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Objectives: In adult diffuse glioma, preoperative detection of isocitrate

dehydrogenase (IDH) status helps clinicians develop surgical strategies and

evaluate patient prognosis. Here, we aim to identify an optimal machine-

learning model for prediction of IDH genotyping by combining deep-learning

(DL) signatures and conventional radiomics (CR) features as model predictors.

Methods: In this study, a total of 486 patients with adult diffuse gliomas were

retrospectively collected from our medical center (n=268) and the public

database (TCGA, n=218). All included patients were randomly divided into the

training and validation sets by using nested 10-fold cross-validation. A total of

6,736 CR features were extracted from four MRI modalities in each patient,

namely T1WI, T1CE, T2WI, and FLAIR. The LASSO algorithm was performed for

CR feature selection. In each MRI modality, we applied a CNN+LSTM–based

neural network to extract DL features and integrate these features into a DL

signature after the fully connected layer with sigmoid activation. Eight classic

machine-learning models were analyzed and compared in terms of their

prediction performance and stability in IDH genotyping by combining the

LASSO–selected CR features and integrated DL signatures as model

predictors. In the validation sets, the prediction performance was evaluated by

using accuracy and the area under the curve (AUC) of the receiver operating

characteristics, while the model stability was analyzed by using the relative

standard deviation of the AUC (RSDAUC). Subgroup analyses of DL signatures

and CR features were also individually conducted to explore their independent

prediction values.

Results: Logistic regression (LR) achieved favorable prediction performance

(AUC: 0.920 ± 0.043, accuracy: 0.843 ± 0.044), whereas support vector

machine with the linear kernel (l-SVM) displayed low prediction performance
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(AUC: 0.812 ± 0.052, accuracy: 0.821 ± 0.050). With regard to stability, LR also

showed high robustness against data perturbation (RSDAUC: 4.7%). Subgroup

analyses showed that DL signatures outperformed CR features (DL, AUC: 0.915 ±

0.054, accuracy: 0.835 ± 0.061, RSDAUC: 5.9%; CR, AUC: 0.830 ± 0.066,

accuracy: 0.771 ± 0.051, RSDAUC: 8.0%), while DL and DL+CR achieved similar

prediction results.

Conclusion: In IDH genotyping, LR is a promisingmachine-learning classification

model. Compared with CR features, DL signatures exhibit markedly superior

prediction values and discriminative capability.
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1 Introduction

Adult diffuse gliomas are a group of primary malignant brain

tumors and have a relatively high mortality rate (1). Despite the

availability of a diverse array of treatments including tumor

resection, radiotherapy, chemotherapy, and experimental targeted

therapy, the prognosis for patients remains generally unfavorable

(2, 3). According to the 2007 World Health Organization Central

Nervous System (2007 WHO CNS) tumor classification (4), adult

diffuse gliomas are classified based on tumor histology. However, a

growing number of studies have shown that adult diffuse gliomas

with different histological classifications may have similar biological

behaviors and prognosis because of the same genetic changes (5).

Therefore, the two newest guidelines from the WHO CNS and

European Association of Neuro-Oncology (EANO), both published

in 2021, underscore the significance of incorporating molecular

biomarkers with both clinical and pathological values into the

precision classification of adult diffuse gliomas, to promote the

development of tumor precision treatment (6, 7).

One of the important molecular biomarkers for adult diffuse

gliomas is the expression status of isocitrate dehydrogenase (IDH),

which is now routinely incorporated into the clinical management

of patients (7). According to the 2021 EANO guideline for adult

diffuse gliomas, the presence of an IDH mutation can be diagnosed

as an astrocytoma with WHO grade 2–4 or an oligodendroglioma

with WHO grade 2–3. Conversely, in most cases, the absence of an

IDH mutation indicates the diagnosis of a glioblastoma with WHO

grade 4. Some studies have shown that adult patients with IDH-

wildtype glioblastoma undergoing standard treatment typically

have an average overall survival of 15–18 months (8), while the

average overall survival can extend up to 14.7 years in cases of

oligodendroglioma with IDH mutation and 1p/19q-codeletion, but

with appropriate treatment (9, 10). Furthermore, the presence of

IDHmutation has emerged as a specific treatment target, leading to

its exploration in various clinical trials involving peptide

vaccination and small-molecule inhibitor approaches (11, 12).

Therefore, the IDH expression status is highly relevant to the
02
glioma prognosis and keeps high clinical value for the

classification of adult diffuse gliomas.

In clinical practice, IDH genotyping is carried out on biopsied

tumor samples. The limitation of this approach is the relatively long

detection period, invasiveness, and the sampling difficulty from

certain brain areas. Conversely, magnetic resonance imaging (MRI)

has been considered the most promising candidate to aid decision-

making in clinical practice due to its non-invasive nature, fast and

global detection ability, and high resolution for soft tissues (13, 14).

Taking full advantage of the wealth of information obtained from

preoperative MRIs could assist in filling the knowledge gaps in local

tumor biopsy. Thus, MRI–based IDH genotyping appears to be an

important preoperative assessment method to help guide the

treatment and prognosis of glioma patients.

Radiomics (15), an imaging analysis method, advocates that the

high-throughput quantitative handcrafted features extracted from

medical images can be utilized to build machine-learning models to

enable the preoperative evaluation of tumors. Several studies have

investigated the potential of MRI–based radiomics analysis to

noninvasively facilitate tumor grading, molecular subtyping,

and prognosis evaluation in gliomas (16–19). However, in some

aspects, conventional radiomics (CR) involves rigorous and

complex analysis to inevitably require extracting and selecting

handcrafted features that could introduce additional errors

because of feature calculations (20). Furthermore, the limited and

handcrafted radiomics features cannot adequately reflect tumor

heterogeneities, which could limit the prediction abilities of

machine-learning models (21).

Nowadays, advances in computational technology have

promoted the development of deep-learning (DL) that has been

widely used in tumor preoperative evaluation given its end-to-end

prediction advantage and ability to simplify the analysis process (22,

23). In contrast to CR, deep neural networks possess remarkable

representation capabilities, enabling the extraction of high-

throughput discriminative features that can directly capture

abundant tumor information. These deep neural networks will

eliminate the need for additional feature extraction and selection
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operations, simplifying the process while still yielding valuable

insights. DL features can further reveal tumor heterogeneity and

stimulate the prediction potential of machine-learning models. In

glioma IDH genotyping, machine-learning models only based on

CR features have been widely applied and analyzed (24, 25).

However, little work has been done on evaluating the effectiveness

of different machine-learning models by combining DL signatures

and CR features as model predictors.

In the present study, we aimed to determine the optimal

machine-learning model by making full use of the DL signatures

and CR features. We built an image sequence model to extract DL

signatures. Based on the extracted DL signatures and CR features

from four conventional MRI modalities used in most medical

centers, we evaluated and compared eight classic machine-

learning models in terms of their stability and prediction

performance in IDH genotyping. Furthermore, the subgroup

analyses of DL signatures and CR features were also individually

conducted to explore their independent prediction values.
2 Materials and methods

2.1 Patient enrollment

All the cases used in this retrospective study were de-identified

and obtained from the public datasets (TCGA-GBM, TCGA-LGG),

and our local medical center (The First Affiliated Hospital of

Nanjing Medical University) between May 2015 and July 2020.

Institutional Review Board approval from our medical center was

obtained, but this was not required for the public datasets. Patients

who met the following criteria were included in this study: (1)

pathological diagnosis of primary diffuse glioma; (2) age≥18 years;

(3) known IDH status (detected by immunohistochemistry or

Sanger sequencing); (4) no history of preoperative therapy,

biopsy, or any treatment; and (5) four available preoperative MRI

modalities, including T1-weighted, T2-weighted, gadolinium

contrast-enhanced T1-weighted, and T2-weighted fluid-attenuated

inversion recovery images (T1WI, T2WI, T1CE, and

FLAIR, respectively).
2.2 MR imaging

The MR images are heterogeneous, because they are acquired

using either 1.5T or 3.0T MRI scanners according to the different

imaging protocols at each institution. The MRI scanners were

provided by different MR vendors, including Philips, General

Electric, and Siemens. The preoperative MR imaging protocols

include the acquisition of T1WI (parameters vary from TR: 300–

2000 ms, TE: 5–25 ms, FOV: 60–100 mm, slice thickness: 1.5–7.5

mm, and matrix: 256×256 or 512×512); T2WI (parameters vary

from TR: 2000–10000 ms, TE: 80–150 ms, FOV: 70–110 mm, slice

thickness: 1.5–8 mm, and matrix: 256×256 or 512×512); T1CE

(parameters vary from TR: 200–1100 ms, TE: 4–20 ms, FOV: 70–

100 mm, slice thickness: 1–8.5 mm, and matrix: 256×256 or

512×512); and FLAIR (parameters vary from TR: 5000–11000 ms,
Frontiers in Oncology 03
TE: 80–200 ms, FOV: 70–110 mm, slice thickness: 2–7 mm, and

matrix: 256×256 or 512×512). All MR imaging data including pixel

matrixes and metadata were saved in the digital imaging and

communications in medicine (DICOM) format.
2.3 Image preprocessing and tumor
segmentation

We converted MR images with DICOM format into the

neuroimaging informatics technology initiative (NIFTI) format by

using the python package SimpleITK. Referring to the image

preprocessing in the competition of brain tumor segmentation

(BraTS2021) (https://www.med.upenn.edu/cbica/brats2021),

images were co-registered to the same anatomical template

(SRI24) (26), interpolated to a uniform isotropic resolution

(1mm3) and skull-stripped by using FSL software (https://

fsl.fmrib.ox.ac.uk/fsl).

Tumor segmentation is a crucial step for the following feature

extraction and quantitative analysis. As is known in the BraTS

competition, we can split gliomas into two subregions: tumor core

(TC, comprising a contrast-enhancing area and necrotic portions, if

any) and the whole tumor (WT, combining the tumor core and

edema). TC describes the bulk of the tumor, which is what is typically

resected, while WT describes the complete extent of the disease. In

our study, we used the fully automated nnU-Net segmentation

framework based on a convolutional neural network (CNN) to

segment these two tumor subregions. The nnU-Net framework is

the first plug-and-play tool for biomedical image segmentation

(https://github.com/MIC-DKFZ/nnUNet). It has been widely

validated in the BraTS competition and achieved superior

performance in brain tumor segmentation (27). Inexperienced

users can use nnU-Net out of the box for their custom 3D

segmentation problem without the need for manual intervention.
2.4 DL signature extraction

Convolutional neural networks and recurrent neural networks

(RNN) are different types of artificial neural networks that can

perform representational learning on imaging data and provide

different hierarchical feature representations at each network layer

(28). It is precisely the stacking employment of multiple network

layers with non-linear activation functions that make the feature

representation complex and diverse. After passing through a series

of chained CNN or RNN layers, posterior probability can be

calculated from the representational features and used as a

predictor for tumor preoperative evaluation. In our study, we

combined CNN–based eca_nfnet_l0 (29) and RNN–based long-

short-term memory network (LSTM) (30) together as our DL

model, extracting posterior probability as the DL signature for

IDH genotyping (Figure 1).

Data preparation needs to be conducted before the imaging data

is imported into the DL model. To avoid heterogeneity bias, various

image signal intensities were transformed into standardized

intensity ranges via z-score normalization (Z = (x-m)/s), where m
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and s are the mean and standard deviation of pixel values,

respectively). Typically, glioma volumes can reflect abundant and

complex tumor characteristics under different spatial dimensions.

To utilize abundant tumor information from three spatial

dimensions, we extracted the axial, coronal, and sagittal tumor

slices from each 3D image. Referring to the segmented WT mask,

we selected slices with the largest tumor area from each spatial

dimension, as well as slices with tumor regions of 50th, 55th,

60th, 65th, 70th, 75th,80th, 85th, 90th, and 95th percentiles.

Subsequently, we integrated each selected slice with its two

corresponding mask slices (WT and TC) to create a new 3-

channel image. A total of 33 representative 3-channel images

were created from each 3D image. Unlike conventional 2D-CNN

models, our model takes the correlation between different tumor

slices as well as the hidden tumor spatial information into account.

When it comes to extracting features using LSTM, we need to feed

an image sequence representing an independent input sample into

the model. Thereupon, all 3-channel images needed to be arranged

according to their respective slice ordinal numbers and integrated

into an image sequence based on the order of axial, coronal, and

sagittal sequences. Finally, in each 3D image, we obtained the

independent input samples with a total number of ((33-length)/

stride+1) from the 3-channel image sequence with a total length of

33 by specifying the sample-sequence length and moving stride

(Supplementary Figure S1). We also performed random flip,

rotation, and translation on the independent samples to enhance

the robustness of the DL model, as well as resampled to 224×224×3

(determined by the pretrained ImageNet dataset (31)).

Eca_nfnet_l0 is a variant of the nfnet (normalization free net)

model family, whose prediction performance achieved on the

ImageNet dataset is better than that of the residual networks
Frontiers in Oncology 04
(ResNet) (31). We utilized eca_nfnet_l0 to obtain the

representational features from each 3-channel image of the

independent input sample. Bidirectional LSTM was then used to

learn the intrinsic and mutual relationships of the representational

features from different 3-channel images. Finally, the output

features of LSTM were ensembled into a class posterior

probability (namely, DL signature) through a fully connected

layer with a sigmoid activation function. A single patient will

have multiple independent input samples under every single-

modality MRI. We considered the average of all posterior

probabilities from different input samples as the patient’s final DL

signature. A total of four DL signatures were independently

extracted from four single-modality MRIs.
2.5 Conventional radiomics feature
extraction

To reduce heterogeneity bias between patients, MR images were

normalized via z-score normalization for subsequent CR feature

extraction, which was based entirely on an open-source python

package pyradiomics that was established to provide a reference

standard according to the image biomarker standardization

initiative (IBSI) for radiomics analysis of medical imaging (32).

Based on the segmented sub-volumes (WT and TC), we extracted

shape, first-order, and texture features from original and derived

images (wavelet decompositions via directional low-pass and high-

pass filtering to yield eight derived images on each original 3D

MR image).

Shape features describe the size and shape of the region of

interest (ROI). These features are independent of the gray-level
A B

C

FIGURE 1

Workflow of patient recruitment, tumor segmentation and feature selection. (A) Patient recruitment process. (B) Tumor segmentation and feature
extraction process. Tumor segmentation was performed with T1WI, T1CE, T2WI, and FLAIR images by using nnU-Net automated segmentation
framework. Conventional radiomics features were extracted from the WT and TC volumes under every single-modality MRI, respectively. (C) The
deep-learning model. Single-modality DL signature was extracted using the deep-learning model.
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intensity distribution in the ROI and are only calculated on 3D

mask. First-order features take the properties of individual pixel

values ignoring the spatial interaction between image pixels into

account. While texture features describe this spatial interaction

between every image pixel and their surrounding neighborhoods.

Texture features can be extracted using five methods, including the

gray-level co-occurrence matrix (GLCM), gray-level run length

matrix (GLRLM), gray-level size zone matrix (GLSZM),

neighborhood gray-tone difference matrix (NGTDM), and gray-

level dependence matrix (GLDM).
2.6 Feature selection and model
development

2.6.1 Nested-CV
Nested cross-validation (nested-CV) is a search for

hyperparameters by estimating the generalization error of the

training model to obtain the best hyperparameters. It consists of

the outer loops and inner loops. The inner loop refers to the cross-

validation with the ability to search for the best hyperparameters

to provide the best hyperparameters for the training model

validated in the outer loop. The outer loop provides training

data to the inner loop while retaining some extra data to

validate the model trained in the inner loop. Compared to

simple-CV, nested-CV can prevent information leakage of

data to obtain a relatively low model scoring bias, especially

in relatively small datasets. Nested-CV is also successfully

employed in the machine-learning analysis of neuroimaging (33).

In the present study, we utilized nested-10-fold-CV to perform

feature selection and model hyperparameters tuning, in which nine

non-overlapping datasets of each outer loop were trained in its

inner loop and the remaining one non-overlapping dataset was the

validation set of this outer loop (Figure 2 and Supplementary

Table S1).
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2.6.2 Conventional radiomics feature selection
When building a machine-learning classifier involving high-

throughput features, feature selection provides a crucial step to

reduce the risk of over-fitting, improve accuracy, and decrease

training time. Before performing CR feature selection, all CR

features are subjected to z-score normalization to eliminate the

influence of different feature magnitudes. We utilized the least

absolute shrinkage and selection operator penalty (LASSO)

algorithm with L1 regularization to select CR features (34). A

hyperparameter, designated as a, controls the extent of L1

regularization: the larger the value of , the fewer the selected CR

features. The optimal hyperparameter a, ranging from 0 to 0.1 in 0.05

increments, was selected by using the inner 10-fold cross-validation

in the nine non-overlapping datasets of each outer loop (33).We then

retained the CR features with a non-zero coefficient resulting from

the optimal a for further analyses. In this way, 10 specific CR feature

subsets were selected by using the LASSO model with optimal a.

2.6.3 Classifier building
After the CR feature selection, we utilized the mixture of DL

signatures and CR features as predictors to construct machine-

learning classifiers. Eight classical machine-learning classifiers were

built and compared: logistic regression (LR), k-nearest neighbors

(kNN), naive Bayes (NB), support vector machines with the linear

kernel (l-SVM), support vector machines with radial basis function

kernel (r-SVM), random forest (RF), adaptive boosting (Adaboost)

and linear discriminant analysis (LDA) (Supplementary Table S2).

In each outer loop, we tuned every classifier by using the inner 10-

fold cross-validation and compared the area under the curve (AUC)

value of the receiver operating characteristics to identify the

classifier with optimal hyperparameters. Random grid searches

were used for all hyperparameter tuning processes. The average

prediction performance of classifiers was estimated in the validation

sets of the outer loops by quantifying the accuracy and AUC values.

Meanwhile, the stability of the machine-learning classifier was
FIGURE 2

Workflow of machine-learning method training and validation.
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quantified by using the relative standard deviation of the AUC value

(RSDAUC). RSDAUC% is defined as:

RSDAUC% =
sAUC

mAUC
�100%

Where, sAUC and mAUC are the standard deviation and mean of

the AUC value, respectively. A lower RSDAUC% value represents the

higher stability of the machine-learning classifier.
2.7 Implementation details

All the calculations and modeling were based on the pytorch,

sklearn, and pycaret libraries in python as the backend. When

building the DL model, we created consecutive image sequences as
Frontiers in Oncology 06
the independent input samples by setting the sample-sequence length

to 11 and moving stride to 2. In this way, we could obtain 12

independent samples from single patient under every single-modality

data. We used the sigmoid linear unit activation function in each

hidden layer and the binary cross-entropy as the objective function.

The weights of the network were optimized via a gradient descent

algorithm with a mini-batch size of 32 and a learning rate of 1e-6.
3 Results

3.1 Patient and tumor characteristics

Overall, we obtained 486 cases and the patient and tumor

characteristics were statistically analyzed and shown in Table 1.
TABLE 1 Patient and tumor characteristics of the entire cohort.

Parameters Entire cohort Public dataset Pintra Local population Pintra Pinter

IDH expression status IDH expression status

Mutation Wildtype Mutation Wildtype

Total Number 486 89 129 110 158

Sex 0.24 0.79 0.32

Male 274(56%) 43(48%) 74(57%) 66(60%) 91(58%)

Female 212(44%) 46(52%) 55(43%) 44(40%) 67(42%)

Grade <0.05 <0.05 0.83

LGG(WHO 2 or 3) 240(49%) 84(94%) 22(17%) 93(85%) 41(26%)

HGG(WHO 4) 246(51%) 5(6%) 107(83%) 17(15%) 117(74%)

Age (years) 51.7 ± 14.2 43.9 ± 13.9 58.3 ± 13.0 <0.05 44.3 ± 11.7 55.8 ± 12.6 <0.05 1.01

18 - 51 232(48%),
39.6 ± 8.8

62(70%),
36.6 ± 8.9

34(26%),
41.8 ± 9.0

82(75%),
39.2 ± 8.4

54(34%),
42.1 ± 8.1

≥ 52 254(52%),
62.8 ± 7.8

27(30%),
60.7 ± 6.9

95(74%),
64.2 ± 8.3

28(25%),
59.3 ± 5.1

104(66%),
62.9 ± 7.7

Histology <0.05 <0.05 0.57

Astrocytoma 118(24%) 22(25%) 10(8%) 53(48%) 33(21%)

Oligodendroglioma 92(19%) 40(45%) 8(6%) 39(36%) 5(3%)

Oligoastrocytoma 39(8%) 22(25%) 4(3%) 10(9%) 3(2%)

Glioblastoma 237(49%) 5(5%) 107(83%) 8(7%) 117(74%)

1p/19q <0.05 <0.05 0.92

Codeletion 66(14%) 21(24%) 0(0%) 37(34%) 8(5%)

Nono-codeletion 240(49%) 40(45%) 22(17%) 58(53%) 120(76%)

Unknown 180(37%) 28(31%) 107(83%) 15(13%) 30(19%)

MGMT 0.09 0.35 0.14

Methylation 110(22%) 5(6%) 27(21%) 32(29%) 46(29%)

Unmethylation 139(29%) 0(0%) 28(22%) 37(34%) 74(47%)

Unknown 237(49%) 84(94%) 74(57%) 41(37%) 38(24%)
frontie
Data is presented as the mean ± standard deviation or as numbers (with percentage in parentheses). Age is divided into two groups based on its mean value. P-values are calculated from unpaired
t-test for continuous variables and chi-square test for categorical variables, to compare statistical differences of variables between IDHmutation and IDHwildtype (Pintra) as well as between public
and local cohorts (Pinter). A P<0.05 is considered to indicate statistically significant differences.
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The workflow of the current study is displayed in Figures 1 and 2.

The proportions of patients with IDH mutation and wildtype were

41% (199/486) and 59% (287/486), respectively. There was no

significant difference in sex between patients with IDH mutation

and wildtype (p>0.05). The proportion of patients presenting with

LGG was 89% (177/199) in IDH mutation patients, while the

proportion of patients presenting with HGG was 78% (224/287)

in IDH wildtype patients (p<0.05). The mean (± standard deviation)

age was 51.7 ± 14.2 years and its P-value was<0.05 between patients

with IDH mutation and IDH wildtype.
3.2 Conventional radiomics features and
DL signatures

In each MR modality, we extracted 842 CR features from each

tumor subregion, respectively, including 18×9 first-order, 23×9

GLCM, 16×9 GLRLM, 16×9 GLSZM, 5×9 NGTDM, 14×9 GLDM,

and 14 shape features. A total of 6,736 CR features were extracted

from the MRI data of every patient. After LASSO, 10 specific CR

feature subsets were obtained, whose numbers ranged from 5 to 9

(Supplementary Table S3). Features that were selected in at least five

of the 10 loops were considered the most valuable and stable CR

features (33). Finally, we obtained seven valuable CR features,

comprising texture, first-order, and shape features extracted from

the original images and wavelet-transformed images. These seven CR

features together with four DL signatures were then compared with

the IDH mutation status by using the unpaired t-test, revealing that

all the selected features were significantly different between patients

with IDHmutation and wildtype (p<0.05) (Supplementary Table S4).
3.3 Model performance

3.3.1 Classifiers using DL+CR features as
predictors

We analyzed the prediction performance and stability of the

eight classic machine-learning classifiers by using the DL+CR

features as predictors (Table 2). In terms of the prediction
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performance in all classifiers, LR had the best AUC (0.920 ±

0.043), r-SVM had the best accuracy (0.856 ± 0.056), while

l-SVM had the lowest prediction performance with AUC (0.812 ±

0.052) and accuracy (0.821 ± 0.050). In terms of stability, the most

stable classifier was LR (RSDAUC: 4.7%), followed by LDA (RSDAUC:

4.9%) and Adaboost (RSDAUC: 4.9%). kNN (RSDAUC: 9.0%) and

r-SVM (RSDAUC: 8.0%) had the lowest stability among all the

classifiers. We mainly referred to the AUC value to compare the

prediction performance between different classifiers. Overall, LR

with the best AUC and stability (AUC: 0.920 ± 0.043, RSDAUC:

4.7%) outperformed other machine-learning classifiers in the IDH

genotyping prediction.

3.3.2 The optimal classifier using different feature
subcategories as predictors

The DL signatures and CR features were individually analyzed

to investigate their respective prediction potential in IDH

genotyping. The average prediction performance of the DL

signatures among the eight classifiers (AUC: 0.900 ± 0.058,

accuracy: 0.835 ± 0.056, RSDAUC: 6.4%) was better than that

of the CR features (AUC: 0.799 ± 0.095, accuracy: 0.754 ± 0.072,

RSDAUC: 11.9%). In contrast, the average prediction performance of

the DL+CR features had little improvement (AUC: 0.900 ± 0.065,

accuracy: 0.841 ± 0.051, RSDAUC: 7.2%) (Table 3 and

Supplementary Table S5).

Since LR had the best prediction performance and stability in

DL+CR, we additionally utilized it to compare the prediction

potential of the different feature subcategories. As illustrated in

Figure 3, LR in the DL achieved the favorable prediction results and

stability (AUC: 0.915 ± 0.054, accuracy: 0.835 ± 0.061, RSDAUC:

5.9%). In contrast, LR in the CR achieved the lowest prediction

results and stability (AUC: 0.830 ± 0.066, accuracy: 0.771 ± 0.051,

RSDAUC: 8.0%). After combining the DL signatures and CR

features, we found that the CR features did not obviously help to

improve the prediction performance of LR (AUC: 0.920 ± 0.043,

accuracy: 0.843 ± 0.044, RSDAUC: 4.7%). Furthermore, we analyzed

the prediction potential of single-modality DL signature in IDH

genotyping by ROC analysis. The T1CE signature had the best AUC

(AUC: 0.904 ± 0.044, RSDAUC: 4.9%), followed by the T2WI

signature (AUC: 0.899 ± 0.062, RSDAUC: 6.9%), T1WI signature

(AUC: 0.880 ± 0.062, RSDAUC: 7.0%) and FLAIR signature (AUC:

0.877 ± 0.088, RSDAUC: 10.0%). The t-SNE visualization of different

feature subcategories are also shown in Figure 4, illustrating that the

DL signatures possess better discriminative ability than the

CR features.
TABLE 2 Validation performance based on DL+CR features.

Classifier Accuracy AUC RSDAUC

LR 0.843 ± 0.044 0.920 ± 0.043 4.7%

kNN 0.848 ± 0.065 0.904 ± 0.081 9.0%

NB 0.850 ± 0.052 0.916 ± 0.063 6.9%

l-SVM 0.821 ± 0.050 0.812 ± 0.052 6.4%

r-SVM 0.856 ± 0.056 0.911 ± 0.073 8.0%

RF 0.842 ± 0.051 0.917 ± 0.052 5.7%

Adaboost 0.827 ± 0.050 0.903 ± 0.044 4.9%

LDA 0.839 ± 0.048 0.918 ± 0.045 4.9%

Average 0.841 ± 0.051 0.900 ± 0.065 7.2%
Numbers in bold font represent the best performance among different models.
TABLE 3 Average validation performance of different feature
subcategories.

Subcategory Accuracy AUC RSDAUC

CR 0.754 ± 0.072 0.799 ± 0.095 11.9%

DL 0.835 ± 0.056 0.900 ± 0.058 6.4%

DL+CR 0.841 ± 0.051 0.900 ± 0.065 7.2%
fro
Numbers in bold font represent the best performance among different models.
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4 Discussion

According to the newest WHO classification of CNS tumors,

adult diffuse gliomas were classified not only by pathological

characteristics but also by genotyping, which was the important

prognostic factor affecting patients’ survival. In addition to IDH

genotyping, genetic phenotypes and molecular characteristics such

as chromosome 1p/19q co-deletion, O-6-methylguanine-DNA

methyltransferase (MGMT) methylation, and phosphatase and

tensin homologue deleted on chromosome 10 (PTEN) genotyping

also have important effects on the prognosis and treatment of

gliomas (14). Tan et al. (35) used a radiomics nomograph to

predict IDH genotyping (AUC: 0.900), confirming that most

WHO LGG patients presented with IDH mutation and had better

prognosis. Kanazawa et al. (36) found that ADC kurtosis (AUC:

0.728) and T2 kurtosis (AUC: 0.866) had the highest correlation

with 1p/19q codeletion through the radiomics texture analysis. In

MGMT prediction, Li et al. (37) compared two different feature

selection methods, among which the all-relevant features have the

potential of offering better prediction power than the univariately-

predictive and non-redundant features (AUC: 0.880). Based on

multicenter and multimodal MRIs, Li et al. (38) illustrated that the

radiomics features derived from T2WI were more correlated with

PTEN genotyping (AUC: 0.787). Results from these studies suggest

that radiomics analysis is indeed a powerful method for predicting

glioma genotyping before surgery. Multimodal MRIs could further

improve the prediction performance of glioma genotyping.

Multimodal MRI technology can obtain a variety of tumor

information including tumor morphology, blood perfusion, and

metabolism that can help further evaluate tumor prognosis and

therapeutic effects. Several studies have explored the molecular-

biomarkers-based classification of glioma subtypes using PET,

DWI, DCE, and DSC-PWI, which are non-standard imaging

modalities used to gather additional tumor information. Song

et al. (39) demonstrated that both PET and DSC-PWI might be

non-invasive predictors for IDH genotyping, in which PET
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combined with CBV could improve the differentiation of IDH-

mutant astrocytoma and IDH-wildtype glioblastoma (AUC: 0.903).

Kim et al. (40) found that DWI and PWI can improve the

diagnostic performance of IDH genotyping (AUC: 0.747) to

further guide the LGG glioma subtyping, with DWI-ADC features

playing a significant role. Furthermore, Yan et al. (17) showed that

multimodel-MRIs–based radiomics may be useful for noninvasive

detection of molecular groups and guiding glioma subtyping. The

image fusion model (multivariate logistic regression) incorporating

radiomic features from T1CE and DWI-ADC achieved an AUC of

0.884 and 0.669 for predicting IDH and TERT status, respectively.

Pei et al. (41) have also investigated the integration of multimodal

MRIs to improve the accuracy of glioma subclassification. Adding

DSC-PWI to conventional MRIs can improve glioma subtype

prediction in patients with diffuse gliomas (AUC: 0.864, 0.787,

and 0.816 in IDH wildtype, IDH mutant and 1p/19q-noncodeleted,

and IDH mutant and 1p/19q-codeleted, respectively). In summary,

the utilization of non-standard imaging techniques and machine-

learning in glioma subtyping has exhibited encouraging outcomes.

As the research in this area advances, it is essential to emphasize the

reproducibility and generalizability of these methods to facilitate

their potential incorporation into routine clinical practice.

Furthermore, additional comprehensive studies are necessary to

explore the effects of integrating imaging features with multimodal

imaging data, with the aim of improving the accuracy and

comprehensiveness of glioma subtyping.

IDH mutant tumors can produce oncometabolite 2-

hydroxyglutarate (2HG) which can be non-invasively detected by

in vivo MR spectroscopy (MRS). Studies have shown that elevated

levels of 2HG can be detected in IDH mutant tumors using MRS,

allowing for non-invasive assessment and confirmation of IDH

mutation status (42, 43). Furthermore, the quantification of 2HG

levels through MRS has demonstrated prognostic significance.

Higher levels of 2HG in IDH mutant tumors have been associated

with better treatment response and improved overall survival

outcomes (44). Currently, radiomics methods and 2HG MRS are
FIGURE 3

Receiver operating characteristic (ROC) curve. Left, validation ROC curve of LR by using different feature subcategories as predictors. Right, validation
ROC curve for single-modality signature.
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both non-invasive techniques used in the detection of IDH mutant

tumors. The choice between these approaches depends on the

specific clinical context, resource availability, and the required

information for patient management.

In general, the radiomic method is superior to the 2HG MRS

analysis manifesting in heterogeneity assessment, availability,

generalizability, and predictive modeling for glioma IDH

genotyping (45–47). IDH mutant gliomas often exhibit significant

intratumoral heterogeneity, with diverse regions of aggressiveness,

therapy resistance, and molecular characteristics. Radiomics

methods can capture this heterogeneity by analyzing multiple

regions within the tumor, allowing for a more comprehensive

quantitative evaluation of the IDH mutant gliomas. However,

2HG MRS typically provides a global assessment of 2HG

concentration throughout the entire tumor, potentially missing

significant spatial variances. The majority of clinical MRI

scanners are already equipped with imaging protocols essential

for radiomics analysis. However, performing 2HG MRS often

necessitates specific acquisition sequences and dedicated post-

processing techniques, which may not be universally accessible in

all clinical settings. Currently, radiomics methods are highly

adaptable and enable the integration of multimodal imaging data,

which can enhance diagnostic and predictive capabilities for IDH

genotyping. In contrast, 2HG MRS is specific to MRI and solely

focuses on measuring 2HG concentration. Radiomics methods

often employ machine-learning modeling to extract valuable

information from imaging data. By training models on large

datasets, radiomics–based approaches not only have the ability to

generate predictive models for IDH genotyping but also to guide

comprehensive prognostic analysis for patients. This capability

extends beyond the direct measurement of 2HG, providing a

more comprehensive assessment of the tumor and its behavior.

In conventional radiomics analysis, some studies have analyzed

the prediction potential of different machine-learning models for

specific clinical tasks. Parmer et al. (48) compared 12 machine-

learning models in terms of their prediction performance in

patients with lung cancer, with random forest achieving the best

result (AUC: 0.660 ± 0.030, RSDAUC: 4.5%). In another study about

head and neck cancer, Parmer et al. (49) evaluated 11 machine-

learning models in terms of their prediction performance of overall

survival, with naive Bayes managing the highest prognostic

performance (AUC: 0.670 ± 0.076, RSDAUC: 11.3%). Fang et al.
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(33) compared three machine-learning models in predicting TERT

genotyping of LGGs, including random forest (AUC: 0.827 ± 0.043,

RSDAUC: 5.2%), adaboost (AUC: 0.820 ± 0.040, RSDAUC: 4.9%) and

linear SVM (AUC: 0.840 ± 0.090, RSDAUC: 10.7%). In our study, we

compared the predictive effectiveness of eight machine-learning

classifiers by using only CR features as model predictors, with LDA

exhibiting the best prediction performance and stability (AUC:

0.833 ± 0.062, RSDAUC: 7.4%). Overall, the prediction performance

of classifiers using only CR features is generally low, and the

predictive ability of the same classifier varies greatly across

different clinical tasks. Conventional radiomics analysis always

depends on a fixed feature extraction pipeline, which could limit

the predictive potential of machine-learning models.

To improve the predictive potential of machine-learning models,

extracting features with abundant representational information is the

key. CR features extracted by conventional radiomics are predefined

and limited in number, resulting in the limited acquisition of tumor

heterogeneities. However, a deep-learning model with end-to-end

prediction capability can automatically extract features from each

layer or transform and represent features layer by layer to obtain a

variety of complex features that are closely related to tumor

heterogeneities. In medical imaging analysis, some studies have

shown that DL models have a powerful ability to improve the

understanding of tumor characteristics. When Li et al. (23) were

constructing the hierarchical IDH and 1p/19q prediction models,

they confirmed that DL features had better stability and

reproducibility than CR features, with better generalization ability

in IDH genotyping prediction (AUC: 0.85-0.89). Chen et al. (21)

confirmed that DL features tended to outperform CR features, and

the prediction performance of the DL model after adding CR

features was improved (AUC: 0.910) in PTEN genotyping.

Compared to CR features, DL features are extracted more flexibly

and can provide more comprehensive information for the

construction of machine-learning models. However, when

considering the mixture of DL and CR features as predictors, few

studies have analyzed the prediction effectiveness of different

machine-learning models, and the optimal machine-learning

model has not yet been determined for IDH genotyping prediction.

Therefore, in our study, we dug deeper into the information

contained in MR imaging data and extracted two groups of features

(CR and DL) for IDH genotyping. We analyzed and compared eight

common machine-learning models aiming to find the optimal
FIGURE 4

t-SNE visualization for different feature subcategories (the DL, CR and DL+CR). Every dot represents a patient. Blue represents the patients with IDH
wildtype, whereas green represents the patients with IDH mutation.
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classifier. Features were extracted from different MRI modalities

and tumor subregions, respectively. MRIs involved in this study

were collected from our medical center and the public database

TCGA, which may help to build a robust and broadly applicable

model for IDH genotyping. Moreover, the region of interest in most

studies was delineated by radiology specialists. However, we utilized

a fully-automated segmentation approach to delineate glioma areas

which were the focused zones of feature calculation. Compared to

manual segmentation, the fully-automated segmentation methods

can reduce the variation of delineation between different observers,

produce more reproducible and stable features, and remain low-

cost and time-saving options.

In recent studies, deep-learning models used for glioma

genotyping were mainly from the CNN family. Chang et al. (50)

developed a 2D-ResNet model to non-invasively predict IDH

genotyping using conventional MR imaging data (AUC: 0.950). Li

et al. (23) creatively built a novel 2.5D-ResNet18 model by

designing an image sequence as independent input (AUC: 0.890).

Some studies also extracted DL features directly from 3D glioma

volumes. Chen et al. (21) integrated a 3D-ResNet model and CR

features to collaboratively predict PTEN genotyping (AUC: 0.910).

In our study, we constructed a 2.5D-CNN model to extract initial

features from the image sequence and then used LSTM to learn the

initial features in an ensemble way. Unlike the 2D- or 3D-CNN

model, the 2.5D-CNN model can ensure access to rich tumor

information and prevent model underfitting in a small cohort.

In our study for CR features selection, we used LASSO to reduce

feature dimensionality and eliminate the risk of model overfitting

caused by excessive features. In total, we selected the seven most

valuable and stable CR features from ten feature subsets

(Supplementary Table S3). Each feature had distinctive prediction

potential in IDH genotyping (P<0.05). We found that the final

selected CR features were primarily texture information, reflecting

the characteristics of slow or periodic changes throughout the

tumor. It is difficult to observe these tumor texture features with

the naked human eye in imaging data. Quantitative analysis of

the texture features will be an effective way to help clinicians

understand and treat tumors.

Metrics, such as accuracy, specificity, and sensitivity, need to set

a threshold in advance to determine whether the predictive sample

is positive or negative. However, AUC, an indicator used to evaluate

the classifier’s ability to distinguish samples between positive and

negative, will not be affected by threshold adjustment. Therefore, we

mainly refer to the AUC value to compare the prediction

performance of classifiers (51). When we used a mixture of DL

signatures and CR features as predictors, r-SVM had the highest

accuracy but its stability was the worst (AUC: 0.911 ± 0.073,

accuracy: 0.856 ± 0.056, RSDAUC: 8.0%), while LR had the best

AUC and stability (AUC: 0.920 ± 0.043, accuracy: 0.843 ± 0.044,

RSDAUC: 4.7%). If only the predefined CR features are used as the

LR predictors, the learning ability of LR will be greatly limited and

prediction performance will not be satisfactory (AUC: 0.830 ±

0.066, accuracy: 0.771 ± 0.051, RSDAUC: 8.0%). Compared with

CR features, DL signatures exhibit superior prediction values (AUC:

0.915 ± 0.054, accuracy: 0.835 ± 0.061, RSDAUC: 5.9%). After adding

CR features, the prediction performance of the DL–based model
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does not exhibit a significant improvement (AUC: 0.920 ± 0.043,

accuracy: 0.843 ± 0.044, RSDAUC: 4.7%). Additionally, we

confirmed that multimodal signatures improved the prediction

performance of IDH genotyping and outperformed any single-

modality signature in the comparison of prediction potentials.

Among the single-modality signature, T1CE and T2WI had the

best prediction results (T1CE, AUC: 0.904 ± 0.044, RSDAUC: 4.9%;

T2WI, AUC: 0.899 ± 0.062, RSDAUC: 6.9%), considering as the

important modalities in IDH genotyping. Furthermore, the t-SNE

visualization suggested that the DL signatures possessed better

discriminative ability compared to the CR features. Overall, the

results from our analyses suggested that LR should be a preferable

machine-learning classifier in IDH genotyping and DL signatures

exhibit superior prediction values and discriminative capability.

The application of deep-learning for glioma genotyping is an

inevitable trend in the future, but it is still in the initial stage and has

certain limitations. Firstly, meeting the large sample size

requirements of deep-learning is still a problem. A larger sample

size and independent validation data are still required to assess the

generalization of our model. Secondly, the study of multiple

genotyping predictions will help us further understand the tumor

characteristics and efficiently guide patients’ treatment. Thirdly, the

biological mechanisms and clinical interpretations of how DL

features relate to IDH genotyping still remain unclear. Although

we illustrated that DL features have promising prediction value in

IDH genotyping, further research and understanding are required.
5 Conclusion

Our findings highlight the clinical utility of deep-learning–

based radiomics analysis for IDH genotyping. Through a nested

10-fold cross-validation process, we developed an efficient LR

model with robust performance by combining CR features and

DL signatures as model predictors. Through subgroup analysis, it

is observed that DL signatures consistently outperform CR

features in terms of prediction performance and discriminative

capability. The addition of CR features does not significantly

enhance the prediction performance of DL-signature–based

model, indicating that DL signatures alone exhibit favorable

prediction capability, with potential as a standalone approach

for accurate predictions. Through t-SNE cluster analysis, DL

signatures also display markedly superior clustering and

discriminative capability in comparison to CR features. Overall,

the future direction of radiomics analysis may revolve around the

utilization of custom deep-learning features, emphasizing the

importance of incorporating deep-learning techniques

to extract robust and informative features from medical

imaging data.
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