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Anomaly detection in
radiotherapy plans using deep
autoencoder networks

Peng Huang †, Jiawen Shang †, Yingjie Xu, Zhihui Hu, Ke Zhang,
Jianrong Dai* and Hui Yan*

Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for
Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College,
Beijing, China
Purpose: Treatment plans are used for patients under radiotherapy in clinics.

Before execution, these plans are checked for safety and quality by human

experts. A few of them were identified with flaws and needed further

improvement. To automate this checking process, an unsupervised learning

method based on an autoencoder was proposed.

Methods: First, features were extracted from the treatment plan by human

experts. Then, these features were assembled and used for model learning.

After network optimization, a reconstruction error between the predicted and

target signals was obtained. Finally, the questionable plans were identified based

on the value of the reconstruction error. A large value of the reconstruction error

indicates a longer distance from the standard distribution of normal plans. A total

of 576 treatment plans for breast cancer patients were used for the test. Among

them, 19 were questionable plans identified by human experts. To evaluate the

performance of the autoencoder, it was compared with four baseline detection

algorithms, namely, local outlier factor (LOF), hierarchical density-based spatial

clustering of applications with noise (HDBSCAN), one-class support vector

machine (OC-SVM), and principal component analysis (PCA).

Results: The results showed that the autoencoder achieved the best

performance than the other four baseline algorithms. The AUC value of the

autoencoder was 0.9985, while the second one was 0.9535 (LOF). While

maintaining 100% recall, the average accuracy and precision of the results by

the autoencoder were 0.9658 and 0.5143, respectively. While maintaining 100%

recall, the average accuracy and precision of the results by LOF were 0.8090 and

0.1472, respectively.

Conclusion: The autoencoder can effectively identify questionable plans from a

large group of normal plans. There is no need to label the data and prepare the

training data for model learning. The autoencoder provides an effective way to

carry out an automatic plan checking in radiotherapy.
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1 Introduction

Cancer treatment has significantly progressed with the

development of technology in recent years. Because radiotherapy

plays an important role in cancer treatment, it has been increasingly

used. At present, radiotherapy (RT) is an indispensable treatment

for nearly all cancer types. Approximately 60% of cancer patients

receive RT for neoadjuvant, definitive, adjuvant, or palliative

purposes. Furthermore, among all patients who survive malignant

tumors, up to 40% have been cured by RT alone or in combination

with other modalities (1). As a treatment method using radiation,

radiotherapy requires a higher accuracy to ensure the safety of

treatment. It delivers a higher radiation dose to the target area of a

patient and deposits a dose as low as possible to the surrounding

healthy tissues. This will significantly damage the tumor tissue in

the target area while protecting the normal tissue from unnecessary

irradiation. It also means that any small mistakes caused by the

clinician, treatment planner, and machine operator will pose a large

risk to patients.

Given the complexity of modern radiotherapy, stricter policies

are needed to ensure consistency between the delivered and

calculated plans for the increasing quality and safety requirements

(2). Therefore, extreme caution and enhanced quality control are

necessary to ensure the safety of radiotherapy. Physicians and

radiation physicists conduct independent reviews of plans before

and after treatment to ensure that the plans meet hospital standards

(3). The physics plan and the chart check are the most effective

quality control methods for reducing human error in radiotherapy

(4). A full treatment plan review involves diagnosis, prescription,

planning, and approximately 20 field-specific parameters, and

newer radiation techniques often bring in even more parameters

(5). Each of these parameters can affect treatment efficacy and

patient safety. A full human review would make the plan review

entirely dependent on the reviewer’s experience, and even an

experienced human reviewer could accidentally miss the errors (6).

Compared with manual plan checking, automatic plan checking

can save manpower and also alleviate the miscalculation caused by

fatigue. Therefore, it is widely adopted in clinical practice to

partially or completely replace the manual reviewing process. A

semi-automatic system called AutoLock was proposed for

radiotherapy plan quality control (QC) (7). It aims to enhance

the quality control of the treatment plan through automatic

inspection. The Plan-Checker Tool (PCT) was proposed, which

uses an application programming interface to check and compare

radiotherapy plan data (8). The semi-automatic method increases

the visibility of errors during physical examination, thus reducing

patient delay. Furhang et al. developed a software to automatically

carry out planned and interplanned reviews (9). Yang et al.

conducted a study to automatically verify the integrity of the

treatment plan using dynamic scripts (10).

As a popular structure of the deep neural network, the

autoencoder has been widely used in different fields, including

shape representation (11) and image segmentation (12). The

autoencoder was also introduced in anomalous data analysis, and

its capability has also been demonstrated (13–16). Schreyer et al.
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used an autoencoder to detect anomalous accounts in bank

accounting data (17). Meidan et al. proposed an algorithm called

N-BaIoT to detect attacks launched from IoT devices and to

distinguish between IoT-based attacks lasting for hours and

milliseconds (18). It was also used for unsupervised sound

anomaly detection to detect unknown abnormal sounds without

abnormal sound training data (19).

Recently, the autoencoder has been increasingly investigated in

radiotherapy. Mezheritsky et al. developed a population-based 3D

respiratory motion modeling from convolutional autoencoders for

2D ultrasound-guided radiotherapy (20). The model was trained on

a variety of deformations and anatomies which enable it to generate

the 3D motion experienced by the liver of a previously unseen

subject. Dou et al. proposed a predictive maintenance framework

based on a long short-term memory-based autoencoder to detect

rare anomalous machine events for a proton delivery system (21).

These included QA beam pauses, clinical operational issues, and

treatment interruptions. Wang et al. developed a novel multitask

model called autoencoder-based classification-regression for

volumetric-modulated arc therapy (VMAT) of patient-specific

QA (22). The model was later commissioned and implemented in

multi-institution scenarios (23).

For plan checking, there are still no such applications due to the

limited training data and the complexity of the plan parameters. In

this study, the autoencoder was introduced to identify the

questionable plan from the regular plans based on the magnitude

of the reconstruction error. The larger reconstruction error

indicated the outlier from the central distribution of standard

plans. The rest of this manuscript is organized as follows. In

Section 2, the patient data and algorithm were explained. In

Section 3, the performance of the autoencoder was analyzed and

compared with other traditional detection algorithms. In Section 4,

the advantages and disadvantages of the proposed method

were discussed.
2 Materials and methods

2.1 Data

Five hundred seventy-six radiotherapy plans for breast cancer

patients were collected in our institute. Among these, 557 were

“normal” plans and 19 were “abnormal” plans identified by human

experts. All these plans were clinically approved for treatment. The

normal plans are those plans which completely meet our treatment

goals and have no flaws. The abnormal plans are those plans which

also completely meet our treatment goal but have certain flaws in

plan settings and parameters. The abnormal plans are not error

plans but are hardly detected by a rule-based plan-checking

procedure. For example, the institutional protocol may require

that five to seven equally spaced beams should be included in a

plan. If a plan contains beams less than 5 or the beam spacing is

unequal, it would be regarded as an abnormal plan and requested

for further improvement by a plan checker. Potentially, these

abnormal plans have higher risks to cause errors during treatment.
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The radiotherapy plan consists of two conventional tangent

fields and two intensity-modulated radiation therapy (IMRT) fields.

To characterize these plans, 30 features were extracted and shown in

Table 1. The number of segments of the IMRT field was the number

of apertures through which the radiation dose is delivered. The

radiation dose was measured by the monitor unit (MU). The higher

the MU value, the higher the dose. The dose was 290 MU for the

IMRT field and 200 MU for the tangent field. The other features,

such as collimator position, collimator angle, gantry angle, and MU

per field, are mechanical parameters related to the radiation devices.

For each field, these parameters were varied.

According to the types of these features, proper preprocessing

was performed to prepare the data before they can be fitted to a

learning model. The features in continuous variables, such as the

radiation dose, were kept as originally obtained. The features in

categorical variables, such as the type of field, were mapped to

integers by the one-hot encoding technique. One-hot encoding is a

method that converts categorical data into integers. With one-hot

encoding, each categorical value is converted into a new categorical

column, and a binary value of 1 or 0 is assigned to those columns.

Each integer value is represented as a binary vector. All the values

are zero, and the index is marked with 1. After one-hot encoding,

the original feature dimensions were extended from 30 to 58.
2.1 Autoencoder

The autoencoder defines a feedforward multilayer neural

network with bottlenecks of conformational symmetry as shown

in Figure 1. First, the data flows go through multiple successive

compression layers and then go through multiple successive

expansion layers. The loss of the network is the error between the

input and the output layers, called the reconstruction error. The

goal of learning is to train the network to reconstruct the input of

the network. The autoencoder captures the salient features and

removes the correlated features by mapping the input data to a

high-dimensional space through the bottleneck structure.

The autoencoder consists of an encoder and a decoder. Both the

encoder and the decoder contain multiple consecutive basic blocks.

Each basic block contains a pair of fully connected layer and

activation function, which can be expressed as f(x|q)=s(W·x+B).
Frontiers in Oncology 03
Here, q is the parameter of the layer,W∈Rdo×Rdi is the weight of the
fully connected layer, B∈Rdo is the bias of the fully connected layer,

and s is the non-linear leaky ReLU activation. Also, the dropout

layer after each activation function except the output layer was

introduced to prevent overfitting of the network.

The fully connected layer contained in the encoder gradually

decreases in dimensionality and finally generates the layer with the

lowest dimensionality, called the latent code. On the other hand, the

fully connected layer contained in the decoder gradually increases in

dimensionality and recovers the latent code generated by the encoder

to the same dimensionality as the network input layer. Thus, the

autoencoder is denoted as X̂ = D(E(X,   qE),   qD), where E(·,qE) and
D(·,qD) are the encoder and the decoder, and qE and qD are

the parameters of the encoder and decoder. In order to achieve X̂ ≈

X, the autoencoder needs to be trained to reduce the

difference between the treatment plan X and the network

reconstructionX̂ = D(E(X,   qE),   qD). Therefore, the training

objective of the network is to find the appropriate parameter q to

make the reconstruction error Lrecon of the network as small as

possible, so the optimization goal of the network can be expressed as:

arg min
qE,qD

Lrecon(X,  D(E(X,   qE),   qD))

To enable the autoencoder to capture changes in enumerated

and discrete variables after one-hot encoding, a binary cross-

entropy function is used to penalize the reconstruction errors.

Also, in order for the autoencoder to capture changes in

continuous variables, the mean square loss function is used to

penalize the reconstruction error.

They can then be weighted by parameter l and form the overall

loss function of the autoencoder:

Lrecon = LBCE + lLMSE

The depth of the hidden layers was set to 3 and l was 0.99 based

on our experiments. The Adam optimizer is adopted, with a

learning rate of 1e−3.
2.2 Anomaly detection

In this study, the reconstruction loss distribution of all data is

used to select a predefined threshold. Samples are judged as normal
TABLE 1 Description of the features extracted from the treatment plans.

Features Description Fields Number of features Type Unit

Segment The number of segments of the field IMRT 2 Integer Number

SSD Source to skin distance IMRT/tangent 4 Float cm

Collx1 Collimators’ position in the x1 direction IMRT/tangent 4 Float cm

Collx2 Collimators’ position in the x2 direction IMRT/tangent 4 Float cm

Colly1 Collimators’ position in the y1 direction IMRT/tangent 4 Float cm

Colly2 Collimators’ position in the y2 direction IMRT/tangent 4 Float cm

Gq The angle of the gantry IMRT/tangent 4 Integer Degree

Meterset The MU per field IMRT/tangent 4 Float MU
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or abnormal plans based on their distance from the reconstruction

loss threshold. If this distance is greater than the preset threshold,

this plan is considered abnormal; otherwise, it is normal. The

optimal threshold is chosen to ensure a low false-positive rate

(FPR, i.e., judging a point as abnormal when it is actually

normal) and a high true-positive rate (TPR, i.e., judging a point

as abnormal when it is actually abnormal). Because radiation

damage is irreversible in patients, the goal of plan checking is to

ensure that all abnormal plans are detected (TPR==1) and the

percentage of wrongly detected abnormal plans (FPR) is as low as

possible. Therefore, in this study, TPR==1 was required to make

sure all abnormal plans were detected. The other performance

metrics were evaluated while this condition was satisfied.
2.3 Evaluation

The performance of the anomaly detection algorithm was

evaluated based on the receiver operating characteristic curve

(ROC) and the area under the receiver operating characteristic

curve (AUC). The ROC evaluates the ability of the model to

distinguish between abnormal and normal plans when a preset

threshold is changed. The AUC value is the area under the ROC

curve. The larger the AUC value, the better the algorithm itself can

distinguish abnormal plans. In addition, considering the highly

unbalanced distribution of abnormal and normal classes in the

dataset, the accuracy [(true positive + true negative)/(true positive +

false positive + true negative + false negative)], precision (true

positive/(true positive + false positive)), and F1 score (2 * precision *

recall/(precision + recall), where recall = true positive/(true

positive + false negative)) of the model were calculated to

comprehensively evaluate the performance. A higher value means

that the algorithm has a higher ability to make anomalous

judgments. Also, anomalies report the number of data judged as

abnormal by the algorithm.

The proposed anomaly detection algorithm was evaluated in

two aspects. 1) Whether the autoencoder architectures with

different layer depths are able to learn the distribution of normal

plans: to evaluate the influence of network architectures,
Frontiers in Oncology 04
autoencoders with six different layer depths from 1 to 6 were

trained, and the experiments were repeated 10 times. 2) Whether

the autoencoder performance is better compared with the other

classical anomaly detection algorithms: for this purpose, four

popular detection algorithms were tested, namely, local outlier

factor (LOF) (24), hierarchical density-based spatial clustering of

applications with noise (HDBSCAN) (25), one-class support vector

machine (OC-SVM) (26), and principal component analysis (PCA)

(27). LOF is a density-based detection algorithm and HDBSCAN is

a clustering-based algorithm. OC-SVM uses a single classification

algorithm based on the optimization algorithm. PCA calculates the

reconstruction loss of linear mapping.
3 Results

3.1 The number of layers

As shown in Table 2, autoencoder (AE) 6 achieved an average

AUC value of 0.9947 with a maximum of 0.9986. While

maintaining 100% recall, the average values of accuracy and

precision reached 0.9658 and 0.5143, respectively, and the

maximum values reached 0.9844 and 0.6923. This result showed

that the depth of the autoencoder has certain effects on its ability to

model the inherent manifold structure. The reconstruction error

distribution and its corresponding ROC plot using AE6 are shown

in Figure 2.

The reconstruction error distribution using six different

autoencoders with layer depths from 1 to 6 is illustrated in

Figure 3A. AE6 showed the lowest overlap between the

reconstruction error distribution of abnormal and normal data.

Figure 3B illustrates the precision distribution achieved by the

autoencoders with different layer depths after repeating the

experiment 10 times. AE6 achieved the highest precision overall.

Four different values (0.1, 0.5, 0.9, 0.99) of l were tested to

determine its optimum value. The precision of the AE with different

l values in 10 repeated tests is shown in Figure 4. The performance

with a l value of 0.99 shows the highest precision, and the

performance with a l value of 0.9 is closer but with a larger
FIGURE 1

The structure of the autoencoder.
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standard deviation. The average precision caused by different l
values is within [0.38, 0.48] which also shows less effect of l on the

performance of the AE.
3.2 Baseline model evaluation

To compare each algorithm as fairly as possible, we used a grid-

search algorithm to search for the parameters in each algorithm that

would achieve the best detection results. Table 3 shows the anomaly

detection performance of the autoencoder and the traditional

detection algorithms, and the corresponding best parameters are

also listed in the table. The autoencoder algorithm achieved the best

anomaly detection performance than the other benchmark

techniques. Compared with the LOF algorithm, which has the

best results among the traditional algorithms, the autoencoder

algorithm achieved a substantial improvement in all metrics, and

the accuracy and precision have been improved up to 0.1753

and 0.5451.

Figure 5A shows the ROC performance of the different

detection algorithms. The autoencoder outperformed the
Frontiers in Oncology 05
traditional algorithm because it is closer to the upper left corner

of the figure. Figure 5B shows the distribution of reconstruction

errors using different detection algorithms. The autoencoder had

the lowest overlap between the reconstruction error distributions

for abnormal and normal data.
4 Discussion

This study evaluates the performance of autoencoders in

determining abnormal data and comparatively investigates the

performance differences between autoencoder networks and a

variety of commonly used traditional anomaly detection

algorithms. The results show that the autoencoder is superior to

traditional anomaly detection algorithms in several aspects. First,

the AE method employs a non-linear activation function in the

encoder/decoder, allowing the neural network to arbitrarily

approximate any non-linear function. This allows the network to

learn more complex mapping relationships between high-

dimensional space and low-dimensional space, to better fit the

distribution of normal data, and thus, to find abnormal data with a
BA

FIGURE 2

(A) The reconstruction error distribution of all data and (B) the ROC plot with AE6.
TABLE 2 Comparison of the autoencoder with different encoder layer depths.

AUC (max) Accuracy (max) Precision (max) FPR (min) F1 score (max) Anomalies (min)

AE9 (depth = 9) 0.93 (0.99) 0.79 (0.97) 0.21 (0.60) 0.21 (0.02) 0.33 (0.73) 139.70 (30)

AE8 (depth = 8) 0.98 (0.99) 0.90 (0.98) 0.35 (0.66) 0.10 (0.01) 0.49 (0.78) 75.50 (27)

AE7 (depth = 7) 0.98 (0.99) 0.93 (0.98) 0.41 (0.69) 0.07 (0.01) 0.56 (0.79) 58.70 (26)

AE6 (depth = 6) 0.99 (0.99) 0.96 (0.98) 0.51 (0.69) 0.03 (0.01) 0.67 (0.80) 38.50 (26)

AE5 (depth = 5) 0.99 (0.99) 0.95 (0.98) 0.44 (0.63) 0.04 (0.01) 0.60 (0.77) 45.80 (30)

AE4 (depth = 4) 0.98 (0.99) 0.94 (0.97) 0.39 (0.61) 0.05 (0.02) 0.55 (0.76) 52.20 (31)

AE3 (depth = 3) 0.97 (0.99) 0.90 (0.97) 0.90 (0.97) 0.10 (0.02) 0.47 (0.71) 74.80 (34)

AE2 (depth = 2) 0.95 (0.99) 0.88 (0.96) 0.26 (0.46) 0.11 (0.03) 0.40 (0.63) 84.80 (41)

AE1 (depth = 1) 0.94 (0.99) 0.84 (0.94) 0.20 (0.39) 0.16 (0.05) 0.33 (0.56) 109.10 (48)
The max and min indicated the maximal and minimal values of statistics in 10 tests.
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very small percentage through the network. Second, the

autoencoder-based algorithm can effectively separate normal and

abnormal data in the reconstructed error distribution map in

anomaly detection, showing higher accuracy and precision. The

ROC and AUC scores also show that the AE-based model

outperforms the traditional anomaly detection algorithm. Third,

traditional anomaly detection algorithms are less flexible and only

have a few parameters for model tuning. The network structure of

the autoencoder can be adjusted easily according to specific tasks. It

can be trained according to different tasks and data, which has a

higher task specificity.

The experimental results showed that the autoencoder with six

layers of encoders and decoders had the best performance. With

layers of more than six, the excessive number of neurons increases

the training cost and causes overfitting of the model. This was

demonstrated in AE9, whose accuracy and precision decreased

significantly compared with those of AE6. On the contrary, if

fewer layers are used, the model does not have enough space to

learn the data and the performance of the model is also

compromised. This was demonstrated in AE1, whose accuracy

and precision decreased considerably compared with those of
Frontiers in Oncology 06
AE6. Therefore, the proper selection of layers is important for

model performance. It would be possible to search for these

hyperparameters using grid-search techniques.

Common to most clinical scenarios, the rate of an abnormal

plan is very low, and an error plan (e.g., wrong beam energy or

beam angles) is even rare. A challenge to this study is the detection

rate of anomalous events in a highly imbalanced dataset. Hence,

model performance was evaluated primarily using the precision–

recall metrics. Numerous studies have shown that AUC may

misrepresent model performance, especially in imbalanced

datasets (28, 29). Since precision–recall metrics focus on the

model performance of the positive or minority class, they are

particularly suitable for our problem. In this study, TPR (recall)

was set to 1 to make sure all abnormal plans were detected. Then,

the other performance metrics were evaluated under this initial

constraint. In addition to AUC and precision, the accuracy and F1

score were provided to present a comprehensive evaluation of these

anomaly detection models.

The application of the AE-based approach in the detection of

abnormalities in radiotherapy treatment protocols is promising.

However, it can be improved in several aspects. First, the raw

features extracted from the plans are mainly based on the expert’s

experience rather than quantified. Due to the inconsistency of plans,

some features that may be sensitive to abnormal plans are not

included in this study. Second, as a special configuration of deep

neural networks, autoencoders are also similarly black box in

nature, making further analysis and interpretation of their results

difficult for the time being. This may be improved in the future by

introducing some interpretable network structures. Third, the AE

model used in this study is a simple model, and most of the model

parameters are not optimized for specific tasks. With a better model

and optimized parameters, the performance of the AE could be

further improved. It could be learned by certain optimization

techniques such as neuroevolution (30–32), which is scalable

and efficient.

For valid inputs, the AE is able to compress them to fewer bits,

essentially getting rid of the redundancy (encoder), but due to the

non-regularized latent space in the AE, the decoder cannot be used

to generate valid input data from latent vectors sampled from the

latent space. The variational autoencoder (VAE) addresses the issue

of non-regularized latent space in the autoencoder and provides the

generative capability to the entire space. The encoder in the AE

outputs latent vectors. Instead of outputting the vectors in the latent
FIGURE 4

The precision of the autoencoder with different l values in 10
repeated tests.
BA

FIGURE 3

(A) Reconstruction error distribution for the autoencoder with different layers and (B) the precision distribution of 10 repeated experiments for the
autoencoder with different layers.
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space, the encoder of the VAE outputs parameters of a predefined

distribution in the latent space for every input. The VAE then

imposes a constraint on this latent distribution forcing it to be a

normal distribution. This constraint ensures that the latent space is

regularized and precisely controlled. This makes the VAE more

practical and feasible for large-scale datasets. Therefore, it would be

our next work to implement VAE for anomaly detection in plan

checking of radiotherapy.
5 Conclusion

The autoencoder provides an anomaly detection algorithm for

radiation treatment planning. It can detect a very small percentage

of abnormal plans in a large number of radiotherapy plans with

high accuracy and precision. Our evaluation using a real

radiotherapy treatment plan dataset shows that the autoencoder-

based detection algorithm can achieve an AUC value of 0.9985,

which is a maximum improvement of 41.77%, compared with the

traditional anomaly detection algorithm. Given the large number of

radiotherapy plans generated by the department on a daily basis,

this algorithm will save significant time for reviewers and reduce the

risk of low-quality plans.
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FIGURE 5

(A) The ROC curve and (B) reconstruction error distribution using the autoencoder and traditional methods.
TABLE 3 Comparison of the four baseline detection algorithms.

AUC Accuracy Precision FPR F1 score Anomalies

AE (depth = 6) 0.99 0.98 0.69 0.01 0.79 26

LocalOutlierFactor (n_neighbor = 10) 0.95 0.80 0.14 0.19 0.25 129

HDBSCAN (min_cluster_size = 200) 0.91 0.76 0.12 0.63· 0.21 155

OneClassSVM (nu = 0.001, gamma = 0.1) 0.70 0.19 0.03 0.83 0.07 483

PCA (n = 36) 0.83 0.47 0.05 0.54 0.11 321
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