
Frontiers in Oncology

OPEN ACCESS

EDITED BY

Silvia Deaglio,
University of Turin, Italy

REVIEWED BY

Andrea Nicola Mazzarello,
University of Genoa, Italy
Chris Pepper,
Brighton and Sussex Medical School,
United Kingdom

*CORRESPONDENCE

Romina Gamberale

rominagamberale@gmail.com

SPECIALTY SECTION

This article was submitted to
Molecular and Cellular Oncology,
a section of the journal
Frontiers in Oncology

RECEIVED 13 January 2023

ACCEPTED 07 March 2023

PUBLISHED 20 March 2023

CITATION

Sarapura Martinez VJ, Buonincontro B,
Cassarino C, Bernatowiez J, Colado A,
Cordini G, Custidiano MdR, Mahuad C,
Pavlovsky MA, Bezares RF, Favale NO,
Vermeulen M, Borge M, Giordano M and
Gamberale R (2023) Venetoclax resistance
induced by activated T cells can be
counteracted by sphingosine kinase
inhibitors in chronic lymphocytic leukemia.
Front. Oncol. 13:1143881.
doi: 10.3389/fonc.2023.1143881

COPYRIGHT

© 2023 Sarapura Martinez, Buonincontro,
Cassarino, Bernatowiez, Colado, Cordini,
Custidiano, Mahuad, Pavlovsky, Bezares,
Favale, Vermeulen, Borge, Giordano and
Gamberale. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Brief Research Report

PUBLISHED 20 March 2023

DOI 10.3389/fonc.2023.1143881
Venetoclax resistance induced
by activated T cells can be
counteracted by sphingosine
kinase inhibitors in chronic
lymphocytic leukemia
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The treatment of chronic lymphocytic leukemia (CLL) patients with venetoclax-

based regimens has demonstrated efficacy and a safety profile, but the

emergence of resistant cells and disease progression is a current complication.

Therapeutic target of sphingosine kinases (SPHK) 1 and 2 has opened new

opportunities in the treatment combinations of cancer patients. We previously

reported that the dual SPHK1/2 inhibitor, SKI-II enhanced the in vitro cell death

triggered by fludarabine, bendamustine or ibrutinib and reduced the activation

and proliferation of chronic lymphocytic leukemia (CLL) cells. Since we

previously showed that autologous activated T cells from CLL patients favor

the activation of CLL cells and the generation of venetoclax resistance due to the

upregulation of BCL-XL and MCL-1, we here aim to determine whether SPHK

inhibitors affect this process. To this aim we employed the dual SPHK1/2 inhibitor

SKI-II and opaganib, a SPHK2 inhibitor that is being studied in clinical trials. We

found that SPHK inhibitors reduce the activation of CLL cells and the generation

of venetoclax resistance induced by activated T cells mainly due to a reduced

upregulation of BCL-XL. We also found that SPHK2 expression was enhanced in

CLL cells by activated T cells of the same patient and the presence of venetoclax
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selects resistant cells with high levels of SPHK2. Of note, SPHK inhibitors were

able to re-sensitize already resistant CLL cells to a second venetoclax treatment.

Our results highlight the therapeutic potential of SPHK inhibitors in combination

with venetoclax as a promising treatment option for the patients.
KEYWORDS

sphingosine kinases, activated T cells, Bcl-XL, CLL (chronic lymphocytic leukemia),
venetoclax resistance, SKI-II, opaganib
Introduction

Leukemic B cells from chronic lymphocytic leukemia (CLL)

patients circulate between peripheral blood and lymphoid tissues

where they survive, become activated, and proliferate in close contact

with activated T cells, myeloid cells and by receiving signals through the

B-cell receptor (BCR). In the last years, the approval of multiple new

targeted therapy drugs that affect the proliferation or survival of CLL

cells, improved both clinical outcomes and quality of life of CLL

patients. One of them is venetoclax (1), a potent and selective inhibitor

of the antiapoptotic protein BCL-2, that binds specifically to the

hydrophobic groove of BCL-2, displacing proapoptotic proteins and

rapidly inducing apoptosis in cells that rely on BCL-2 for survival (2). It

has demonstrated efficacy and a safety profile in CLL and other

hematological malignancies, both in clinical trials (1, 3, 4) and in real

world setting (5). While CLL patients treated with venetoclax can reach

deep clinical responses, particularly when used in combination with an

anti-CD20 monoclonal antibody, and/or inhibitors of Bruton tyrosine

kinase (3, 4, 6), the emergence of resistant cells is a current

complication. Multiple independent mechanisms contributed to

venetoclax resistance, including the acquisition of various mutations

in BCL-2 and/or the upregulation of other anti-apoptotic proteins

which are not targeted by venetoclax, such as BCL-XL and MCL-1 (7,

8). Different groups reported that malignant cells that recently

interacted in vivo with the supportive microenvironment of

lymphoid tissues (9, 10), or those that were cultured in vitro with

different signals that mimic microenvironment stimuli (11–15), show

an increased expression of BCL-XL andMCL-1 and are less sensitive to

venetoclax compared to quiescent or unstimulated CLL cells. In line

with this, we previously reported that when peripheral blood

mononuclear cells (PBMC) from CLL patients were incubated on

immobilized anti-CD3 monoclonal antibodies (aCD3) to induce T cell

activation, autologous activated T lymphocytes induced the activation

of CLL cells, and in vitro venetoclax resistance due to the upregulation

of BCL-XL and MCL-1 (11, 12). Moreover, we found that venetoclax-

resistant CLL cells show a highly activated and proliferative phenotype

and a sustained resistance to a second treatment with the drug (11).

Sphingosine kinases (SPHK) participate in the regulation of

bioactive sphingolipid metabolism and mediate several biological

functions, including cell growth, differentiation, survival and
02
migration, among others (16). SPHK has two isoforms, SPHK1 and

SPHK2, which mediate the phosphorylation of sphingosine to form

sphingosine 1-phosphate (S1P) (17). Therapeutic targeting of SPHK

has attracted enormous attention and opened new opportunities in

the treatment combinations of cancer patients. In line with this, our

previous work on SHPK in CLL confirmed that SKI-II, the most well-

characterized dual SPHK1/2 inhibitor (18), induced CLL cell death in

a dose-dependent way (19). Moreover, non-apoptotic doses of SKI-II

enhanced the cell death triggered by fludarabine, bendamustine or

the targeted drug ibrutinib which inhibit Bruton’s tyrosine kinase

(BTK) and IL-2–inducible T cell kinase (ITK) (19). Interestingly, sub-

apoptotic doses of SKI-II also reduced the activation and proliferation

of CLL cells induced by different signals that mimic the tumor

microenvironment, including anti-IgM plus CD40L (19). In

addition, others found that safingol, a known SPHK1 inhibitor

which was recently found to be a substrate for SPHK2 (20),

potentiates the anti-cancer effect of a botanical drug called

Polyphenon E™ (21). In solid tumors, opaganib, an orally active,

isozyme-selective inhibitor of SPHK2 with antitumor and anti-

inflammatory activity, which can be safely administered to severely

compromised patients with solid and hematological tumors or

Covid-19 (22), restores the sensitivity of BRAFV600E mutant colon

cancer cells to vemurafenib (23) and it has being studied in clinical

trials with patients with metastatic castration-resistant prostate

cancer progressing on abiraterone or enzalutamide (NCT04207255)

and with advanced cholangiocarcinoma patients in combination with

hydroxychloroquine sulfate (NCT03377179). The combination of

SPHK inhibitors and venetoclax in CLL cells was not evaluated yet.

To further study the role of SPHK in CLL, we herein determine

whether SPHK inhibitors can reduce the emergence of in vitro

venetoclax resistance in CLL cells and/or are able to induce the cell

death of already venetoclax-resistant cells. Our results suggest that a

combined therapy of venetoclax and SPHK inhibitors may be a

promising treatment option for CLL patients in the future.

Methods

Peripheral blood samples were collected from twenty-eight

unrelated CLL patients. All samples used in this study were

obtained after informed consent in accordance with the
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Declaration of Helsinki and with Institutional Review Board

approval from the Academia Nacional de Medicina, Buenos

Aires, Argentina. CLL was diagnosed according to standard

clinical and laboratory criteria. At the time of analysis, all patients

were free from clinically relevant infectious complications and were

treatment naïve or had not received treatment for ≥3 months before

the investigation began. The main clinical and biological

characteristics of the patients enrolled in our study are

summarized in Supplementary Table 1.

In the present study we employed 0,2 µM of venetoclax, a

concentration achievable in vivo since 1 mM of venetoclax can be

found in plasma of treated CLL patients in the steady state (1, 24). This

concentration was selected because in our previous study we

demonstrated that autologous activated T cells promote CLL

resistance to doses of venetoclax ranged between 0.01 and 1 uM (11,

12). In the case of SPHK inhibitors, opaganib was employed at 15 µM

because up to 13,5 µM (25) or 16 µM (26) can be found in plasma of

treated patients. SKI-II was not evaluated in clinical trials yet, but its

concentration of 15 µM was selected based on our previous in vitro

studies (19). A detailed description of materials and methods employed

in this study can be found in the online Supplementary Data.
Results

Venetoclax-resistant CLL cells express high
levels of SPHK2

When we studied the phenotype of venetoclax-resistant CLL cells

induced by activated T cells, we found that they showed an aggressive

phenotype characterized by higher CD86, PD-1, Ki-67 and MCL-1

and/or BCL-XL expression with sustained resistance to a second

treatment with the drug (11, 12). Since we previously reported that

SPHKs regulate CLL cell survival, activation and proliferation (19), we
Frontiers in Oncology 03
hypothesized that venetoclax-resistant cells would also express high

levels of SPHKs. To test this hypothesis, venetoclax resistant cells were

generated as previously described (11, 12) by culturing PBMC from

CLL patients with or without aCD3 for 72 h in the presence of DMSO

or venetoclax during the last 24 h of culture. Then, SPHK1 and SPHK2

were evaluated by western blot in viable purified CLL cells. Because

most of CLL cells die in control cultures with venetoclax, this condition

was not assessed. As it is shown in Figure 1A, the presence of

autologous activated T cells enhanced SPHK2 expression in CLL

cells, which was higher in those resistant to venetoclax. SPHK1

expression was not consistently modified under these culture

conditions (Figure 1B). Non-normalized data of the expression of

SPHK1 and 2 are shown in Supplementary Figure 1. Results obtained

with a representative CLL patient are shown in Figure 1C.
SPHK inhibitors reduce the generation
of venetoclax resistance induced by
activated T cells

The results mentioned above prompted us to evaluate whether

SPHK inhibitors affect the generation of venetoclax resistance. To

this aim, we employed the dual SPHK1/2 inhibitor SKI-II and the

SPHK2 inhibitor opaganib. PBMC from CLL patients were cultured

with or without aCD3 in the presence of DMSO, SKI-II (15 µM) or

opaganib (15 µM) for 72 h, with the addition of DMSO or

venetoclax during the last 24 h. The survival of CLL cells were

evaluated by flow cytometry. The percentages of viable CLL cells in

each culture condition are shown in Figure 2A (left panel). SPHK

inhibitors did not significantly modify the survival of CLL cells in

control cultures or aCD3 cultures with DMSO. As we previously

reported, CLL cells from aCD3 cultures were less sensitive to

venetoclax treatment compared to CLL cells from control

cultures. Of note, in the presence of SKI-II or opaganib leukemic
A B C

FIGURE 1

Venetoclax resistant CLL cells show high expression of SPHK2. PBMC from CLL patients (4x106 cells/ml) were cultured in complete medium with aCD3
or the isotype control. After 48 h, venetoclax (Ven) 0,2 µM or DMSO were added to the cultures. After 24 h, non-viable cells were excluded by
employing a dead cell removal kit and then CLL cells were purified using a CLL purification kit as detailed in the Supplementary Material and methods
section. Then, whole cell lysates were prepared with purified viable CLL cells and proteins were separated on a standard 12% SDS-PAGE and transferred
to a PVDF membrane. Membranes were probed with primary antibodies for SPHK1, SPHK2 and b-Actin, followed by the corresponding secondary
antibody. Then, specific bands were quantified by employing ImageJ and quantitative densitometry protein expression relative to b-actin as loading
control was obtained for each culture condition. The figure shows the expression of SPHK2 (n=9) (A) and SPHK1 (n=6) (B) relative to the expression
obtained in control cultures. To compare aCD3 and aCD3+Ven versus control cultures we employed Wilcoxon Signed Rank Test, **p < 0.01. The
comparison between aCD3 and aCD3+Ven was performed using Wilcoxon matched-pairs signed rank test, # p < 0.05. (C) The figure shows the results
obtained with one representative CLL sample.
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cells in aCD3 cultures with venetoclax showed reduced survival

values compared to CLL cells in this culture condition without

SPHK inhibitors. To easily show the effect of SPHK inhibitors on

this process we calculated the venetoclax resistance index for each

patient (Figure 2A, right panel). Resistance indexes compare

venetoclax-induced cell death in control and in aCD3 cultures

and were calculated with the survival values shown in the left

panel of Figure 2A, as we previously reported (12). Values near one
Frontiers in Oncology 04
show that CLL cells from control and aCD3 cultures similarly die in

response to venetoclax treatment, while higher values indicate that

aCD3 cultures favor venetoclax resistance. As it is shown in

the right panel of Figure 2A, both SPHK inhibitors significantly

reduce venetoclax resistance indexes. Dot plots showing

leukemic cell survival in a representative experiment are shown

in Supplementary Figure 2. The heterogeneous venetoclax

resistance indexes observed in Figure 2A could not be associated
A

B

E

F

DC

FIGURE 2 (Continued)
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FIGURE 2 (Continued)

SKI-II and opaganib prevent venetoclax resistance and CLL activation induced by autologous activated T cells. PBMC from CLL patients (4x106 cells/ml)
were cultured in complete medium with aCD3 or the isotype control in presence or absence of SKI-II 15 µM and opaganib 15 µM for 48 h. Then,
venetoclax (Ven) 0,2 µM or DMSO were added to the cultures for additional 24 h. (A) CD19+ cell survival was evaluated by flow cytometry as detailed in
Supplementary Methods. Left panel: The figure shows the mean ± SEM of CD19+ cell survival in each condition. Right panel: With the values of CD19+

cell survival obtained in control, venetoclax (Ven), aCD3 and aCD3+Ven cultures we calculated the venetoclax resistance index for each patient as follows:
(aCD3+Ven/aCD3) x (control/Ven). A value higher than 1 indicates that aCD3 cultures favor venetoclax resistance. The figure shows the mean ± SEM of
venetoclax resistance index. Statistical analysis was performed using Friedman test followed by Dunn´s test, ** p<0.01, **** p<0.0001 (n=16). (B-D)
Purified CLL cells from control and aCD3 cultures with and without SKI-II and opaganib at 48 h were analyzed by western blot as detailed in Figure 1, but
in this case, membranes were probed with primary antibodies for BCL-XL, MCL-1 and b-Actin, followed by the corresponding secondary antibody. (B) The
figures show the expression of MCL-1 and BCL-XL on leukemic cells from control and aCD3 cultures. Statistical analysis was performed using Wilcoxon
matched-pairs signed rank test, * p<0.05, NS stands for Not Statistically Significant (n=6). (C) The figures show the expression of MCL-1 and BCL-XL in
leukemic cells from aCD3+SKI-II and aCD3+opaganib cultures relative to the expression obtained in aCD3 cultures. To compare aCD3+SKI-II and aCD3
+opaganib versus aCD3 cultures we employed One sample t test, * p<0.05, ***p<0.001 (n=6) (D) The figure shows the results obtained with one
representative CLL sample (CLL #23 in Supplementary table 1). (E, F) PBMC from CLL patients were cultured with aCD3 or the isotype control in presence
or absence of SKI-II 15 µM and opaganib 15 µM for 48 h. The expression of CD86, PD1 and PDL1 on CD19+ cells was evaluated by flow cytometry. (E)
The figures show the CD86, PD1 and PDL1 expression on CD19+ cells in control and aCD3 cultures. Statistical analysis was performed using Wilcoxon
matched-pairs signed rank test, ** p<0.01 (n=9). (F) The figure shows the mean ± SEM of the expression of CD86, PD1 and PDL1 on CD19+ cells in aCD3
cultures with SKI-II and opaganib relative to aCD3 cultures without SPHK inhibitors. Statistical analysis was performed using Wilcoxon Signed Rank Test, *
p<0.05, ** p<0.01 (n=9).
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with the clinical stage of the patients, their mutational status,

or the expression of CD38 and CD49d on leukemic cells

(Supplementary Figure 3).
SPHK inhibitors reduce the upregulation of
BCL-XL and MCL-1 and the activation of
CLL cells induced by activated T cells

Given that aCD3 cultures favored venetoclax resistance by the

upregulation of BCL-XL and MCL-1 in CLL cells (11, 12), we

wondered whether SPHK inhibitors are able to impair the

upregulation of these proteins. To this aim, PBMC from CLL

patients were cultured with or without aCD3 in the presence of

DMSO, SKI-II and opaganib for 48 h and BCL-XL and MCL-1

expression was evaluated by western blot in purified viable CLL

cells. We confirmed that CLL cells in aCD3 cultures expressed high

levels of BCL-XL and MCL-1 (Figure 2B). As it is shown in

Figure 2C both SPHK inhibitors reduced the upregulation of

BCL-XL on malignant cells induced by activated T cells while

MCL-1 expression was only reduced by SKI-II under these

culture conditions. The results obtained with a representative CLL

patient are shown in Figure 2D. We also confirmed that CLL cells in

aCD3 cultures became activated (11, 12, 27), and favored

the upregulation of CD86, PD-1 and PD1-L on CLL cells

(Figure 2E) which was impaired by SKI-II and opaganib

(Figure 2F). Non-normalized data of Figures 2C and F are shown

in Supplementary Figure 4.
SPHK inhibitors slightly reduce CD4+ and
CD8+ T cell activation without affecting
their survival

Since the activation of T lymphocytes favors the generation of

CLL cells that are less sensitive to venetoclax, the strong reduction

in venetoclax resistance due to SPHK inhibitors (Figure 2A) might

involve an effect on T cell activation and/or survival. To test this
Frontiers in Oncology 05
hypothesis, PBMC from CLL patients were incubated with or

without aCD3 in the presence of DMSO, SKI-II or opaganib for

72 h and the survival of CD4+ and CD8+ T cells was evaluated by

flow cytometry. As it is shown in Figure 3A SPHK inhibitors did not

significantly affect the survival of CD4+ and CD8+ T lymphocytes at

the times evaluated. On the other hand, we confirmed that both

CD4+ and CD8+ lymphocytes were activated upon CD3

crosslinking since they upregulated the activation marker CD69

and increased the percentage of CD69+ cells at 24 h (Figure 3B).

SPHK inhibitors did not modify the expression of CD69 on CD4+

cells, while SKI-II only slightly reduced the level of CD69 expression

on CD8+ cells (Figure 3B). When the expression of CD40L was

evaluated, both SPHK inhibitors only slightly reduced the

expression of CD40L induced on CD4+ cells upon CD3

crosslinking (Figure 3C). Non-normalized data of Figures 3B, C

are shown in Supplementary Figure 5.
SPHK inhibitors induce the cell death of
venetoclax-resistant cells

Finally, given that venetoclax resistant cells express high levels

of SPHK2 (Figure 1A) we aimed to determine whether SPHK

inhibitors can affect the survival of already venetoclax resistant

cells. To this aim, PBMC from CLL patients were cultured as

mentioned above, alone (control cultures) or with aCD3 for 72 h

(aCD3 cultures) in the presence of DMSO or venetoclax during the

last 24 h. After that, cells from control cultures with DMSO, aCD3

+DMSO and aCD3+VEN were washed and cultured again with

DMSO, SKI-II or opaganib for another 96 h, combined with DMSO

or venetoclax during the last 24 h of culture as detailed in Figure 4A.

Because most of CLL cells die in control cultures with venetoclax

(Figure 4B), this condition was not assessed.

As expected, CLL cells that came from control cultures rapidly

died in response to venetoclax and were not significantly affected by

the presence of SPHK inhibitors (Figure 4C). Similarly, SPHK

inhibitors alone did not affect the survival of CLL cells that came

from aCD3+DMSO cultures but promoted the cell death induced
frontiersin.org
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by venetoclax (Figure 4D). Of note, when venetoclax resistant CLL

cells that came from aCD3+venetoclax cultures were evaluated we

found that, despite the aggressive phenotype acquired under this

culture condition (11), they died in response to opaganib alone

showing a 45% of cell death (Figure 4E). Moreover, even though

64% of already venetoclax resistant cells were able to survive to a
Frontiers in Oncology 06
second drug exposure, 50% of these cells died due to the presence of

venetoclax in combination with SKI-II and 75% in combination

with opaganib, showing that SPHK inhibitors were able to re-

sensitize resistant CLL cells to a second venetoclax treatment

(Figure 4E). Non-normalized data of Figures 4C–E are shown in

Supplementary Figure 6.
A

B

C

FIGURE 3

SPHK inhibitors slightly reduce CD4+ and CD8+ T cell activation without affecting their survival. PBMC from CLL patients (4x106 cells/ml) were
cultured in complete medium with aCD3 or the isotype control in presence or absence of SKI-II 15 µM and opaganib 15 µM for 72 h. (A) CD4+ and
CD8+ cell survival was evaluated by flow cytometry as detailed in Supplementary Methods at 24 and 72 h. The figure shows the mean ± SEM of
CD4+ (left panel) and CD8+ (right panel) cell survival in each condition. Statistical analysis to compare the survival of the cells with or without SPHK
inhibitors was performed using Friedman test (n=7). (B) The expression of CD69 on CD4+ (n=6) and CD8+ cells (n=8) was evaluated by flow
cytometry at 24 h as detailed in Supplementary Methods. Left panel: the figures show the percentage of CD69+ CD4+ and CD69+ CD8+ cells in
control and aCD3 cultures, and in aCD3 cultures with SKI-II and opaganib relative to aCD3 cultures without SPHK inhibitors. Statistical analysis was
performed using Wilcoxon test and Wilcoxon matched-pairs signed rank test, * p<0.05. Right panel: the figures show the mean ± SEM of CD69
expression on CD4+ and CD69+ CD8+ cells in control and aCD3 cultures, and in aCD3 cultures with SKI-II and opaganib relative to aCD3 cultures
without SPHK inhibitors. Statistical analysis was performed using Wilcoxon test and Wilcoxon matched-pairs signed rank test, * p<0.05. (C) The
expression of CD40L on CD4+ cells was evaluated by flow cytometry at 24 h as detailed in Supplementary Methods. The figure shows the mean ±
SEM of the percentage of CD40L+ CD4+ cells and the expression of CD40L on CD4+ cells in control and aCD3 cultures and in aCD3 cultures with
SKI-II and opaganib relative to aCD3 cultures without SPHK inhibitors at 24 h. Statistical analysis was performed using Wilcoxon Signed Rank Test
and Wilcoxon matched-pairs signed rank test, * p<0.05, ** p<0.01 (n=8). NS stands for Not Statistically Significant.
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Discussion

The present study seeks to address the role of SPHK inhibitors

in the context of venetoclax resistance induced in CLL cells by

autologous activated T lymphocytes. Within lymphoid tissues and

particularly in lymph nodes, CLL cells obtain a distinctly activated

gene signature in comparison with the peripheral blood due to the

array of signals from the tumor microenvironment that favor not

only their activation, but also their survival and proliferation (28,

29). T cells were shown to be an important source of the stimuli that

CLL cells receive within lymph nodes (30). In line with this, we here

confirmed that in vitro activation of autologous T cells induces the

activation of CLL cells and the emergence of venetoclax resistance
Frontiers in Oncology 07
(11, 12, 27). To determine whether SHPK inhibitors can reduce the

generation of venetoclax resistance in our in vitro system, we

employed SKI-II, which inhibits both isoforms of SHPK, and

opaganib, a SPHK2 inhibitor that is currently in Phase 2 clinical

testing in patients having cholangiocarcinoma (NCT03377179) or

prostate cancer (NCT04207255). The fact that both inhibitors

reduced the generation of venetoclax-resistant CLL cells induced

by autologous activated T lymphocytes suggests that the inhibition

of SHPK2 may be involved in this process.

In an attempt to understand how SPHK inhibitors reduce the

generation of venetoclax resistance in our in vitro system, we

evaluated the expression of BCL-XL and MCL-1 in CLL cells,

which are not targeted by venetoclax. Given that activated T cells
A

B

D

E

C

FIGURE 4

SPHK inhibitors re-sensitize resistant CLL cells to a second venetoclax treatment. (A) Schematic diagram of the culture protocol. (B) PBMC from CLL
patients (4x106 cells/ml) were cultured in complete medium with aCD3 or the isotype control for 72 h in the presence of DMSO or venetoclax (Ven)
during the last 24 h of culture. The figure shows the mean ± SEM of CD19+ cell survival in each condition. PBMC from control cultures (C), aCD3
cultures (D) and aCD3+VEN cultures (E) were washed and cultured with DMSO, SKI-II 15 µM or opaganib 15 µM for 96 h combined with DMSO or
venetoclax (Ven) during the last 24 h of culture. Statistical analysis was performed using One sample t test. **** p< 0.0001 (n=5) *** p< 0.001 ** p<
0.01 *p< 0.05 (n=5). RM one-way ANOVA, followed by Holm-Sidak’s multiple comparisons test, # p< 0.05 ##p< 0.01 (n= 5).
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induced the upregulation of these molecules in CLL cells (11, 12),

we hypothesized that SPHK inhibitors would impair their

expression. When the upregulation of BCL-XL induced in CLL

cells by autologous activated T cells was evaluated, we found that

both SPHK inhibitors reduced it, suggesting that SPHK2 may

participate in this process. On the other hand, when MCL-1 was

evaluated, we found that its upregulation induced by activated T

cells was not consistently affected by opaganib and only reduced in a

40% by the presence of SKI-II, suggesting that the activation of

SPHK1 might be involved, at least in part, in the upregulation of

MCL-1 in CLL cells. The role of SPHK1 and 2 in MCL-1 expression

on malignant cells seems to differ depending on the cell type. Thus,

inhibition of SPHK1 in human acute myeloid leukemia cells, but

not the inhibition of SPHK2, induces MCL-1 degradation (31).

Similarly, SPHK1 inhibition reduce BCR/ABL-induced

upregulation of MCL-1 in chronic myeloid leukemia cells (32).

On the contrary, in large granular lymphocyte leukemia (33) or

multiple myeloma (34) SPHK2 inhibition downregulates MCL-

1 expression.

Based on our results, it seems that the reduction in venetoclax

resistance exerted by SKI-II and opaganib might principally rely on

the impairment of BCL-XL upregulation. The role of MCL-1 and

BCL-XL in the resistance to venetoclax is still a matter of debate.

While Liu et al. reported that the increase in MCL-1 expression is

one important mechanisms for venetoclax resistance (35), others

found that BCL-XL is a major regulator of this process in CLL (9,

36). In line with our result, Haselager et al. demonstrated that there

is a hierarchy of BCL-2 family members in CLL cells under the

pressure of venetoclax, in which BCL-XL is dominant over MCL-1

in CLL venetoclax resistance when both are present (9, 36).

Regarding CLL activation induced by activated T cells, the fact

that both SPHK inhibitors similarly reduced the upregulation of the

activation markers CD86, PD-1 and PDL1 induced by the presence

of activated T lymphocytes, suggests that SPHK2 might participate

in the upregulation of these molecules. However, since in our in

vitro assay, PBMC from CLL patients were cultured on aCD3 to

induce T cell activation and the presence of activated T lymphocytes

favor the activation of the leukemic clone, the reduced CLL

activation that SKI-II and opaganib induced in our system, may

involve an effect on the T cell compartment. When we evaluated the

effect of SPHK inhibitors on the survival and activation of CD4+

and CD8+ T cells from CLL patients, we found that SKI-II and

opaganib slightly reduce T cell activation, without affecting their

survival. Given that in murine T cells SPHK inhibition and/or

ablation improves T cell mediated tumor control against murine

melanoma and increases the secretion of an array of cytokines in

response to stimulation, further experiments are warranted to

evaluate whether this is also the case in T cells of CLL patients

(37–39). In summary, the reduction in CLL activation exerted by

SPHK inhibitors in our system may involve a direct effect on CLL

cells and indirect effects on other subpopulations present in PBMC

cultures, including CD4+ and CD8+ T cells.

We here found that SPHK2 expression was clearly enhanced by

the presence of activated T cells of the same patient and the

presence of venetoclax selects resistant cells with high levels of

SPHK2. This observation encouraged us to test whether SPHK2
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inhibition favor the cell death of these already resistant cells, so we

first generated venetoclax resistant cells and then cultured them

with SPHK inhibitors in combination with venetoclax. Of note,

despite the aggressive phenotype of venetoclax-resistant cells (11)

these cells die when were cultured again with a second venetoclax

treatment in combination with SKI-II and opaganib (Figure 4E).

We are aware that our observations are limited to an in vitro

venetoclax resistant assay. However, when we analyzed a public

data set of CLL cells from 7 patients with persistent MRD after 1

year on venetoclax-based therapy (RNA-Seq GSE192685 (40)),

we found that 5 out of 7 CLL samples showed higher SPHK2

expression at progression on venetoclax therapy (SC2) compared to

the values prior to venetoclax treatment (SC1) (Supplementary 7). It

remains to be determined whether co-treatment with SPHK

inhibitors could re-sensitize these in vivo venetoclax resistant

CLL cells.

Despite the efficacy of venetoclax based regimens, minimal

residual disease recrudescence and progressive disease are

common with extended follow-up (41). The failure of therapeutic

regimens to eradicate malignant cells often results from the

outgrowth of minor subclones with more dangerous and

aggressive phenotype. In line with this, it was already reported

that an intraclonal complexity exists in CLL (42). Thus, the

leukemic clone contains a spectrum of cells from the “proliferative

fraction” to the “quiescent fraction”. While the first one is enriched

in recently born/divided cells mostly present in lymphoid tissues

that can be also found in peripheral blood as a small proportion of

recently emigrant CLL cells, the “quiescent fraction” enriched in

older, less vital cells, are mostly present in peripheral blood and need

to immigrate to lymphoid tissue or die (42). Two independent

groups recently demonstrated that in treatment naïve patients the

small proportion of recently emigrant CLL cells overexpress anti-

apoptotic proteins including MCL-1 and BCL-XL (9, 10). Of note,

this subpopulation survives and increases upon in vivo venetoclax

treatment of the patients showing that resistant CLL cells already

exist, even in untreated CLL patients and these cells persist during

proapoptotic treatment with venetoclax (10). Further studies are

warranted in order to determine whether in treatment naïve patients

the small proportion of recently emigrant CLL cells that overexpress

MCL-1 and BCL-XL also express high levels of SPHK2.

As we already mentioned above, the fact that SKI-II and

opaganib similarly diminish the generation of venetoclax-

resistance and re-sensitize already venetoclax-resistant CLL cells

to the drug suggest that the inhibition of SHPK2 is involved in this

process. However, while opaganib is a very well-known SPHK2

inhibitor that reduces sphingosine-1 phosphate levels, it may also

inhibit other enzymes in the sphingolipid metabolism. Thus, by

inhibiting dihydroceramide desaturase opaganib increases

dihydroceramides, and by targeting glucosylceramide synthase

reduces hexosylceramides (22). Since glucosylceramide synthase

inhibitors were reported to sensitize CLL cells to chlorambucil

and fludarabine induced cell death (43), further experiments are

needed to confirm whether SKI-II and opaganib effects on CLL cells

are meditated by the inhibition of SHPK2 and/or other molecule(s).

In conclusion, our results highlight the therapeutic potential of

SPHK inhibitors in combination with venetoclax as a promising
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treatment option for the patients. Undoubtedly, comparative

clinical studies are needed to clearly demonstrate whether SPHK

inhibitors are good partners of venetoclax in CLL.
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