promote cell

division and proliferation.
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In MAPK signaling, the serine/threonine protein kinase RAF

and its paralogues ARAF and BRAF are taking a key position

resulting in the phosphorylation of master gene regulators such as

MYC or the transcription factor AP-1 (2, 27–29) (Figure 2). Further

downstream of RAF, the MAP kinase ERK phosphorylates the

serine residue 62 in MBI leading to MYC protein stabilization.

However, phosphorylation of threonine 58 in MBI mediated by

glycogen synthase kinase 3 (GSK3) is associated with MYC

degradation (24). Consequently, inhibition of GSK3 by protein

kinase AKT-mediated phosphorylation within the PI3K pathway

leads to the stabilization of the MYC protein. In addition to GSK3,

AKT phosphorylates distinct FOXO transcription factors, which

normally impede the induction of critical MYC target genes

required for cell proliferation (30–32). The third downstream

substrate inhibited by AKT is a component of the tuberous

sclerosis complex (TSC) termed TSC2. Phosphorylation of TSC2

relieves TSC-mediated inhibition of the RHEB protein and leads to

activation of the mammalian target of rapamycin (mTOR)

component mTORC1. Canonical targets of mTORC1 are the

ribosomal protein S6 kinase (S6K) and the eukaryotic translation

initiation factor 4E-binding protein (4E-BP1) (Figure 2). 4E-BP1 is

a master regulator of protein synthesis control, required for cancer

ce l l survival in MYC-dependent tumorigenesi s (33) .

Phosphorylation of S6K and 4E-BP1 stimulates mRNA

translation of distinct transcription factors including MYC (31),

thereby increasing the levels of this oncoprotein. Possible links

between MYC and mTOR are provided by recent results showing
Frontiers in Oncology 04
that phosphorylation of AKT by the mTOR component mTORC2

directly regulates MYC expression (34). In addition, mTOR and

AKT stimulate MYC expression by post-transcriptional

modification of distinct substrate proteins or via activation of

MYC target genes to support translation for cell growth and

proliferation (21).
1.3 The role of MYC in human cancer

In normal cells or tissues, MYC is tightly regulated at

transcriptional, translational, and post-translational levels leading

to a half-time of approximately 20 min (35, 36). However, in many

cancers like lymphomas or carcinomas, MYC gene is aberrantly

activated by transcriptional deregulation, gene amplification,

chromosomal translocation, or post-translational modification (6,

37). In fact, the deregulation of MYC gene and concomitantly of

multiple MYC targets is a frequent event in tumorigenesis occurring

in approximately 70% of all human cancer cell types, indicating that

aberrant MYC expression drives the genesis of many tumors (4, 6).

This results in the deregulation of cell cycle progression,

metabolism, differentiation, and angiogenesis, which then

contributes to neoplastic transformation. Since many tumors

depend on continuous MYC expression, this oncoprotein is one

of the crucial drivers in human cancers, from which many are

associated with a poor clinical outcome (15), indicating that

deregulated MYC contributes to or drives the genesis of multiple

tumors (4, 6, 38).

Transcriptional deregulation of the human MYC gene was first

observed in Burkitt’s lymphoma, where the MYC proto-oncogene

(c-myc) is translocated into the immunoglobulin heavy chain locus

(3, 6). Transgenic mice overexpressing MYC alleles in lymphoid or

myeloid cells develop lymphoma or leukemia (39). MYC

upregulation in lymphoma is frequently accompanied by

additional translocations leading to the inactivation of the BCL6

repressor and activation of the BCL2 oncoprotein (40). In T-cell

lymphoma, the MYC protein is overexpressed without MYC gene

rearrangement or amplification but stabilized by Ca2+/calmodulin-

dependent protein kinase II g (CAMKIIg) phosphorylation (41). In

chronic myeloid leukemia (CML), the tumor suppressor TP53

(p53) and the cancer driver MYC mediate the CML network

triggered by the fusion protein BCR-ABL, which displays

constitutive tyrosine kinase activity. Perturbation of this network

using compounds stabilizing TP53 and inhibiting MYC

transcription results in synergistic cell killing and differentiation,

thereby preventing CML formation (42). In acute lymphoblastic

and myeloid leukemia (ALL and AML), MYC is often

overexpressed and frequently associated with disease progression

(39). Hence, MYC represents a transcription factor with a pivotal

role in hematopoiesis and blood cancer. However, MYC is also

implicated in multiple other tumor forms. In breast, ovarian, and

endometrial cancers, MYC amplification is a characteristic feature

with poor prognosis (1). Amplification of MYC gene also occurs in

colon cancer, apart from direct transcriptional MYC activation

caused by the WNT/b-catenin signaling pathway (Figure 2) (1,

43). Furthermore, inactivating mutations of the E3 ubiquitin ligase
FIGURE 2

MYC signaling. Schematic depiction of selected signaling pathways
activating MYC gene and its protein product. Proteins of the WNT,
MAPK, or PI3K pathways are shaded in light green, orange, or
yellow, respectively. Whereas WNT/b-catenin signaling leads to
transcriptional activation of MYC gene, MAPK or PI3K signaling has
an impact on the post-translational modification of the MYC protein,
thereby also influencing its stability. The MYC/MAX heterodimer
binds to DNA and regulates the expression of multiple specific
target genes. Selected protein products of distinct MYC targets
regulating the cell cycle are shaded in blue.
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FBXW7 lead to increased MYC protein stability (1, 44). Likewise, in

lung and pancreatic cancers, MYC and MYCN genes are frequently

amplified (1).

Deregulated MYC is also implicated in breast and prostate

cancers, which belong to the most frequent malignancies in women

and men, respectively, with one-eighth of the entire human

population developing one of these highly heterogeneous cancer

forms. In these tumors, MYC is deregulated due to aberrant

transcriptional activation, gene amplification, or mRNA/protein

stabilization correlated with a loss of BRCA or TP53 tumor

suppressors, which normally inhibit MYC’s transcriptional and

transforming activities. Breast cancer can be divided into three

clinical subtypes, featured by expression of the estrogen receptor

(ER), the progesterone receptor (PR), or amplification of the HER-

2/NEU gene encoding an Erb-type receptor tyrosine kinase, which can

be all treated with chemotherapy or specific tyrosine kinase inhibitors.

Tumors that do not express one of these markers are classified as

triple-negative breast cancer (TNBC). TNBC is characterized by a

basal-like tumor subtype with no functional BRCA1 or TP53 and a

lack of appropriate therapeutic targets, which could be reached by

clinically approved inhibitors (45–47). These tumors are furthermore

featured by overexpression of MYC proteins, elevated MYC-driven

pathways, and deregulated MYC-dependent gene signatures (47–49).

In addition, MAPKs inducing MYC oncogenicity are frequently

upregulated in chemotherapy-resistant cells and involved in the

resistance toward the ER antagonist tamoxifen (50).

In advanced stages of prostate cancer, hormonal therapies using

steroidal compounds like enzalutamide are applied with the aim to

block androgen production and to reduce the activities of androgen

receptor signaling (51). However, despite initial success, tumors

often recur and even develop into castration-resistant prostate

cancer (CRPC) with poor prognosis (51, 52). During progression,

the androgen receptor becomes aberrantly upregulated along with

the hyperactivation of distinct oncogenes, including amplification

and overexpression of MYC (53). Therefore, MYC antagonizes and

deregulates the transcriptional androgen receptor program (53) and

could represent the driving force in the transition toward therapy

resistance. In metastatic prostate tumor progression, MYC gene

amplification and upregulated MYC expression caused by the

activation of upstream-acting kinase pathways are considered the

main events (54). MYC inhibition sensitizes enzalutamide-resistant

cells toward growth inhibition by this drug, suggesting that MYC

targeting may be useful in androgen receptor-directed therapy (55).

In advanced prostate adenocarcinoma, MYC signaling is one of the

most activated pathways (56), and alterations in MYC gene loci

occur already in the early phase. In metastatic prostate tumor

progression, MYC gene amplification or upregulation of MYC

expression caused by activation of upstream-acting kinase

pathways are considered the main events (54, 57).
1.4 Current strategies to inhibit
oncogenic MYC

MYC is one of the most commonly deregulated proteins in

multiple cancer cells but is difficult to target with appropriate drugs.
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As outlined above, aberrant MYC activity is observed in the

majority of human tumors caused by transcriptional deregulation,

gene amplification, or chromosomal translocation of MYC gene or

by post-translational modifications of the MYC protein (6). Due to

MYC’s pivotal role in human cancer, it is not surprising that many

attempts have been pursued to inhibit oncogenic MYC functions

(58) including multiple approaches to interfere with its

transcriptional or post-translational regulation (25, 35) (Figure 3).

However, vertebrate MYC has two paralogues (MYCN and MYCL)

with partially redundant functions, which need to be targeted as

well in order to achieve an efficient therapeutic effect. A further

complication is that MYC has an important role in distinct

physiological processes linked to tissue regeneration, suggesting

that complete MYC inhibition could also affect normal homeostasis

(26), although it has been shown that efficient MYC inhibition is

tolerated surprisingly well (59). In the following sections, different

types of MYC-inhibiting molecules are discussed. Despite all

difficulties in effectively inhibiting MYC in tumor cells, genetic

models indicate that MYC inhibition could be supportable for an

organism and lead to sustainable tumor regression (35).

To inhibit MYC’s oncogenic activities in cancer cells, different

types of molecules have been applied like organic molecules, nucleic

acids, peptides, or natural compounds derived from plants

(Table 1). However, MYC is a transcription factor majorly

present in the nucleus, and in contrast to oncogenic enzymes,

which can be tightly bound by inhibiting molecules, MYC is an

intrinsically unstructured non-enzymatic protein with no particular

surface, supporting efficient docking of an inhibiting molecule

(107). Consequently, MYC is hardly accessible by conventional

small molecules or specific antibodies, which is the reason why

numerous clinically approved drugs against oncogenic kinases exist

but not against oncogenic transcription factors such as MYC.

The apparently undruggable MYC protein structure promoted

the development of alternative inhibiting principles to achieve

desirable anti-tumor effects. These encompass disruption of the

MYC/MAX complex by small organic molecules (60, 108) or by

appropriate peptides like the dominant negative Omomyc (26, 109).

Progress has been also made by the development of small-molecule

inhibitors inducing epigenetic silencing or disrupting MYC/MAX

DNA-binding activities to prevent further activities occurring

downstream of MYC. In addition, the application of synthetic

lethality effects associated with MYC overexpression has been

successfully pursued (110), as well as the targeting of specific

protein interactions with one of the multiple MYC binding

partners (18, 111). Blocking specific protein kinases regulating

MYC at the post-translational level or interfering with the

functions of transformation-associated MYC target genes

represents further options. Due to the complex regulation of

MYC signaling, combinations of different inhibition modes

(Figure 3) may provide a more effective response (35). Most of

the applied strategies for MYC gene or MYC protein inhibition are

still tested in preclinical or early-phase clinical stages, and only a few

have yet succeeded in advanced clinical trials (112) (Table 1).

Hence, MYC is still classified as a “difficult-to-drug” or even

“undruggable” therapeutic target (113). All current possibilities to

directly or indirectly inhibit oncogenic MYC are comprehensively
frontiersin.org
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summarized in recent excellent reviews (18, 109, 114). A description

and illustration of selected principles and methods to inhibit MYC

(Figure 3) are given below.

1.4.1 Interference with dimerization and
DNA binding

In order to prevent oncogenic activities from occurring

downstream of MYC, inhibition of MYC/MAX dimerization and

subsequent DNA binding is straight-forward since this blockade is

independent of upstream alterations in cellular signaling (35).

However, the structural heterogeneity of MYC based on its

intrinsically disordered structure makes the design of appropriate

drugs challenging. Even the MYC/MAX interaction surface is

relatively large and flat, making it difficult to identify binding sites

for small-molecules (115). Nevertheless, multiple small organic

molecules interfering with MYC/MAX dimerization have been

developed (108) like pyridine derivatives, leading to inhibition of

transcriptional activation and oncogenesis (60, 116) or other types

of compounds (62, 67, 116, 117) including stabilizers of MAX
Frontiers in Oncology 06
homodimers to reduce the availability for MYC (118). Likewise,

small molecules disrupting MYC-associated protein–protein and

protein–DNA interactions interfering with MYC-dependent

transcription and oncogenesis have been developed and

characterized (26, 35, 119). However, most of these compounds

suffer from non-adequate pharmacokinetic properties and

consequently lack potency in in vivo systems (65, 120). To obtain

compounds with better pharmacokinetic properties, the chemical

space in drug screening has been enlarged, leading to the

identification of novel molecules with desired properties. A

recently developed small molecule inhibiting MYC is the

compound MYCMI-6, which was identified in a cell-based

protein interaction screen. This compound blocks MYC-driven

transcription and MYC-dependent tumor cell growth in a

nanomolar range and binds with high affinity to the bHLH-LZ

domain of MYC (Figure 3). Furthermore, it inhibits MYC/MAX

interaction and induces apoptosis in tumor tissue derived from a

MYC-driven xenograft tumor model. An advantage is that this

compound does not affectMYC expression, making it an interesting
FIGURE 3

MYC inhibitors. Overview of direct and indirect possibilities to interfere with the activity of oncogenic MYC. MYC can be inhibited on the
transcriptional level by preventing MYC mRNA expression, post-transcriptionally by preventing mRNA translation, post-translationally by interfering
with upstream signaling or by inducing premature protein degradation, and finally by blocking dimerization with MAX and/or DNA binding, thereby
impairing oncogenic target gene expression. Inhibitory effects on MYC are depicted in red, and events that activate MYC-inhibitory pathways are in
green. Relevant molecules interfering with oncogenic MYC activity are listed in Table 1.
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TABLE 1 Molecules interfering with oncogenic MYC activity.

Mode of action Name Mechanism Clinical status Reference

MYC/MAX dimerization

KJ-Pyr-9 Prevents MYC dimerization Preclinical, tested in
vivo

(60)

KSI-3716 Prevents promoter binding of the MYC/MAX dimer Preclinical, tested in
vivo

(61)

L755507 Prevents MYC/MAX dimerization Preclinical, tested in
vitro

(62)

ME-47 Disrupts MAX/E-box binding Preclinical, tested in
vivo

(63)

MI3-PD Prevents MYC/MAX dimerization Preclinical, tested in
vivo

(64)

MYCi 975 Prevents MYC/MAX dimerization, promotes T58
phosphorylation

Preclinical, tested in
vivo

(65, 66)

MYCMI-6 Prevents MYC/MAX dimerization Preclinical, tested in
vivo

(67)

Mycro3 Prevents MYC/MAX dimerization Preclinical, tested in
vivo

(68)

Omomyc Prevents MYC/MAX dimerization Clinical trial phase I (69–71)

RASSF7 Competes with MAX, MYC destabilization Preclinical, tested in
vitro

(72)

MYC transcription
inhibition

dBET1 Degrades BRD4 Preclinical, tested in
vivo

(73, 74)

IZCZ-3 Stabilizes MYC G-quadruplex Preclinical, tested in
vivo

(75)

JQ1 BRD4 inhibitor Preclinical, tested in
vivo

(76–78)

Morpholino-
thienopyrane

BRD4 and PI3K inhibitor Preclinical, tested in
vivo

(79)

QN-1 Stabilizes MYC G-quadruplex Preclinical, tested in
vivo

(80)

SF1126 BRD4 and PI3K inhibitor Preclinical, tested in
vivo

(81)

Thiazole peptide TH3 Stabilizes MYC G-quadruplex Preclinical, tested in
vitro

(82)

THZ1 CDK7 inhibitor Preclinical, tested in
vivo

(83, 84)

MYC translation inhibition

CUDC-907 PI3K and HDAC inhibitor Preclinical, tested in
vivo

(85)

Omacetaxine Translation inhibitor FDA-approved (86)

Rapamycin mTOR inhibitor Preclinical, tested in
vivo

(87)

Silvestrol eIF4E inhibitor Preclinical, tested in
vivo

(88)

MYC protein stability

ATRA PIN1 inhibitor Clinical trial phase II (89)

AZD1208 PIM kinase inhibitor Clinical trial phase I (90, 91)

DT1154 PP2A activator Preclinical, tested in
vivo

(92)

Curcumin MYC cross-linking Preclinical, tested in
vitro

(93)

(Continued)
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candidate to specifically target MYC/MAX with potentially few side

effects (67). Another novel compound termed MYCi975 represents

a promising specific MYC inhibitor in TNBC cells. MYCi975 shows

favorable pharmacokinetics and in vivo efficacy by disrupting MYC/

MAX complexes and promoting threonine 58 phosphorylation

followed by MYC degradation (65). Furthermore, critical MYC

target gene expression is impaired, and the proliferation of several

TNBC cell lines is arrested, in combination with the compound

paclitaxel or doxorubicin. This makes MYCi975 an interesting

candidate for combined breast cancer chemotherapy (66). With

the use of computer-aided drug discovery, further MYC inhibitors

have been identified. The compound L755507 efficiently blocks

MYC/MAX heterodimerization, leading to decreased MYC target

gene expression and induction of programmed cell death in cancer

cells (62). A phenoxy-N-phenylaniline derivative was shown to

interfere with MYC/MAX dimerization, thereby efficiently

inhibiting MYC in colorectal cancer cell lines (121).

In addition to small molecules, short polypeptides have been

successfully applied to interfere with MYC-specific functions. The

small protein ME47 disrupts the MAX:E-box interaction (Figure 3),

leading to a block of MYC/MAX transcription and inhibition of

tumor growth (63). An elegant approach to interfere with MYC/

MAX dimerization and subsequent DNA binding has been achieved

by expression of the 90-amino acid dominant negative polypeptide

Omomyc (69). This peptide encompasses the bHLH-LZ region of

MYC with four amino acid substitutions conferring different

dimerization properties. That way, Omomyc can form
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homodimers and heterodimers with MYC or MAX, which has

been confirmed by chromatin immunoprecipitation, proximity

ligation assay, and double chromatin immunoprecipitation

(ReChIP) (70). By competitive inhibition of DNA binding and

sequestration of oncogenic MYC, Omomyc inhibits MYC by

reducing its ability to bind to specific E-box sequences in the

promoters of MYC target genes (69). Overexpression of Omomyc

inhibits MYC-mediated transcription and MYC-dependent cell

transformation (26) and offers promising therapeutic impact in

several cancer mouse models (69). Furthermore, Omomyc has a

cell-penetrating capacity and is functional when delivered as a

purified polypeptide into cells (69). Delivery efficiency can even

be enhanced upon fusion with a penetrating phylomer peptide

(FPPa) as shown in triple-negative breast cancer where this fusion

peptide effectively inhibits MYC-dependent transcriptional

networks, thereby inducing apoptosis. Furthermore, there is a

strong synergism between FPPa-Omomyc and chemotherapeutic

agents (122). Likewise, the application of the original Omomyc as a

cell-penetrating peptide (Omo-103) in patients suffering from solid

cancers has provided promising results in a first phase I trial (59).

To overcome possible pharmacological limitations associated

with potentially unstructured mini proteins above 60 amino acids in

size and to generate a tool box applicable also to other DNA binding

proteins, synthetic transcriptional repressors have been designed,

which are better structured and shorter in size (123). A synthetic

transcriptional repressor derived from the bHLH-LZ domain of

MAX cooperatively binds to the consensus E-box with nanomolar
TABLE 1 Continued

Mode of action Name Mechanism Clinical status Reference

Fludarabine phosphate MYC destabilization Preclinical, tested in
vivo

(94)

KPT-6566 PIN1 inhibitor Preclinical, tested in
vivo

(95)

MAGI3 overexpression Ubiquitin ligase Preclinical, tested in
vivo

(96)

MLN8237 Aurora-A kinase inhibitor Clinical trial phase III (97, 98)

Momordin Ic SENP1 inhibitor Preclinical, tested in
vivo

(99)

OP449 PP2A activator Preclinical, tested in
vivo

(100)

Pimi PIM kinase inhibitor Preclinical, tested in
vitro

(101)

Sulfopin PIN1 inhibitor Preclinical, tested in
vivo

(102)

TD-19 CIP2A inhibitor Preclinical, tested in
vivo

(103)

TD-52 CIP2A inhibitor Preclinical, tested in
vivo

(104)

TRAFTAC MYC degradation Preclinical, tested in
vivo

(105)

UNC10112785 CDK9 inhibitor Preclinical, tested in
vitro

(106)
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affinity as demonstrated by electrophoretic mobility shift assays

(EMSAs), thereby competing with MYC/MAX binding. As a

consequence, MYC-dependent transcription programs become

downregulated at the proteome level, and cell proliferation

decreases (123). This non-natural mimetic comprising the

minimal DNA-binding helix and the N-terminal portion of the

leucine zipper consists of two separate polypeptides, one with

the basic helix and the other one with the minimal zipper helix.

These peptides are ligated to build a larger tertiary structure in order

to form the minimal tetrahelical helix-loop-helix that recognizes an

E-box sequence upon dimerization. The advantage of this

technology is that a relatively small secondary and tertiary

structure-stabilized peptide with a size of only approximately 6

kDa can be obtained (123).

As an alternative to compounds interfering with MYC/MAX

dimerization or DNA binding, double-stranded oligonucleotides

containing the binding site for a transcription factor represent

therapeutic drug candidates to specifically inhibit oncogenic gene

regulators such as MYC. However, these unprotected DNA

molecules are normally rapidly degraded upon cellular delivery.

To ensure the long-lasting effects of these decoy oligonucleotides,

structural modifications like intramolecular hairpins or

circularization coupled with specific drug delivery methods, such

as coated microbubbles or viral vector-mediated gene transfer, are

often required (124). For efficient cellular delivery, the fusion with a

cell-penetrating peptide (CPP) may also represent an option, as

shown previously with the CPP TP10 to attenuate MYC protein

levels. In this case, the TP10 peptide was either mixed with the

double-stranded decoy oligonucleotide thereby forming a complex

through non-covalent electrostatic interactions or added together

with a complementary peptide nucleic acid (PNA) sequence to a

decoy strand with a nucleotide overhang (125).

1.4.2 Inhibition of MYC transcription
The MYC promoter is bound by transcription factors and

chromatin components, which are regulated by several upstream

signaling pathways. Conventional gene regulators such as SP1

trigger transcription catalyzed by RNA polymerase II followed by

binding of so-called FUSE-binding proteins (FBP) to a FUSE

element located far upstream of the transcription site and finally

by binding of an FBP-interacting repressor (FIR), which then

returns transcription to a basal-state level (126). In addition, the

Wilms tumor suppressor protein WT1 acts as a context-dependent

oncoprotein by binding to the MYC promoter as either a

transcriptional activator or repressor. This depends on the

absence or presence of the transcriptional corepressor brain acid-

soluble protein 1 (BASP1) that converts the WT1 oncoprotein into

a tumor suppressor, thereby also blocking transcriptional MYC

activation (127).

In addition to specific transcription factor binding sites, the

MYC promoter contains G-quadruplex structures representing

four-stranded secondary DNA structures characterized by

Hoogsteen-bonded guanine tetrads (109). Quadruplex structures

are involved in essential genome functions like transcription,

replication, genomic stability, or epigenetic regulation (109) and

are overrepresented in the promoter regions of proto-oncogenes
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such as MYC (82, 128). The MYC promoter contains a 27-mer G-

quadruplex within a nuclease hypersensitive element (129) in

equilibrium between transcriptionally active double- or single-

stranded DNA and a transcriptionally inactive four-stranded

form (82). Since the MYC promoter is frequently overactivated in

many cancer types (6), interference withMYCmRNA transcription

by stabilizing transcription-inhibitory secondary DNA structures

has become an option to silenceMYC expression (Figure 3). For this

reason, small-molecule inhibitors have been developed to target

deregulated MYC transcription by causing epigenetic silencing or

by stabilizing non-canonical G-quadruplex structures within the

promoter region (35). To overcome the generally limited selectivity

of quadruplex ligands, the development of cell-penetrating thiazole

peptides specifically targeting G-quadruplex structures in the MYC

promoter has been recently reported (82). Therefore, a particular G-

quadruplex structure is bound by a crescent-shaped thiazole peptide

that enters the nucleus and preferentially stabilizes MYC

quadruplexes over other promoter G-quadruplexes leading to

MYC transcription inhibition in cancer cells (82). Another

selective binder to the G-quadruplex structure in the MYC

promoter is the compound QN-1 representing a difluoro-

substituted quinoxaline. It has been shown that QN-1

downregulates transcription in triple-negative breast cancer and

inhibits tumor growth (80, 109).

In addition, inhibition of MYC-associated transcriptional

cofactors leads to reduced MYC mRNA expression. The

bromodomain protein 4 (BRD4), a member of the bromodomain

and extraterminal domain (BET) family, is an MYC promoter-

specific coactivator containing a chromatin acetyl-lysine

recognition domain that recruits transcription factor complexes

such as the elongation factor p-TEFb to specific chromatin sites

(15). BRD4 represents an epigenetic regulator of transcription with

intrinsic kinase and HAT functions. Interference with these processes

using bromodomain inhibitors leads to the inhibition of MYC

transcription and consequently to genome-wide downregulation of

MYC targets (15) (Figure 3), which was first demonstrated with the

specific compound JQ1 (76). JQ1 releases BRD4 from chromatin and

reduces MYC transcription and tumor growth in endometrial and

ovarian cancers (77). Therefore, JQ1 or other BET inhibitors

represent promising compounds to treat MYC-dependent cancers

(78). This way of indirectly inhibiting MYC may offer a higher

therapeutic value than direct dimerization inhibition using

compounds from the first generation, which often do not display

favorable pharmacokinetics and pharmacodynamics (130).

The efficacy of bromodomain inhibitors has been further

improved by combining DNA methyltransferase and histone

deacetylase inhibitors leading to MYC inactivation. This is

accompanied by a reversion of immune evasion, thereby

representing an innovative form of epigenetic cancer treatment

(35, 131). Another type of combinatorial BRD4 inhibitor is the

compound morpholinothienopyrane. In addition to inhibiting the

acetyllysine binding of BRD4, this small molecule also inhibits

the kinase activity of PI3K, thereby impairing PI3K/BRD4 signaling

and leading to drastic downregulation ofMYC gene expression (79)

(Figure 3). This dual inhibition enhances MYC protein degradation

leading to the inhibition of cancer cell growth and metastasis, which
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renders this approach promising for the development of advanced

cancer therapeutics (79). In this context, a novel principle of specific

protein inactivation has been established by using small hetero-

bifunctional compounds termed degronimids, linking the protein of

interest to a ubiquitin E3 ligase to induce proteolytic degradation

(132), which can be applied for inhibiting MYC transcription.

dBET1 represents a proteolysis-targeting chimera (PROTAC)

targeted against BET family members (73), and targeted BRD4

degradation in acute myeloid leukemia (AML) by dBET1

specifically impairs MYC transcription. This technology has been

also applied to inhibit BRD4 in Burkitt’s lymphoma cell lines (133),

leading to MYC depletion accompanied by tumor regression in a

xenograft model (74).

1.4.3 Interference with MYC translation
To interfere with MYC protein biosynthesis, either

destabilization of the messenger RNA (mRNA) template or

targeting of critical proteins involved in MYC mRNA translation

is aimed (109). Like with many other proteins, the translation of

MYC mRNA is regulated by the mTORC1 complex containing the

mTOR protein kinase as a catalytic subunit and by downstream

substrates like the S6K1 kinase or the translation initiation factor

binding protein 4E-BP1 (Figure 3). Unphosphorylated 4E-BP1

binds to the protein translation factor eIF4E, thereby preventing

its interaction with the translation factor eIF4G. Phosphorylation of

4E-BP1 liberates a binding pocket of eIF4E and enables interaction

with eIF4G and with eIF4A plus the mRNA 5′-CAP structure to

initiate protein translation (109) (Figure 3). Consequently,

pharmacological inhibition of mTORC1 with rapamycin analogs

may be useful to interfere with MYC mRNA translation as shown

previously by a reduced amount of polysome-associated MYC

mRNA in granulocytes upon rapamycin treatment, resulting in

terminal differentiation (134). The targeting of factors operating

downstream of mTORC1 like the helicase eIF4A has been achieved

by using silvestrol, a natural product of the flavagline family and

secondary ingredient of several tropical plants (Aglaia foveolata).

Silvestrol inhibits eIF4E, which normally unwinds mRNA

secondary structures, allowing the docking of small ribosomal

subunits. Therefore, MYC protein but not MYC mRNA levels are

downregulated (109). In colon cancer where MYC is a potent

oncogenic driver, inhibition of eIF4A by silvestrol reduces MYC

translation and inhibits tumor growth in a mouse model of

colorectal cancer (88). Another natural plant compound is

omacetaxine (Cephalotaxus fortunei), an alkaloid that is used as a

Food and Drug Administration (FDA)-approved drug

(omacetaxine mepesuccinate) to treat tyrosine kinase inhibitor-

resistant CML types. Omacetaxine inhibits protein biosynthesis

by binding to the ribosomal acceptor site, thereby affecting the

stability of short-lived proteins like BCR-ABL or MYC leading to

cell death (86).

Since most tumor cells rely on continuousMYC expression, it is

plausible that mRNA destabilization by short interfering RNAs

(siRNAs) causes inhibition of cell proliferation and tumor

regression (Figure 3). Appropriate MYC silencing using

interfering RNAs may therefore represent a broadly applicable
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option. However, to develop clinically viable siRNA formulations

for application in patients, appropriate carrier systems have to be

established (135). These carrier systems can be also used for other

RNA-based tools such as small guide RNAs or short hairpin RNA

(shRNA) expression plasmids and are discussed below.

1.4.4 Targeting MYC protein stability
In normal cells, the MYC protein is expressed at low levels and

featured a short half-life, a status in which phosphorylation of the

threonine 58 residue in MBI plays a critical role. This residue is

mutated in the viral MYC oncoprotein (v-Myc), rendering v-Myc

resistant toward GSK3b-catalyzed phosphorylation and subsequent

polyubiquitination mediated by the E3 ligase FBW7 (Figure 3). The

enzyme is a component of the SKP1/cullin-1/FBW7 E3 ubiquitin

ligase complex (SCFFbw7) where the F-Box protein FBW7mediates

phosphorylation-dependent MYC degradation. However, the F-box

protein SKP2 leads to MYC ubiquitination by binding to MBII,

allowing differential regulation of MYC stability by targeting both

MYC boxes (44). Ubiquitinated MYC is then degraded in the 26S–

proteasomal complex (2, 36, 136). In addition, MYC is also

phosphorylated on serine 62 by mitogen-activated protein kinases

or cyclin-dependent kinases. Although this phosphorylation

stabilizes the MYC protein, the modification is also needed for

subsequent threonine 58 phosphorylation followed by protein

phosphatase 2A (PP2A)-catalyzed dephosphorylation of serine 62.

Dephosphorylation by the tumor-suppressive PP2A then finally

targets MYC for proteasomal degradation (35). In addition, MYC is

marked for degradation by other ubiquitin ligases such as MAGI3

which is downregulated in poor prognosis colorectal cancer.

Overexpression of MAGI3 in colorectal cancer cells inhibits cell

growth, promotes apoptosis, and enhances chemosensitivity to

fluoropyrimidine-based chemotherapy (96). Therefore, it is

possible for the activation of MYC-degrading ubiquitin ligases to

interfere with MYC stability, in particular, because the MYC

oncoprotein is expressed above physiological levels in MYC-

dependent tumor cells. Accelerating MYC degradation by

appropriate drugs and thereby significantly decreasing MYC

protein levels ideally induce MYC attenuation down to normal

levels to retain the normal physiological functions of MYC.

Additional proteins, which are targeted by drugs to enhance

MYC degradation, have been reported. The relevant drug arsenal

includes inhibitors for ubiquitin-specific protease 2B, S-phase

kinase-associated protein 2, and Polo-like kinase 1 (109).

Interference with functions of the proteins SET or CIP2A, which

inhibit MYC-degrading PP2A, leads to increased MYC degradation

(109). Another possibility for targeted MYC degradation is the

application of a transcription factor targeting chimera (TRAFTAC).

This molecule consists of a heterobifunctional oligonucleotide

containing binding sites for the transcription factor of interest

and a HaloTag-fused dCas9 protein that induces degradation of

the transcription factor via the proteasomal pathway in a

proximity-dependent manner (105). The chimeric oligonucleotide

consists of a dsDNA/CRISPR-RNA chimera that recruits the E3

ligase complex through the dCas9 fusion protein via the RNA

moiety, whereas the dsDNA portion binds MYC via an E-box (105).
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Another type of bifunctional molecule is PROTACs (see above),

which are applied as anti-tumor drugs to specifically induce MYC

protein degradation. These molecules could lead to efficient MYC

degradation supposed that a ligand with high-affinity MYC binding

is available (109). An additional example of how MYC protein

stability can be impaired is given by the RAS effector protein

RASSF7 having no enzymatic function but is implicated in the

modulation of protein–protein interactions to regulate cell

proliferation. Interestingly, RASSF7 inhibits oncogenic MYC by

promoting polyubiquitination, catalyzed by the E3 ubiquitin ligase

cullin 4B, which leads to MYC destabilization. Furthermore,

RASSF7 competes with MAX in the formation of a heterodimer

complex with subsequent attenuation of MYC target gene

expression (72).

To reduce aberrant high MYC protein levels, covalent binding

to MYC-interacting proteins may represent an additional option. It

has been claimed that curcumin representing the principal

curcumoid of turmeric (Curcuma longa) has anticancer

properties, although its specificity, efficacy, and underlying

molecular mechanisms have been controversially discussed (137,

138) . Curcumin interferes with MYC-dependent cel l

transformation and transcriptional activation, whereby the

endogenous MYC protein becomes covalently and specifically

cross-linked to one of its transcriptional interaction partners,

namely, the transformation/transcription domain associated

protein (TRRAP), which binds to MBII in the N-terminal

transactivation domain (93) (Figure 1). TRRAP is a component of

a large complex with HAT activity and normally becomes recruited

upon DNA binding of the MYC/MAX complex. Acetylation of

histones then facilitates genomic accessibility and transcriptional

activation (109). However, cross-linking of the transient MYC/

TRRAP interaction by curcumin leads to a reduction of endogenous

MYC protein levels and the cells stop to proliferate (93). Therefore,

this natural spice or derivatives with higher bioavailability may

constitute useful adjuvants in the therapy of MYC-dependent

human tumors.

1.4.5 Interference with MYC signaling to induce
synthetic lethality

Proteins transmitting aberrant stimulatory signals and being

involved in post-translational MYC regulation are important targets

to reduce MYC activity (35). For instance, KRAS signaling mediated

by the phosphatidylinositol 3-kinase (PI3K) effector pathway leads

to activation of the AKT kinase and subsequent inactivation of

GSK3, thereby stabilizing MYC (79). Consequently, AKT signaling

inhibition leads to MYC protein destabilization as shown with the

drug fludarabine phosphate, which was identified in a drug-

repurposing screen on neuroendocrine prostate cancer cells (94).

These cells are derived from a highly aggressive prostate cancer

form featured by MYCN overexpression and loss of the tumor

suppressors TP53 and RB1. Fludarabine phosphate was identified to

inhibit cell proliferation by inducing reactive oxygen species (ROS)

and by inhibiting AKT signaling, thereby affecting NMYC protein

stability and the expression of NMYC target genes (94).

Approaches to interfere with MYC-associated upstream

signaling pathways also include inhibition of kinases or
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phosphatases modifying critical residues in the MYC

transactivation domain. Also possible is inhibiting the MYC-

interacting peptidyl-prolyl isomerase PIN1, which has an impact

on ubiquitin-dependent MYC proteolysis (25, 35, 65). PIN1

catalyzes proline 63 isomerization upon phosphorylation of the

adjacent serine 62. The latter occurs after stimulation by activated

RAS/MEK/ERK signaling or by cyclin-dependent kinases, thereby

increasing MYC DNA binding and target gene regulation.

Targeting protein kinases that are associated with MYC

oncogenicity benefits from the fact that many clinically approved

compounds are available. In general, pharmacological inhibition of

critical protein kinases acting upstream of MYC could lead to

reduced MYC expression by depleting oncogenic survival signals,

as shown previously by simultaneous activation of PP2A and

inhibition of mTOR in pancreatic adenocarcinoma (92), also

demonstrating that the PI3K/AKT/mTOR pathway inhibition

exhibits therapeutic activity in distinct MYC-driven cancers (22).

In this context, the principle of synthetic lethality has been applied

for MYC inhibition, in which a combination of two genetic events

(mutations) leads to cell death, whereas a single event in one of the

two genes is buffered by the other unmutated gene (109). Hence,

instead of directly targeting MYC, critical proteins on which MYC

depends are targeted. These proteins are usually better druggable,

and normal cells with low MYC levels may remain mostly

unaffected. For instance, a clinical mTOR inhibitor, blocking

mTOR-dependent 4E-BP1 phosphorylat ion in human

lymphomas, confers such synthetic lethality with MYC,

demonstrating that MYC can become better druggable by

applying this principle (33, 92).

In fact, oncogenic MYC offers multiple molecular and metabolic

dependencies, which could be exploited to target relevant synthetic-

lethal interactions (114). An example is a recent screen of more than

800 protein kinase inhibitors, which influence the stability of the

MYC protein. This led to the identification of the compound

UNC10112785 inhibiting CDK9, a protein kinase enhancing

MYC protein stability by phosphorylating serine 62 in MBI

(Figure 3), whereby substantial MYC destabilization was observed

in pancreatic cancer cells (106). MYC is also regulated by the serine/

threonine kinase PIM1 implicated in breast cancer development

and progression, whose upregulation correlates with decreased

patient survival and therapy resistance (139). PIM1 cooperates

with MYC, leading to pronounced aggressive phenotypes.

Silencing or pharmacological inhibition of PIM1 results in MYC-

related tumor inactivation, suggesting an essential role of PIM1 for

MYC-driven cancer (139, 140). Interestingly, PIM3 gene encoding a

PIM1 paralogue is a direct transcriptional target of MYC, suggesting

a positive autoregulatory loop between MYC and PIM kinases.

Likewise, PIM3 kinase potentiates the oncogenic effect of MYC

leading to the acceleration of tumorigenesis, which can be blocked

by the pan-PIM kinase inhibitor PIMI (25, 101).

Another enzyme directly associated with oncogenic MYC

activity is RNA polymerase I catalyzing the transcription of

ribosomal RNA (rRNA). High amounts of rRNA are required for

the increased translational activity to support the growth and self-

renewal programs of malignant cells. Selective targeting of

ribosomal biogenesis by the small molecule inhibitor CX-5461 in
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MYC-dependent myeloma led to the inhibition of cell growth and

reduction of MYC downstream target gene expression, thereby also

overcoming drug resistance (141). Interestingly, in addition to

decreased MYC protein translation, this compound also

suppresses MYC mRNA levels. The latter is caused by increased

binding of distinct RNA-induced silencing complexes (RISC) and

the ribosomal protein RPL5 to the MYC mRNA transcript thereby

resulting in its degradation (141).

1.4.6 Modulation of MYC target genes
MYC regulates multiple genes by activating or repressing their

transcription. Some of the activated MYC targets exhibit cell-

transforming activity, whereas some of the downregulated genes

have tumor-suppressive properties (142). Therefore, appropriate

inhibition or activation of these transformation-associated targets

may contribute to interfering with the growth and viability of MYC-

driven cancer cells. In addition, numerous transcriptional MYC

target genes represent a complex network of proteins and non-

coding RNAs including long non-coding RNAs (lncRNAs) (143)

and multiple microRNAs (miRNAs). For instance, MYC directly

regulates the expression of several miRNAs such as the miR-17-19

cluster, miR-34a, miR-15a/16-1, and miR-9. Furthermore, the

expression and activity of MYC by itself are controlled by distinct

miRNAs (144). Therefore, targeting MYC-regulated miRNAs

appears to represent a suitable strategy to interfere with MYC-

dependent cancers, although it may be difficult to deliver miRNA

mimetics into the tumor tissue of interest without losing their

efficacy due to premature degradation. The possibilities to overcome

these obstacles by using appropriate pharmaceutical formulations

are discussed below.

In order to modify critical MYC target genes or evenMYC itself

on the nucleotide level, CRISPR-based artificial gene regulators

could be applied for targeted cancer therapy, possibly also in

combination with other drugs (145). The availability of the

clustered regularly interspaced short palindromic repeat

(CRISPR) technology to disrupt, activate, or inactivate critical

genes implicated in tumorigenesis has led to the development of

several approaches to selectively interfere also with oncogenic MYC

functions. In addition, the CRISPR system can be applied for

specific editing by changing single or multiple bases using the

base or prime editing techniques (146). Normally, the CRISPR

system uses the bacterial DNA-cleaving enzyme Cas9 from

Streptococcus pyogenes, which has helicase and nuclease activities

(147, 148) binding to a single-guide RNA (sgRNA). The sgRNA

consists of a sequence stretch that can form Watson–Crick base

pairing with the target DNA associated with characteristic

protospacer adjacent motif (PAM) having the sequence 5′-NGG-
3′ and representing an invariant part of the DNA target. However, it

is also possible to design a programmable DNA-binding

ribonucleoprotein, which can be applied as a sequence-specific

DNA-binding transcription factor to specifically target a

promoter of interest. In this case, a non-DNA-cleaving (dead)

Cas9 (dCas9) is used in which two key amino acids are mutated

(D10A and H840A). This generates a catalytically inactive enzyme

(dCas9) that is linked either to a strong transcriptional activation
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domain (148) or to a transcriptional repressor domain (143),

depending on whether a tumor-suppressive MYC target should

be activated or an oncogenic MYC target downregulated.
2 Tools to deliver MYC inhibitors into
target cells

Apart from low-molecular-weight molecules with

physicochemical properties fulfilling the Lipinski criteria (149),

many MYC-inhibitory molecules do not readily pass the cellular

membrane like nucleic acids, antibodies, or therapeutic peptides do.

Hence, a major challenge in clinical trials is to find an appropriate

formulation for drug delivery to patients once an appropriate MYC

inhibitor has to be tested. Efficient in vivo delivery must ensure that

the compounds of interest are packaged adequately to be protected

from sequestration, modification, or degradation before cell entry.

Furthermore, it must be guaranteed that the target cell is bound by

the compound or its carrier and that it translocates through the

biomembrane to release its cargo into the desired cell

compartment (146).

Depending on the chemical nature, different carrier systems can

be used to deliver the compound into MYC-dependent tumor cells.

Nucleic acids such as interfering RNAs for specific gene suppression

may be applied as siRNAs or delivered by viral or non-viral DNA

vectors containing coding sequences for shRNAs. Nucleic acids can

be also delivered upon package into nanoparticles, as they are

applied for the packaging of small organic molecules or peptides.

Peptides with a cell-penetrating function may be also embedded

into appropriate nanoparticles for protection from the

gastrointestinal tract upon oral uptake.

In addition to using interfering RNA for specific MYC

knockdown, tailored gene-editing techniques may lead to an even

more sustained MYC inhibition. For the safe and efficient delivery

of gene-editing agents such as MYC-inhibiting CRISPR

components into affected organs and tissues, a variety of

techniques are available, which are discussed below. The genomic

editing tool CRISPR can be principally used to treat many severe

diseases, but so far, its clinical applications are challenged by

limitations of adequate delivery systems such as viral vectors,

lipid nanoparticles, or virus-like particles (146).
2.1 Viral vectors

Viruses represent natural particles to deliver nucleic acids into

many cell types and have been applied for gene therapeutic

applications including in vivo gene-editing approaches (146). Due

to their principal properties to infect target cells, viruses are per se

ideal vehicles for in vivo delivery, making them particularly

interesting and also supplying gene-editing agents. In the case of

interfering RNAs, viral vectors have been applied to deliver shRNAs

because of higher stability and long-term effectiveness compared to

preformed 21-nt siRNA duplexes. The vector ensures that siRNAs

are produced continuously within the cell leading to a prolonged
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knockdown of the relevant target gene. However, the application of

viral vectors bears some risks in terms of immunogenicity and

pathogenicity due to undesired mutations (150).

Adenovirus is a non-enveloped DNA virus with a size of

approximately 100 nm that is widely applied in gene therapy

trials but not yet used for broader approaches due to its potential

immunogenicity and toxicity (146). A previous study showed that

the expression of a MYC antisense RNA from an adenovirus can

induce apoptosis of gastric cancer cells (151). An adenoviral vector

has been also used for the coexpression of tumor suppressor genes

in pancreatic cancer cells leading to proliferation inhibition and

reduced MYC phosphorylation (152). Like adenovirus, adeno-

associated virus (AAV) is non-enveloped but smaller in size

(approximately 25 nm) and has a 5-kbp genome. AAV is

relatively safe and therefore suited for the delivery of therapeutic

macromolecules into clinically relevant tissues (146). With the use

of this vector system, safe gene therapy applications are possible to

treat multiple diseases (153). In contrast to adenovirus, lentivirus is

enveloped, being derived from HIV-1 that was made replication-

incompetent by deletions in the 3′-LTR. Furthermore, essential

components for virus production are distributed into multiple

plasmid DNA constructs (146).
2.2 Cell-penetrating peptides

Therapeutic peptides for cancer treatment have high target

specificity and low toxicity but have limitations concerning their

stabilities (154). Distinct polypeptide sequences can pass cellular

membranes once they contain a so-called protein transduction

domain (PTD) or a cell-penetrating sequence. Therefore, a

common strategy to transport peptides into living cells is the

usage of a CPP sequence. That way, the peptide of interest

becomes cell-permeable in an energy- and receptor-independent

manner. CPPs generally consist of less than 30 amino acids, have a

net positive charge, and can be used to deliver cargos into the

cytoplasm and nucleus. They have significant pharmacological

potential also because of their relatively low toxicity depending on

peptide concentration, cargo molecule, and coupling strategy (155).

This cellular delivery system has been successfully applied to

transfer small peptides into cancer cells with elevated MYC

oncoprotein levels leading to a loss of viability, growth

suppression, and apoptosis (156). In addition to linear cell-

penetrating peptides, circularized CPPs have been proven to

transport bioactive proteins into cells. The latter modification is

helpful to overcome the usual endosomal uptake, which is featured

by inefficient cytoplasmic release (157). Several strategies have been

developed so far to design cell-permeable biologically active

peptides directed against various intracellular targets (158).

Once having passed the plasma membrane, some peptides also

require nuclear entry, and for this reason, methods to overcome

difficulties in delivering intracellular peptides or antibodies have

been developed as well. One example is Pseudomonas exotoxin A,

which reaches the nucleoplasm via the endosome-to-nucleus

trafficking pathway. A non-toxic truncated form of this

polypeptide can be coupled to peptides to efficiently reach the
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nucleus. This has been successfully performed with the MYC-

inhibitor peptide H1 to inhibit MYC transcription at a nanomolar

concentration and to induce lymphoma cell killing, suggesting an

interesting novel therapeutic principle against lymphoma (159).

Depending on the amino acid sequence, some peptides of

interest can have intrinsic cell-penetrating properties. The

widespread application of cell-penetrating peptides has driven the

development of appropriate computer programs in order to predict

whether a distinct polypeptide sequence has intrinsic cell

membrane permeable properties. One example is the program

CPPpred, which is based on a neuronal network (160). To

facilitate physicochemical predictions based on the primary

peptide structure, another computer program termed BChemRF-

CPPred has been developed, which classifies cell−penetrating

peptides using machine learning algorithms and navigating in

their chemical space (161). Therefore, an artificial neuronal

network is used to distinguish CPP from non-CPP properties

using structure- and sequence-based descriptors extracted from

common data formats.
2.3 Nanoparticles

Peptides, nucleic acids, or other drug molecules that do not pass

the cellular barrier require specific formulations for appropriate and

selective delivery into MYC-dependent tumor cells. This is

particularly important for nucleic acids because their direct

delivery without chemical modifications is hampered by the fact

that naked nucleic acids are rapidly digested by serum nucleases.

Furthermore, size and negative charge prevent nucleic acids from

being passaged through biomembranes, which makes nano-sized

delivery systems attractive, where nucleic acids electrostatically

associate with positively charged molecules (135). Therefore, to

safely apply DNA or RNA as therapeutic agents for the treatment of

various diseases, safe, effective, and stable delivery systems are

required to protect nucleic acids from degradation and to ensure

efficient cellular uptake (162).

Nanoparticles, which are defined as objects with a diameter of

between 1 and 100 nm, have been developed in recent years to

transport therapeutic cargos of interest and to overcome cellular

barriers. Ideally, formulations are used, which can be also applied for

personalized applications, thereby improving precision therapies

(163). The advantages of this delivery form are simplicity, self-

assembly, biocompatibility, and bioavailability, which render them

the most approved class of nanomedicinal products (163). According

to their different structures, nanoparticles are lipid-based, polymeric,

or inorganic. Biocompatible polymeric nanoparticles are made of

natural or synthetic monomers and are generated by emulsification,

nanoprecipitation, or ionic gelation. Therefore, the drug of interest is

packaged within the polymeric matrix, chemically conjugated, or

bound to the nanoparticle surface (163) (Figure 4).

Liposomes are a subset of lipid-based nanoparticles and are

composed of amphipathic phospholipids, which carry and deliver

both hydrophilic and hydrophobic drugs. They are rapidly taken up

by the reticuloendothelial system and consist of a spherical self-

assembled phospholipid bilayer with a hydrophilic aqueous interior
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in which water-soluble substances are entrapped (163) (Figure 4).

Liposomes have been used to encapsulate MYC-specific siRNAs. A

neutral liposome consisting of dioleoylphosphatidylcholine (DOPC),

cholesterol (Chol), and distearoylphosphatidylethanolamine

polyethylene glycol (DSPE-PEG) was applied to deliver a MYC-

specific siRNA into ovarian xenograft tumors leading to reduced

growth (164). Polyethylene glycol (PEG) generates a hydration shell

around the liposome to sterically prevent interparticle associations

(165). Likewise, synthetic cationic liposomes consist of a cationic lipid

and a zwitterionic phospholipid, thereby creating vesicles that bear a

net positive charge. The advantage of nucleic acid transport is that

those liposomes electrostatically associate with negatively charged

molecules on the surface, and thus, the nucleic acid does not have to

become encapsulated. In the case of the widely applied

Lipofectamine™, the liposomes are prepared by mixing equimolar

quantities of the cationic lipid N,N-dimethylaminopropyl-

amidosuccinyl-cholesterylformylhydrazide and cholesterol.

Successful downregulation of MYC mRNA and protein has been

demonstrated using Lipofectamine™-mediated delivery of siRNA in

colon cancer cells, leading to proliferation inhibition, induction of

apoptosis, and cell growth suppression (166). In addition, multiple

liposome formulations to package MYC-specific siRNAs have been
Frontiers in Oncology 14
described such as liposome-polycation-DNA nanoparticles

consisting of 1,2-dioleoyl-3-trimethyl-ammonium-propane

(DOTAP) and cholesterol to envelop a core of protamine-bound

nucleic acid and calf thymus DNA, or lipid calcium phosphates

(135) (Figure 4).

Similar to liposomes, lipid nanoparticles (LNPs) represent

spherical platforms consisting of a lipid bilayer, which surrounds

an aqueous compartment (162) (Figure 4). However, LNPs differ

from liposomes by forming micellar structures within the particle

core consisting of four major components. One of them is cationic

lipids, which are complex with negatively charged nucleic acids.

Other components are phospholipids, cholesterol, and PEGylated

lipids required for particle structure, stability, and membrane

fusion. The efficacy of nucleic acid delivery makes LNPs

particularly important for personalized genetic applications

because they have a neutral charge during delivery but become

charged in the endosome leading to endosomal escape (163). LNPs

have been proven useful for the delivery of interfering RNAs to

inhibit the growth and viability of MYC-dependent tumor cell lines

or tumors. In addition, siRNAs directed against MYC mRNA,

DICER-substrate siRNA, and shRNA expression plasmids have

been applied using organic and inorganic nanoparticles (135).
A B

D E F

C

FIGURE 4

Examples of lipid-based nanocarriers. Cross-sections of spherical nanoparticles are used to encapsulate nucleic acids such as siRNAs, mRNAs,
plasmids, or polypeptides. Hydrophilic and lipophilic areas are shaded in blue and yellow, respectively. (A) Neutral liposome carrying siRNAs. (B)
Cationic liposome with negatively charged siRNAs at the surface. (C) Liposome with positively charged matrix in the interior complexed with
negatively charged siRNAs. (D) Lipid nanoparticle encapsulating components of the CRISPR/Cas9 system, which consist either of expression
plasmids, RNA, or protein. (E) Neutral liposome covered with hydrophilic polyethylene glycol for enhanced dispersion. (F) Self-nanoemulsifying drug
delivery system (SNEDDS) representing an isotropic mixture of oil, surfactant (dark gray), and co-surfactant (light gray) for generation of an oil-in-
water emulsion.
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Difficulties such as low transfection efficiency, low control of

integration into the host DNA, and unstable expression have been

overcome by the usage of the macromolecule polyglycidalmethacrylate

(PGMA) as a platform to graft multiple cationic polyethyleneimine

(PEI) chains, which bind negatively charged nucleic acids such as

microRNAs or plasmid DNAs encoding short interfering RNAs (150).

These nanoparticles were orally delivered into breast and colon cancer

transgenic mouse models, leading to increased survival. Furthermore,

RNA interference using these conjugated nanoparticles carrying

microRNAs directed against MYC suppressed the transformed

phenotype in relevant breast and colorectal cancer cell lines with an

efficiency comparable to virally based systems (150). Other approaches

for MYC inhibition have been carried out using nanoparticles with

anisamide-targetedMYC-specific siRNA to enter melanoma cells upon

binding to a cell-specific sigma receptor using murine and human

xenograft tumor models (167). Even more effective were nanoparticles

composed of a guanidinium derivate containing a cationic lipid, which

led to sensitizing of the tumor cells toward paclitaxel (167). Another

example is the usage of a cationic lipid nanoparticle encapsulating an

anti-miR-17 oligonucleotide in a conditional transgenic mouse model

of MYC-driven hepatocellular carcinoma leading to decreased cell

proliferation, apoptosis, and delayed tumorigenesis (168). A further

application of a shRNA expression plasmid was explored in a study

where double-emulsion nanoparticles with MYC-specific siRNA

fragments and plasmids were delivered into glioma cancer cells in

order to interfere with MYC expression, which then led to

programmed cell death (169).

Apart from interfering with RNAs, various gene-editing

techniques have been employed to induce gene disruption or

modification. In particular, CRISPR technology is an attractive

tool to interfere with oncogenic MYC functions. However, a

major challenge is to find an adequate delivery technology for

clinical translation into cancer therapy. To apply the required

CRISPR/Cas9 molecules in form of a Cas9 or dCas9 mRNA plus

appropriate single-guide RNAs, lipid nanoparticles can be used

(170) (Figure 4). These nanovesicles, based on lipids, polymers,

peptides, or extracellular vesicles, increase Cas9 and sgRNA delivery

through endosomal escape (171). Modified lipid nanoparticles have

been applied for efficient delivery of CRISPR/Cas9-relevant

ribonucleoprotein particles (RNPs) into cells upon intravenous

injection (172), and the first clinical studies have been published

(173). With the use of CRISPR-mediated activation (CRISPRa),

tumor suppressor genes SERPINB5 (MASPIN) and CCN6 were

reactivated by intravenous delivery of a nanoscale dendritic

macromolecular delivery agent (174). Hence, this technology

might be useful to reactivate potential tumor suppressor genes

like BASP1, whose promoter is silenced by methylation in MYC-

dependent acute myeloid leukemia (175).

In addition to delivery via synthetic lipid vesicles, it is worth

mentioning that siRNA or CRISPR/Cas9 components can also be

loaded into exosomes. Exosomes are membrane-bound

extracellular vesicles with a lipid bilayer similar to liposomes,

which are present in biological fluids of multicellular organisms.

Exosomes are naturally released by cells for the purpose of

intercellular communication and represent an emerging

nanocarrier system for a variety of medically relevant molecules
Frontiers in Oncology 15
(135). In fact, the potential for exosome-mediated anti-MYC siRNA

delivery was recently demonstrated (176). Furthermore, when

modified with a chimeric antigen receptor (CAR), selective

tropism is given leading to specific particle accumulation in

tumor cells, followed by CRISPR/Cas9 system release and

subsequent targeting of the MYC oncogene in lymphoma (177).

In addition, there are naturally occurring nanoparticles with

exosome-like structures. An example of this is the nanoparticle

GaELN from the garlic plant (Allium sativum) (178). GaELN

particles are useful to reverse high-fat-diet-induced obesity in

mice in which inflammatory processes play an important role.

Orally administered GaELNs are taken up by microglial cells

leading to inflammation inhibition whereby the phosphatidic acid

component interacts with the neuronal signaling effector brain acid-

soluble protein 1, which is encoded by downregulated MYC target

gene BASP1 (17). The GaELN/BASP1 complex inhibits MYC by

competitive binding to calmodulin (CaM) (178), as it has been

reported previously in v-myc transformed fibroblasts (179).

Subsequent expression inhibition of the MYC target STING then

leads to reduced expression of several inflammatory cytokines

including IFN-g and TNF-a (178).

Additional nanoparticle applications to deliver small molecules

for MYC inhibition have been described. In esophageal cancer,

MYC is aberrantly activated due to MYC gene amplification.

Synthetic lethal interactions between MYC signaling and small-

molecule inhibition involved in cell cycling have been

therapeutically addressed to selectively kill tumor cells (180).

Therefore, the flavonoid alkaloid CDK inhibitor alvocidib was

applied in combination with nanoparticle albumin-bound

paclitaxel to interfere with cell proliferation. Another example of

nanotherapeutic delivery is the transport of a MYC inhibitor into

tumor-associated macrophages in breast cancer (64). In this case, a

MYC inhibitor prodrug termed MI3-PD encapsulated within

perfluorocarbon nanoparticles was delivered directly into the

cytosol of the target cell through a phagocytosis-independent

mechanism (64).

Nanoparticles can be also applied to deliver natural plant

compounds like curcumin, which inhibits MYC-specific

transactivation and cell transformation (93). To overcome the

problem of curcumin’s low bioavailability due to its highly

hydrophobic character (181), solid lipid nanoparticles used for

encapsulation enhance the bioavailability and stability of this

drug, thereby improving its therapeutic potential in MYC-

dependent tumors (182).

Concerning nanoparticles to package MYC-inhibiting peptides,

small protein scaffolds with anionic polypeptides providing

electrostatic interactions with the positively charged lipid-based

delivery system have been developed (183). As proof of principle,

the MYC-inhibitory peptide Omomyc was fused C-terminally to a

negatively charged polypeptide, giving rise to efficient membrane

penetration and blocking of MYC-dependent transcription in lung

cancer cells (183).

Due to poor oral bioavailabilities, most therapeutic peptides

have to be administered parenterally, which is inconvenient and

painful and results in lower patient compliance. Although oral

peptide application is favored, this is hampered by multiple
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gastrointestinal barriers like the mucus covering gastrointestinal

epithelial cells, peptide-degrading enzymes, or a sulfhydryl barrier

mediated by high glutathione concentrations leading to disulfide

exchange reactions and drug inactivation (184). To overcome these

difficulties, lipid-based nanocarriers such as oil-in-water

nanoemulsions, self-nanoemulsifying drug delivery systems

(SNEDDS), solid lipid nanoparticles (SLNs), nanostructured lipid

carriers (NLCs), liposomes, or micelles are used as carrier systems.

Of particular interest are SNEDDS consisting of an isotropic

mixture of oil, surfactant, and a co-surfactant (Figure 4). Upon

mixture with water, a thermodynamically stable oil/water nano-

emulsion is formed with droplet sizes of 20–200 nm, which is ideal

to enclose lipophilic peptides. The lipophilic character of SNEDDS

nanoparticles with sizes below 200 nm and a muco-inert surface

provided by polyethylene glycol favors permeation across epithelial

cells of the gastrointestinal tract. Subsequently, nanoparticles are

resorbed upon cell membrane fusion or endocytosis releasing their

load into the systemic circulation (185). In addition to peptides,

small hydrophobic molecules like curcumin can be emulsified into

such nanoparticle type, which leads to significantly increased

bioavailability (186).
3 Outlook

To effectively inhibit aberrantly activated MYC in tumor

tissue, innovative strategies and advanced carrier concepts are

required. In order to precisely treat MYC-dependent cancers by

oral drug administration, special measures are required to

enhance drug bioavailability and patient compliance. In

addition to the development of an efficient inhibitor that

targets an oncogenic transcription factor such as MYC, the

definition of an appropriate pharmaceutical formulation for

specific delivery represents a further challenge. The spectrum of

treatment options for cancer such as surgery, radiation,

chemotherapy, or drugs specifically targeting oncogenic

molecules has to be complemented by the usage of

nanostructures, which interact with target tumor cells, thereby

significantly reducing undesired side effects. Nanotechnology

thus could provide the missing link between the development

of novel treatment principles obtained from basic research and

suitable pharmaceutical technologies for application in patients.

Nanoparticles with sizes in the range of larger biomolecules can
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encapsulate small molecule compounds and are able to enter

tumor ce l l s , thereby benefi t t ing from the enhanced

permeabilization of many tumor cell types. In addition,

nanoparticles can be chemically modified on the surface to

increase stability and circulation time to reach tumor cell types,

which are not easily accessible by passive transport. The active

targeting of nanoparticles into MYC-dependent tumor cells or

specific intracellular compartments can be achieved by

appropriate surface modifications that are relevant to the

development of next-generation nanoparticles. Furthermore,

nanoparticles have the advantage that they are relatively safe

and because their programmability enables personalized

medicine, which is of utmost importance in precision oncology.
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4E-BP1 eukaryotic translation initiation factor 4E-binding protein 1

AAV adeno-associated virus

Ac acetylation

ALL acute lymphoblastic leukemia

AML acute myeloid leukemia

BASP1 brain acid-soluble protein 1

bCTNN b-catenin

BET bromodomain and extraterminal domain

bHLH-LZ basic helix-loop-helix-leucine zipper

BRD4 bromodomain protein 4

CaM calmodulin

CAMKIIg Ca2+/calmodulin-dependent protein kinase II g

CAR chimeric-antigen receptor

CCN6 cellular communication network factor 6

CDK cyclin-dependent kinase

CDT1 chromatin licensing and DNA replication factor 1

CIP2A cancerous inhibitor of PP2A

CML chronic myeloid leukemia

CPP cell-penetrating peptide

CRISPR clustered regularly interspaced short palindromic repeat

CRPC castration-resistant prostate cancer

C-terminus carboxl-terminus

DOTAP 1,2-dioleoyl-3-trimethyl-ammonium-propane

DSPE-PEG distearoylphosphatidylethanolamine polyethylene glycol

E-box enhancer box

ECM extracellular matrix

EGF epidermal growth factor

eIF4 eukaryotic translation initiation factor 4

EMSA electrophoretic mobility shift assays

ER estrogen receptor

ERK extracellular-signal regulated kinase

FBP FUSE-binding proteins

FDA US Food and Drug Administration

FIR FBP-interacting repressor

FPPa penetrating phylomer peptide

FZD frizzled

GRB2 growth factor receptor-bound protein 2

GSK3 glycogen synthase kinase 3

HAT histone acetyltransferase
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HDAC histone deacetylase

IFN-g interferon g

IGF insulin-like growth factor

IRS insulin receptor substrate

JAK Janus kinase

lncRNA long non-coding RNA

LNP lipid nanoparticle

LTR long terminal repeat

MAPK mitogen-activated protein kinase

MAX MYC-associated factor X

MB MYC

MEK MAPK/ERK-Kinase

miRNA microRNA

MIZ-1 MYC-interacting zinc finger 1

mTOR mammalian target of rapamycin

MYC myelocytomatosis oncogene

NLC nanostructured lipid carrier

N-terminus amino-terminus

ORI origin of replication

p-TEF positive transcription elongation factor

PAM proto-spacer adjacent motifs

PDB Protein Data Bank

PDK phosphoinositide-dependent protein kinase

PEG polyethylene glycol

PEI polyethyleneimine

PGMA polyglycidalmethacrylate

PI3K phosphatidylinositol-3-phosphate kinase

PIN1 peptidyl-prolyl cis–trans isomerase NIMA-interacting 1

PIP2 phosphatidylinositol 4,5-bisphosphate

PIP3 phosphatidylinositol (345)-trisphosphate

PNA peptide nucleic acid

PP2A protein phosphatase 2A

PPI protein–protein interactions

PR progesterone receptor

PROTAC proteolysis-targeting chimera

PTD protein transduction domain

RB retinoblastoma protein

RISC RNA-induced silencing complex

RNP ribonucleoprotein particle

ROS reactive oxygen species

(Continued)
frontiersin.org

https://doi.org/10.3389/fonc.2023.1142111
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Weber and Hartl 10.3389/fonc.2023.1142111
Continued

RTK receptor tyrosine kinase

S6K S6 kinase

sgRNA single-guide RNA

shRNA short hairpin RNA

siRNA short interfering RNA

SLN solid lipid nanoparticle

SNEDDS self-nanoemulsifying drug delivery systems

STAT signal transducer and activator of transcription

TBP TATA box binding protein

TF transcription factor

TGFbR transforming growth factor b

TNBC triple-negative breast cancer

TNF-a tumor necrosis factor a

TRAFTAC transcription factor targeting chimera

TRRAP transformation/transcription domain-associated protein

TSC tuberous sclerosis complex

WT1 Wilms tumor suppressor protein 1
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