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Glioblastoma (GBM) is the most common and lethal primary brain malignancy

and is characterized by a high degree of intra and intertumor cellular

heterogeneity, a starkly immunosuppressive tumor microenvironment, and

nearly universal recurrence. The application of various genomic approaches

has allowed us to understand the core molecular signatures, transcriptional

states, and DNA methylation patterns that define GBM. Histone posttranslational

modifications (PTMs) have been shown to influence oncogenesis in a variety of

malignancies, including other forms of glioma, yet comparatively less effort has

been placed on understanding the transcriptional impact and regulation of

histone PTMs in the context of GBM. In this review we discuss work that

investigates the role of histone acetylating and methylating enzymes in GBM

pathogenesis, as well as the effects of targeted inhibition of these enzymes. We

then synthesize broader genomic and epigenomic approaches to understand the

influence of histone PTMs on chromatin architecture and transcription within

GBM and finally, explore the limitations of current research in this field before

proposing future directions for this area of research.
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1 Introduction

Glioblastoma (GBM) is the most common primary malignant brain tumor of the central

nervous system with discouraging patient survival despite extensive research and clinical

efforts to better understand and treat this malignancy. The median survival of 17-20 months

in newly diagnosed GBM patients treated with standard of care has changed only modestly

since the advent of the Stupp protocol published nearly two decades ago (1, 2). Although
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numerous clinical trials have been undertaken to improve outcomes

in this disease, the standard of care for newly diagnosed disease—a

combination of maximally safe resection, radiation therapy, and

chemotherapy—has remained relatively unchanged for many years

(2–4). Challenges to clinical progress include an incomplete

understanding of cancer biology, a heterogeneous genetic and

ce l lu lar environment , an immunosuppress ive tumor

microenvironment, and a delicate and difficult to access host organ

system (5, 6). Extensive efforts have led to better characterization of

the genetic and transcriptomic alterations in this cancer, but our

understanding of the epigenetic regulation of this disease remains

incomplete. Posttranslational modifications of histones play an

important role in influencing transcription. Histone post-

translational modifications (PTMs) have proven important in other

forms of glioma, such as diffuse midline glioma, which commonly

contain mutations in H3-K27M leading to global reduction in H3K27

methylation and increased PRC2-mediated repression of

neurodevelopmental genes, potentially leading to lineage restriction

and a preponderance of oligodendrocytic precursor like cells (7, 8).

Similarly, the presence of IDH mutations in lower grade astrocytoma

impacts the function of DNA methyltransferases and histone

methyltransferases, leading to alterations in levels of activating and

repressive histone post-translational modifications, as reviewed

elsewhere (9). Methylation of the O6-Methylguanine-DNA

methyltransferase (MGMT) promoter, which is associated with

improved chemotherapy response, is a widely recognized epigenetic

determinant in GBM, yet beyond DNA methylation, there is now a

greater appreciation for the complex role that histone post-

translational modifying enzymes play in regulating GBM

pathophysiology (10, 11). This diverse group of enzymes carry out

their effects via the modification of histone and non-histone

substrates to control the ability of GBM cells to proliferate, invade

surrounding tissue, andmodulate the host immune response (12–14).

Epigenetics refers to heritable phenotypic changes that are

independent of changes to underlying DNA sequences. These

changes typically involve alterations in chromatin, a complex of the

double-stranded DNA and an octamer containing two copies of the

histone proteins H2A, H2B, H3, and H4. There are numerous PTMs

that can be applied to the N-terminal tails and the core globular

domains of these histone proteins, including, among other

modifications, acetylation, methylation, and phosphorylation.

Histone tail PTMs have varying impacts on the histone protein–

DNA interaction, creating regions of transcriptionally-accessible

chromatin (euchromatin) and transcriptionally-inaccessible

chromatin (heterochromatin), which ultimately regulate functions

such as transcription, DNA repair, and recombination. Importantly,

recent efforts have suggested the ability of heterochromatin domains

to persist through cellular division, thus representing a heritable

aspect of information independent of DNA sequence identity (15,

16). Individual histone PTMs are associated with different states of

transcriptional activation and repression and play a significant role in

the broader landscape of the transcriptional machinery of a cell.

Given the importance of transcriptional regulation, there are a variety

of enzymes involved in regulating the modification of histone tails,

including histone acetyltransferases (HATs/KATs), deacetylases

(HDACs), methyltransferases (HMTs/KMTs), demethylases
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(HDMs/KDMs), ubiquitinases (ubiquitin ligases)/deubiquitinases,

and protein kinases/phosphatases, which dynamically regulate the

histone PTM landscape. In addition to their role in histone

modification, many of these enzymes can modify non-histone

substrates, including p53 demethylation via KDM1A, PRMT5-

mediated arginine methylation of components of the

ribonucleoprotein-assembling Survival of Motor Neurons (SMN)

complex, and EZH2-mediated methylation and activation of

STAT3 (17–19). Due to the diversity and complexity of these

enzyme families, it has become increasingly important to

understand their respective functions in the context of normal

physiology and the impact of their dysregulation in human disease.

Histone PTMs at the global and local levels are frequently

dysregulated in cancer, and the enzymes involved in histone

modification have therefore become viable therapeutic targets.

Large-scale genomic sequencing efforts have illuminated recurrent

mutations of histone modifying genes in many distinct forms of

cancer (20). These include MLL, EP300, and CREBBP in small cell

lung cancer, EHMT1 and KDM6A in medulloblastoma, and EZH2 in

diffuse large B cell lymphoma and follicular lymphoma (21–23). In

addition to somatic mutations, histone modifying genes are often

found to be over- or underexpressed in the context of cancer, such as

EZH2 overexpression in prostate, bladder, ovarian, and breast cancer,

MLL1 overexpression in colon cancer, and SIRT1 overexpression in

prostate and colon cancer and downregulation in breast cancer and

hepatic cell carcinoma (24–29). Although much of the research in

GBM epigenetics and epigenomics has focused on DNAmethylation,

parallel research has shown alterations in the expression of histone

modifying enzymes and the landscape of histone PTMs in primary

GBM tumors (5, 30). Moreover, the well-established presence of

GBM stem cells (GSCs) within primary tumors, along with the

substantial transcriptional heterogeneity and plasticity found within

GBM, raises a number of questions regarding whether histone PTMs

and chromatin architecture play a role in regulating transcription and

degree of differentiation, as exemplified by the role of specific histone

demethylases in treatment escape in GSCs exposed to prolonged

receptor tyrosine kinase inhibition (6, 31–36). In this review, we will

discuss the current landscape of research into the role of histone

modifying enzymes in GBM pathophysiology, highlighting research

into histone tail acetylation and methylation enzymes, broader

genomic characterizations of the histone landscape, and identifying

the challenges and opportunities within this field of research.
2 Histone acetylation

The addition of acetyl groups to histone N-terminal domain

lysine residues is catalyzed by the action of lysine acetyltransferases/

histone acetyltransferases (KATs/HATs) whereas the removal of

acetyl groups is catalyzed by histone deacetylases (HDACs). The

HAT family of enzymes can be divided into subgroups based on

structural and sequence homology — the Gcn5-related N-acetyl

transferase (GNAT) family, the MOZ, Ybf2-Sas3, Sas2, and Tip60

(MYST) family, and the CBP/p300 family (37). These subgroups

vary in specificity and roles outside of histone acetylation, such as

the catalysis of p53 acetylation mediated by CBP/p300 and GCN5/
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PCAF or introduction of histone acetylation to regulate the binding

of 53BP1 and influence DNA damage repair pathway selection (38,

39). HDACs are divided into four classes (Classes I–IV) based on

similarity to yeast orthologs: Class I, comprised of HDAC1,

HDAC2, HDAC3, and HDAC8; Class IIA, comprised of HDAC4,

HDAC5, HDAC7, and HDAC9; Class IIB, comprised of HDAC6

and HDAC10; Class III, comprised of the Sirtuins 1-7; and Class IV,

comprised solely of HDAC11 (40, 41). Of these, Classes I, II, and IV

are Zn2+-dependent, whereas Class III/Sirtuins are NAD+-

dependent. Like HATs, the enzymatic role of HDACs is not

confined to histone deacetylation, with high levels of substrate

promiscuity in the Sirtuin class of enzymes (40). Histone tail

acetylation weakens the DNA-histone interaction by neutralizing

the basic charge of the lysine residue, leading to decreased

nucleosome occupancy and increased accessibility for RNA

polymerase II binding and is often enriched at enhancers and

promoters and correlated with transcriptional activity (42, 43).

While this supports the view of HATs being associated with

active genes and HDACs associated with inactive genes, genome-

wide characterizations of HAT and HDAC activity reveal a more

dynamic and nuanced picture, with HDACs serving roles in

regulating active transcription as well as potentiating genes for

future transcription (44). Given their functional role in both

transcriptional regulation and modifications of non-histone

substrates, HATs and HDACs have been implicated in many

different disease states, including inflammatory diseases due to

HAT-mediated post-translational modification of NF-kB, HAT-

mediated acetylation of tau and concomitant increased expression

of phosphorylated tau in Alzheimer’s disease, as well as

overexpression, underexpression, and/or mutation of both HATs

and HDACs in many different forms of cancer, as reviewed

elsewhere (20, 40, 45–49). As diametrically opposed regulators of

histone acetylation, the diverse families of HATs and HDACs play

an important role in influencing the interaction between DNA and

histones and consequently are significant actors in disease

pathophysiology when this process becomes dysregulated.
2.1 Histone deacetylases and histone
acetyltransferases in GBM

Like many other forms of cancer, the expression of HATs and

HDACs is altered in GBM. Though comparatively less work has

been done on the role of lysine acetyltransferases in GBM,

expression of the lysine acetyltransferase KAT6A is upregulated

in GBM, and its acetyltransferase activity promotes tumorigenesis

through the regulation of PIK3CA expression and PI3K/AKT

pathway activation (50). Early gene profiling experiments into the

expression of HDACs and Sirtuins in GBM found significant

decreases in HDAC5 and HDAC11 expression and significant

increases in HDAC6, HDAC7, and HDAC10 expression when

compared to normal brain tissue (51). Further investigation of

individual HDACs has begun to shed light on the role and function

they play in the pathophysiology of GBM, and a catalog of this

information can be found in Table 1. HDAC1 expression is elevated

in GBM tumor tissue as compared to normal surrounding brain
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tissue, and early gene expression profiling experiments in GBM

revealed TCGA subtype exclusivity in the activity of histone

acetyltransferase and deacetylase pathways, with proneural

tumors having increased activation of HDAC1 and mesenchymal

tumors having increased activation of HDAC4 and SIRT1 pathways

(51–53, 55). Further research into the functional consequences of

HDAC1 knockdown in GBM cell lines revealed increased apoptosis

and decreased cellular migration upon HDAC1 knockdown in vitro,

alongside concomitant decreased levels of active AKT and ERK,

highlighting a potential relationship between HDAC1 and the

PI3K/AKT and Ras/ERK signaling pathways in GBM (53, 54).

Additionally, selective inhibition of HDAC1 and HDAC3,

enzymes whose expression in tumors is associated with significant

decreases in overall survival of human GBM patients, leads to

increased temozolomide (TMZ)-induced cell death in vitro

through the hyperacetylation of the NF-kB subunit p65 and

inhibition of its interaction with NF-kB coactivators KAT2B and

KAT3B and increased interaction with ING4, a tumor suppressor

(51, 56). In addition to its correlated pathway activation in

mesenchymal tumors, HDAC4 overexpression led to increased

cell proliferation, decreased reactive oxygen species (ROS)

production, and increased invasiveness of U251 cells in vitro, and

HDAC4 knockdown in U87 cells in vitro induced the expression of

p21WAF1/Cip1, a cyclin-dependent kinase inhibitor and tumor

suppressor involved in cell cycle regulation (55, 57, 58).

Moreover, HDAC4 knockdown in U87 and U251 GBM cell lines

led to radiation-induced senescence mediated by p21WAF1/CIP1 in

addition to reducing neurosphere formation and the frequency of

CD133+ and Nestin+ (stem) cells (59). A multivariate retrospective

immunohistochemical analysis of GBM tumor tissue for HDAC4

and HDAC6 expression found that at the mean of the covariates,

high expression of either or both HDACs is associated with

decreased overall survival, conflicting with the findings of the

cohort in a study by Dali-Youcef et al. (51, 59) Alongside these

findings, HDAC6 knockdown was found to increase apoptotic cell

death and autophagy in U251 GBM cells in vitro, with another

investigation showing impaired EGFR pathway activation in

HDAC6 knockdown U87 cells (60). A similar pathway

dependency was found following knockdown of HDAC9, which

led to reduced proliferation of U87 cells in vitro, potentially through

downregulation of the EGFR/AKT/ERK pathway (61). Within the

Sirtuin family of deacetylases, SIRT1 has been found to be

associated with tumorigenesis and stemness in NSCs and GSCs,

respectively, with selective inhibition of SIRT1 leading to increased

p53-dependent transcriptional activity, acetylation, and apoptosis

in NSCs but not in U87 cells (62). Additionally, SIRT1 expression

decreases during differentiation of GSCs, along with their

susceptibility to apoptosis via SIRT1 inhibition (62). There is

conflicting evidence regarding the role and expression of SIRT2

in GBM. Early proteomic-based analysis found decreased SIRT2

expression in GBM tissue samples, and overexpression in GBM cell

lines suppressed cell growth and induced changes in microtubule

localization in one of the cell lines studied (63). Treatment with the

polyphenol resveratrol led to SIRT2-mediated decreases in GSC

proliferation. However, SIRT2 was also found to be expressed in

GSCs but not NSCs (64). SIRT3, which is localized in mitochondria,
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is overexpressed in GSCs and plays an important role in GSC

stemness and survival through its direct interaction with TRAP1,

which together contribute to regulation of ROS primarily through

the deacetylation of SOD2 (65). SIRT6 overexpression in T98G cells

led to apoptosis and downregulation of the JAK2/STAT3 signaling

pathway in vitro, though its influence on oncogenesis is cell-context

dependent, and evidence regarding the relative expression of

SIRT6 in GBM is inconsistent (51, 66–68). While the role and

dysregulation of HATs in GBM still requires targeted investigation,

the altered expression of histone deacetylases in GBM has been

found to have important functional consequences on stemness,

tumorgenicity, and cell signaling, and thus these enzymes represent

potential targets for treatment.
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2.2 Histone deacetylase inhibition in GBM

In addition to targeted approaches assessing the role of histone

acetylation-modifying enzymes in GBM, there has been increasing

interest in the use of existing histone deacetylase inhibitors to treat

GBM. A catalog of the inhibitors presented here can be found in

Table 2. In addition to its anticonvulsant properties, valproic acid

inhibits the activity of class I and II HDACs and has been

demonstrated to augment radiation therapy in anti-cancer

treatment (69, 80, 81). GBM-specific investigations have shown

valproic acid treatment in vitro causes increased p21 WAF1/Cip1

expression in multiple cell lines and sensitization to TMZ treatment

in GBM cell lines but not in primary GSC cultures derived from
TABLE 1 The function of histone acetyltransferases & histone deacetylases in GBM.

Enzyme Associated role in GBM Cell lines/model
system used References

KAT6A Promotion of H3K23 acetylation through interaction with TRIM24, leading to PI3K/AKT pathway upregulation U87, LN229 (50)

HDAC1
Elevated expression in GBM; increased apoptosis, decreased cellular migration, and decreased MAPK signaling

upon knockdown in vitro

Patient-derived cell
cultures (52); U251,
T98G (53); U87 (54)

(51–55)

HDAC3 Overexpression associated with decreased overall survival; inhibition leads to increased TMZ-induced cell death (51, 56)

HDAC4
Overexpression associated with increased cell proliferation/invasiveness and decreased ROS production,

knockdown associated with p21WAF/Cip1-mediated radiation-induced senescence and decreased stem marker
expression

U87, U251 (55, 57–59)

HDAC6
Conflicting associations between expression in tumors and overall survival, knockdown impairs EGFR pathway

and increases apoptosis and autophagy in vitro
U87, U251 (51, 59, 60)

HDAC9 Knockdown leads to reduced proliferation and downregulation of EGFR signaling pathway U87 (61)

SIRT1
Selective inhibition leads to apoptosis in engineered NSCs and GSCs but not U87 cells, and reduced expression

of stem markers in GSCs
U87, engineered
NSCs, GSCs

(62)

SIRT1
Conflicting evidence – research on primary tumor tissue showed decreased protein expression and that

overexpression in GBM cell lines suppressed cell growth, while contrasting research showed SIRT2 essentiality
in mediating decreased cellular proliferation in GSCs upon treatment with resveratrol

Glioma cell lines
(unspecified), GSCs,

NSCs

(63, 64)

SIRT3
Overexpressed in GSCs, interacts with TRAP1 to activate SOD2 and prevent ROS overproduction. Knockdown

leads to increased ROS production and loss of stemness
GSCs (65)

SIRT6
Overexpression leads to apoptosis and JAK-STAT pathway downregulation in vitro, conflicting evidence about

expression in GBM
T98G (51, 66–68)
A summary of the functions of individual histone deacetylase and acetyltransferase enzymes in GBM pathophysiology, and the corresponding model system(s) used and reference to the original
publication(s).
TABLE 2 The effect of select HDAC inhibitors in GBM pathophysiology.

Treatment/Drug Effect Cell model(s) used References

Valproic acid In vitro radiosensitization of GBM cells, increased p21 expression in GBM model cells
but not patient-derived cell lines

U87, T98G, TP365MG, U118MG,
U251MG, U373MG, patient

derived GSC lines

(69–71)

Suberanilohydroxamic
acid (SAHA,
vorinostat)

In vitro radiosensitization (compounded with concomitant Bcl-2 inhibition), leads to
cell cycle arrest in G0/G1, shifts transcriptional phenotype away from proneural and

classical transcriptional signatures

U87, GSCs (72–75)

Trichostatin A In vitro radiosensitization, shifts transcriptional phenotype away from proneural and
classical transcriptional signatures, upregulates DIRAS-1 expression

U87, U373, U251, Hs683 (75–77)

Panobinostat In vitro radiosensitization, apoptosis and necroptosis in neurospheres with
concomitant KLF9 overexpression, metabolic shift to oxidative phosphorylation

GSCs/neurospheres, NCH644,
NCH421k, U87

(69, 78, 79)
A summary of the impact of select HDAC inhibitors on GBM pathophysiology, and the corresponding model system(s) used and reference to the original publication(s).
frontiersin.org

https://doi.org/10.3389/fonc.2023.1144184
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


McCornack et al. 10.3389/fonc.2023.1144184
human tumors (70, 71). Vorinostat (suberoylanilide hydroxamic

acid, SAHA), a selective inhibitor of HDACs 1, 2, 3, and 6, has been

used to treat certain types of cutaneous T cell lymphoma and has

demonstrated similar ability to radiosensitize patient-derived GBM

cell cultures in vitro, with this effect acting synergistically with a Bcl-

2 pathway inhibitor, obatoclax (72–75). U87 cells treated with

vorinostat exhibited cell cycle arrest in G0/G1 and reduced cell

motility, whereas other studies have reported conflicting results for

these phenotypes in patient-derived GBM cell lines (75, 76). In

addition to these phenotypic changes, treatment with vorinostat

was found to significantly alter the transcriptomic landscape of

patient-derived GBM cell lines, with gene expression profiling

revealing a shift away from TCGA proneural and classical

molecular signatures towards a neural signature, though the

existence of this particular molecular subtype has been questioned

in more recent work (76, 82, 83). Trichostatin A, a class I and II

HDAC inhibitor, has shown a similar ability to radiosensitize U87

and U373 cells in vitro and triggers similar transcriptional shifts

away from TCGA proneural and classical expressional signatures in

patient-derived cell lines in vitro (76, 77). Trichostatin A treatment

of U251 and Hs683 cell lines in vitro has also been shown to

upregulate mRNA expression of DIRAS-1, a small Ras GTPase and

potential tumor suppressor in various solid tumors (84).

Panobinostat, a nonselective HDAC inhibitor that has been

explored as a potential therapeutic agent in a variety of cancers,

has been shown to impact GBM cells in a manner similar to other

HDAC inhibitors. Panobinostat radiosensitizes patient-derived

GBM cell lines in vitro, with a greater effect on cell lines with

MGMT promoter methylation (73). Panobinostat treatment in

KLF9-overexpressing primary GBM neurospheres led to

induction of apoptosis and necroptosis pathways in vitro (78).

While the mechanism behind reduced cellular viability with

treatment is undoubtedly multifactorial, in vitro and in vivo work

by Nguyen et al. established a partial role for panobinostat-

mediated disruption of c-Myc and subsequent metabolic shift to

oxidative phosphorylation (79). Although HDACs represent a wide

variety of enzymes with diverse downstream effectors, selective and

broad inhibition of their function results in varying anti-tumor

effects in GBM, including radiosensitization, sensitization to TMZ,

and induction of cell death pathways. While the current preclinical

evidence regarding HDAC inhibition in GBM is encouraging,

clinical trials with the current generation of HDAC inhibitors

have shown a mixture of outcomes with modest benefit in some

trials and disappointing results in others due to unanticipated

toxicity or failure to fill study arms (85). With newer therapeutic

agents continually being generated, HDAC inhibition will

undoubtedly continue to serve as a salient target for clinical trials

for GBM (86–89).
3 Histone methylation

Histone tails are methylated through the action of histone

methyltransferases, which catalyze the donation of methyl groups

from S-adenosylmethionine to basic residues of the histone tail,

whereas the removal of this modification is catalyzed by histone
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demethylases. Histone methylation most commonly occurs on

lysine and arginine residues; lysine can be mono-, di-, or

trimethylated, and arginine can be mono- or dimethylated, with

dimethylation occurring either symmetrically or asymmetrically

(90). Histone methyltransferases can be divided into three groups:

SET-domain proteins and DOT1-like proteins (KMTs) which

methylate lysine, and arginine N-methyltransferase proteins

(PRMTs) which methylate arginine. Histone lysine demethylation

is catalyzed by amine oxidase domain-containing proteins and

Jumonji C (JmjC)-domain containing proteins, whereas the

identification of selective arginine demethylases has proved

elusive, with recent evidence suggesting dual lysine/arginine

demethylase activity of certain lysine demethylase enzymes in

vitro (91–93). Despite a few exceptions, these enzymes typically

have higher substrate specificity compared to acetyltransferases,

with specificity for unique methylation locations and degree of

methylation (93–95). Unlike histone acetylation, the addition of

methyl groups to histone tails does not result in charge

neutralization of the target residue, instead altering the

hydrophobicity and hydrogen bonding radius in the case of

methyl-lysine, and thus the binding properties of these sites (96).

Histone lysine methylation has a variety of correlations with

transcriptional regulation and chromatin structure, depending on

the location and degree of methylation. This includes associations of

H3K4me1 with enhancer regions, H3K4me2 and H3K4me3 with

promoter regions and transcription start sites, H3K27me3 with

repressed transcriptional regions, and H3K36me3 in gene bodies of

actively transcribed genes (44, 97, 98). Histone arginine methylation

has been demonstrated to play a similarly important role in

regulating transcription and chromatin architecture. Examples of

this include the association of H3R2 symmetric dimethylation

(H3R2me2s) with euchromatic promoters and H3K4me3

modifications, asymmetric H3R2 dimethylation (H3R2me2a) with

promoter heterochromatinization, H4R3me2s with transcriptional

repression and recruitment of DNMT3A, and CARM1 mediated

methylation of H3R17 and H3R26 with transcriptional activation

(99–103). However, histone methylation is context-dependent, as in

the case of H3K4 methylation, where the plant homeodomain

(PHD)-containing proteins recruited by this modification have

varying functions in transcriptional activation and repression

(96). Moreover, the colocalization of different methylation marks

can lead to unique functions, as in the case of “bivalent” chromatin

domains, such as embryonic stem cell transcription start sites

marked by both H3K4me3 and H3K27me3, with loss of the

repressive or activating mark during differentiation dependent on

expression of the corresponding gene (104).
3.1 Histone demethylases in GBM

Research into the KDM (lysine-specific demethylase) family in

GBM has provided insights into how these enzymes affect

tumorigenicity through their dual role in demethylation of histone

and non-histone substrates, a comprehensive summary of which can

be found in Table 3. KDM1A (LSD1) is a H3K4/H3K9 demethylase

that is overexpressed in GBM, which is consistent with similar
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overexpression in bladder, lung, and colorectal cancer (122). In GBM,

expression in isolated GSCs is inversely correlated with degree of

differentiation (105). Initial research on the function of KDM1A in

GBM focused on the similarities in the catalytic domain between

KDM1A and monoamine oxidases (MAOs), finding that inhibition of

KDM1A with the MAO inhibitor tranylcypromine rendered GBM cell

lines more sensitive to treatment with HDAC inhibitors, but this

synergistic effect was not observed in immortalized human astrocytes

(106). In addition, selective inhibition of KDM1A through small

molecule inhibitors or shRNA has been shown to decrease cellular

proliferation, colony formation, and in vivo tumor progression. In

tandem with these changes, expression of stem cell-associated genes

decreased, and expression of genes involved in the unfolded protein

response pathway increased, partially mediated by increases in

H3K4me2 at associated loci (105, 107). However, the work of

Kozono et al. complicated the conclusion that KDM1A promotes

tumorigenicity. Instead, their findings suggested a dose-dependent

influence of KDM1A on tumorigenicity as partial inhibition was

associated with increased H3K4me3 at the MYC locus, increased

MYC expression, and increased downstream expression of stem cell-

associated genes, whereas complete inhibition led to decreased MYC

expression and consequent cell death (108). Subsequent work described

a mechanism by which GSK3b increases KDM1A stability via

phosphorylation, allowing for downstream increases in USP22-

mediated deubiquitylation and H3K4 demethylation activity of

KDM1A. In turn, increased KDM1A binding to BMP2, CDKN1A,

and GATA6 promoters repressed transcription of these genes, while

increasing the expression of stem cell-related genes (109). Loss of either
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dysregulation of several GBM cellular phenotypes. Knockdown of

KDM2A, a target of the microRNA miR-366 which is

downregulated in GBM, resulted in reduced cellular proliferation,

migration, and invasiveness (110). Alongside similar reductions in

cellular viability, KDM2B knockdown reduced GSC self-renewal and

increased sensitization to chemotherapy treatment with the alkylating

agent lomustine, alongside increased susceptibility to TRAIL-induced

apoptosis (111, 112). In addition to upregulation of mean expression in

primary GBM tumor samples, the H3K9/H3K36 demethylase KDM4A

has been shown to be upregulated in TMZ-resistant GSCs (113).

KDM4A knockdown in GBM cell lines in vitro led to increased

apoptosis and reductions in cellular viability and invasiveness, and

these effects were ameliorated by the suppression of autophagy (114). A

separate investigation suggested a connection between KDM4A and

the mTOR pathway, a negative regulator of autophagy, with KDM4A

overexpression and knockdown leading to increased and decreased

activation of themTOR pathway, respectively (115). Knockdown of the

H3K9/H3K36 demethylase KDM4C led to a reduction in CD133+

GSCs and reduced cellular viability, potentially mediated by a link

between KDM4C and c-Myc/p53, in which KDM4C demethylates p53

and inhibits its roles in transcriptional activation and initiation of

apoptotic pathways (116, 117). KDM5A, a H3K4 demethylase, has

been shown to be markedly elevated in TMZ-resistant GSCs, a finding

that is consistent with similar overexpression seen in drug-resistant

non-small cell lung cancer (123). Exogenous KDM5A overexpression

inhibited TMZ-induced apoptosis in GBM cell lines (113). This finding

was further supported by work showing significant decreases in cellular
TABLE 3 The function of histone demethylases in GBM.

Enzyme Associated role in GBM Cell lines/
model
system
used

References

KDM1A Overexpressed in GBM, particularly in stem-like cells. Constant inhibition decreases proliferation, colony formation,
and tumorgenicity, and sensitizes cells to HDAC inhibitors, while transient inhibition increases stem gene expression.
Stabilized by GSK3b-mediated phosphorylation,

GSCs, U251,
U87, SNB-19,

LN-18

(105–109)

KDM2A Knockdown associated with reduced proliferation, migration, and invasiveness A172, U251,
T98G

(110)

KDM2B Knockdown associated with reductions in cellular viability and self-renewal, increased sensitization to CCNU, and
increased susceptibility to TRAIL-induced apoptosis

Patient-derived
cultures, U87,

T98G

(111, 112)

KDM4A Upregulated in TMZ-resistant GSCs, knockdown results in reduced mTOR pathway activation, reduced invasiveness,
and autophagy-dependent apoptosis

A172, U87MG,
T98G, U251

(113–115)

KDM4C Knockdown leads to reduced cellular viability, KDM4C acts as a p53 demethylase to inhibit initiation of apoptotic
pathways

GSCs, U87,
U251

(116, 117)

KDM5A Upregulated in TMZ-resistant GSCs, overexpression inhibits TMZ-induced apoptosis in GBM cell lines, inhibition in
TMZ-resistant subclones leads to decreased cellular viability

A172, U251,
CAS1, DBTRG,
U87, GSCs

(113, 118)

KDM5B Higher expression in tumor tissue than surrounding brain, expression inversely correlated with overall survival post-
resection

SW1783, U-87,
LN-18, Hs683,
and T98G

(119)

KDM6B Conflicting evidence: Upregulated in TMZ-resistant GSCs, inhibition has been shown to induce apoptosis in both
TMZ-naïve and TMZ-resistant cells. Overexpression has been shown to inhibit neurosphere formation in vitro and in
vivo, and STAT3-mediated repression causes normal neurosphere formation

A172, U251,
DBTRG, GSCs,

NSCs.

(113, 120,
121)
A summary of the functions of individual histone demethylase enzymes in GBM pathophysiology, and the corresponding model system(s) used and reference to the original publication(s).
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viability in TMZ-resistant subclones treated with the selective KDM5A

inhibitor CPI 455 (118). Fellow H3K4 demethylase KDM5B has been

found to have higher expression in GBM tumor tissue than normal

surrounding brain tissue and has an inverse correlation with overall

survival post-resection (119). Expression of H3K27 demethylase

KDM6B is upregulated in TMZ-resistant GSCs, and selective

inhibition of this enzyme via the drug GSK J4 led to reduction of

cell cycle transition to G2 and induction of apoptosis, though these

phenotypes did not differ between TMZ-naïve and TMZ-resistant

populations (113, 120). However, the expression of KDM6B in

human GBM tumors is variable and heterogeneous, and contrasting

research has suggested that overexpression of this enzyme inhibits

neurosphere formation in vitro and tumor formation in vivo and

further that STAT3-mediated repression of KDM6B expression is

essential for neurosphere formation and cellular proliferation (121).

With some exceptions, the function of histone demethylases primarily

acts to promote tumorigenicity, thus serving as a potential therapeutic

target to abrogate proliferative and anti-apoptotic functions in GBM.
3.2 Histone methyltransferases in GBM

Trimethylation of H3K27 is a ubiquitous repressive mark found in

large stretches of heterochromatic DNA and is associated with

transcriptional repression. The introduction of this modification is

catalyzed by Polycomb Repressive Complex 2 (PRC2), a multiprotein

complex that carries out methyltransferase enzymatic function via the

enhancer of zeste homolog 2 (EZH2) subunit (124). Adding complexity

to its regulatory role, EZH2 can methylate non-histone substrates

within the nucleus or the cytosol (125). Aberrant EZH2 expression is a

hallmark of many cancers and elevated expression in the context of

malignancy can be a marker of poor prognosis and advanced disease

(126). EZH2 expression has been shown to be elevated in GBM, and its

expression is similarly correlated with a poorer prognosis (12, 127–

129). Due to the importance of H3K27me3 in transcriptional

regulation and chromatin architecture, extensive efforts have been

made to understand the role of EZH2 in promoting GBM

tumorigenicity. EZH2 has been shown to exert diverse regulatory

roles in GBM, modulating pathways in tumor initiation/self-renewal,

differentiation, cell cycle progression, metabolism, immunogenicity,

and invasiveness. Early work by Suvà et al. showed that EZH2 is

necessary for tumor formation and self-renewal in patient-derived

GSCs, with further research highlighting the importance of an AKT-

mediated interaction between EZH2 and STAT3 in GSC self-renewal

(19, 32, 130–133). There is evidence that EZH2mediates both pro- and

inhibitory differentiation signals. One mode of inhibition of GSC

differentiation occurs through hypermethylation of the BMPR1B

promoter, thought to be mediated by EZH2 recruitment of DNMT1,

allowing for clonal expansion via inhibition of differentiation (134). In

contrast, differentiation is induced via H3K27me3-mediated

suppression of Nanog (131). Investigations using a transgenic high-

grade glioma mouse model demonstrated that FZD8, a G protein-

coupled receptor involved in Wnt signaling, undergoes H3K27me3-

mediated suppression during tumorigenesis and that this could be an

early disruptor of normal differentiation pathways during

gliomagenesis (135). Fitting with this theme, Mortimer et al.
Frontiers in Oncology 07
provided compelling evidence for redistribution of EZH2 binding

sites across the genome following malignant transformation, most

significantly at HOX genes (136). EZH2 inhibition has been shown to

impact cell cycle progression, with inhibition leading to apoptosis and

block of cell cycle progression in a p16, p21, and p27-mediated manner

(12, 137–139). Alterations in metabolic pathways is a hallmark of

cancer, and EZH2 has been shown to upregulate glycolysis via

increased HIF1a expression, a known transcription factor important

for activism of metabolism-related genes. EZH2 promotes the

glycolysis pathway via binding to the promoter of a known HIF1a
repressor EAF2, resulting in H3K27me3-mediated repression (128). A

role for EZH2 in the regulation of fatty acid metabolism has been

suggested by in vitro and in vivo knockdown of EZH2, which correlated

with decreased lipid metabolism and decreased expression of PGC-1a,

FASN, and SREBP-1. Interestingly, TERT appears to be a co-regulator

of EZH2 in this pathway, demonstrating an ability to restrict the repair

of DNA damage via downregulation of phospho-ATM, providing

fitness/adaptation benefits through increased genomic instability (140).

Further adding intrigue to EZH2 modulation of DNA damage repair,

De Vries et al. showed that prolonged EZH2 inhibition in a syngeneic

mouse model leads to enhanced tumor growth after an initial 3 week

period of inhibited growth. This reversion to the pre-inhibited tumor

growth state appears to be due to enhanced DNA damage repair within

tumor cells (141). EZH2 also contributes to the immunosuppressive

microenvironment of GBM by triggering specific cytokine expression,

maintaining expression of interferon-stimulated genes that promote a

M2microglial phenotype in an iNOS and TGF-b2-dependent manner.

Evasion of NK cell immune surveillance occurs via a circular EZH2

encoded protein (EZH2-92aa) that directly binds the promoters of

genes (MICA/B, ULBP) necessary for the expression of NK group 2D

ligands in GSCs, leading to decreased transcription and ultimately

decreased NK cell-mediated tumor cell death (14, 139, 142, 143). The

role of EZH2 in promoting GBM invasiveness via regulation of AXL in

a histone modification-independent manner has been demonstrated in

vitrowith EZH2 knockdown (127). Expanding upon this work, another

group showed that EZH2 inhibitors decrease invasiveness by

downregulating VEGF, matrix metalloproteinases, and cell surface

adhesion markers (E-cadherin and N-cadherin) (139). Several non-

coding RNAs have been shown to be important in EZH2-mediated

invasiveness. The lncRNA NEAT1, which is upregulated by EGFR,

forms a scaffold with EZH2, which together augment invasion by

increasing nuclear b-catenin. (144) This activation of b-catenin also

appears to feedback on EZH2 activity by increasing expression of

USP1, a deubiquitinase that stabilizes EZH2 (145). The microRNA,

miR-490-3p, undergoes EZH2-mediated H3K27me3 silencing,

resulting in increased colony formation and transwell migration in

vitro (13). It is evident that EZH2 plays a broad and diverse role in the

regulation of tumorigenicity in GBM tumor cells, highlighting its

significant clinical potential as a therapeutic target.

The family of H3K9 methyltransferases has been shown to be

similarly important in GBM tumorgenicity. Euchromatic histone

lysine methyltransferase 2 (EHMT2), also known as G9a, mediates

repressive mono- and dimethylation of H3K9 and its expression is

associated with improved survival in grade II oligodendrogliomas.

Contrasted with a protective role in oligodendrogliomas, early work

on the role of EHMT2 in GBM tumorigenicity was mixed, but with
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more recent evidence supporting a pro-tumorigenic role (146, 147).

In vitro studies have shown that inhibition of EHMT2 in established

GBM cell lines promoted GBM cell growth and increased

expression of stem cell markers, and direct methylation of HIF-

1a by EHMT2 inhibits hypoxia adaptation and cellular invasion

(148, 149). Conflicting evidence demonstrates that EHMT2

contributes to tumorigenicity in GBM. In vitro assays in

established GBM lines show that EHMT2 is required for

proliferation, migration, and invasion in a c-Myc dependent

manner and that inhibition of EHMT2 leads to reduced global

H3K9me2 and to increased apoptosis, autophagy markers, and

differentiation in human primary GSCs (150, 151). Further work

revealed EHMT2-mediated evasion of IFNg-directed apoptosis and

increased survival with EHMT2 knockdown in GSCs in an

orthotopic nude mouse model (150, 152). Similar to EHMT2,

Suv39H1 and SETDB1 decrease gene expression through their

H3K9 methyltransferase activity (153, 154). Studies evaluating

their role in the setting of GBM have found increased expression

of both genes compared to normal brain, and decreased cell

proliferation, increased apoptosis, reduced migration, and reduced

colony formation upon shRNA knockdown of SETDB1 or

inhibition of Suv39H1 with chaetocin in established GBM cell

lines (155, 156). Interestingly, there appears to be a relationship

between poor survival and increased cytoplasmic Suv39H1 that

does not exist for nuclear Suv39H1, suggesting a histone

independent mechanism of pathogenesis. Thus, there is a

compelling role for EHMT2 in the promotion of GBM

proliferative and invasion, which is consistent with its pro-

malignancy role in numerous other cancers, yet further work in

needed to fully understand its role in GBM (157). Similarly, further

work is needed to characterize the mechanisms by which SETDB1

and Suv39H1 mediate the observed phenotypic changes as well as

their impact on chromatin architecture and organization in GBM.

Due to the role of arginine methyltransferases enzymes in AML,

melanoma, and lung cancer recent efforts have been made to

characterize their role in GBM pathogenesis (133, 158–160). The

arginine methyltransferase PRMT3, PRMT5, and PRMT6 have

elevated expression in GBM tissue, and their expression is

associated with decreased survival (161–163). In contrast to the

pro-tumorigenic effect of these enzymes, PRMT1 plays an

antiproliferative role by counteracting the effect of EHMT2 in the

presence of IFNg (152). PRMT3 appears to regulate multiple

metabolic pathways in GBM with a specific role in preventing

ubiquitination of HIF1a, thereby promoting glycolysis (163).

PRMT3 knockdown in GSCs induced cell cycle arrest and

apoptosis, and its inhibition led to decreased tumor growth in a

nude mouse flank model (163). In vitro knockdown of PRMT5

reduced colony formation, migratory activity, and led to increased

cell cycle arrest and apoptosis (161, 164, 165). Further work showed

that PRMT5 downregulates PTEN via promoter binding and

ultimately leads to increased active ERK and AKT (164). PRMT5 is

also used by GBM cells to evade mTOR inhibition, and PRMT5

inhibition causes widespread disruption of mRNA splicing, especially

in cell cycle related genes (166, 167). Adding validity to this in vitro

work, inhibition of PRMT5 in vivo increased animal survival (164,

166, 167). Inhibition of PRMT6 limits RCC1 driven mitotic activity,
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in vivo (162). Overall, these studies provide an initial characterization

of the function of arginine methyltransferases in GBM, but more

work is needed to clarify their influence on genomic architecture and

transcriptional regulation.

Much less is known about the various other human histone

methyltransferases in the context of GBM. H3K4 methyltransferase

KMT2A (MLL1) expression increases in GBM in the setting of

hypoxia in a HIF-dependent manner, with knockdown leading to

decreased self-renewal in vitro and decreased tumor formation in vivo

(168). Although KMT2E (MLL5) has no catalytically active histone

methylation domain, its expression is anticorrelated with H3K4me3

levels in primary GBM cultures, and knockout reduced self-renewal

capacity (94, 169). DPY30 is the catalytic subdomain of the MLL/

SET1 family of proteins, and recent work explored its role in GBM

based on an RNAi screen demonstrating that DPY30 knockdown

decreases cell viability in vivo. Interestingly, in vitro inhibition had no

effect, which is consistent with the demonstrated pro-tumorigenic

mechanism of DPY30 in GBM cells where it improves hypoxia

adaptation and activates angiogenesis pathways (170). A subset of

low-grade glioma and GBM patients harbor an inhibitory mutation

in SETD2, and decreased SETD2 expression is associated with poor

prognosis in GBM. Higher secretion of TGF-b1 in GBM cells derived

from patients carrying the SETD2 mutation led to an increase in

activated tumor-associated microglia which fueled tumor progression

(171). Additional work has shown that EGFR-mediated suppression

of SETD2 results in decreased DNA damage repair, resulting in an

accumulation of DNA damage in established GBM cells lines, leading

to increased mutagenesis and subsequent selective adaptation (172).

Stabilization of SETD2 with Palmostatin-B, a drug the prevents de-

palmitoylation, led to decreased proliferation of established GBM cell

lines and decreased tumor growth in a nude mouse model, consistent

with an antiproliferative role for SETD2 in GBM (172). Comparison

of periventricular human GBM to normal subventricular zone NSCs

obtained from non-human primates suggested a potential role for the

H4K20 methyltransferases KMT5B and KMT5C (Suv420H1/2) in

GBM tumorigenesis, showing that 21-31% of genes repressed by the

H4K20me3 mark in NSCs are upregulated in GBM cells (173).

Finally, one study has shown that SMYD3, a member of the SMYD

lysine methylase family, promotes proliferation and tumorigenicity in

established GBM cell lines in vitro and in vivo (94, 119, 174). Despite

the important role that the MLL/SET1 family of enzymes play in

other cancers, less is known about these enzymes in the context of

GBM and more work is needed to better elucidate their role in

regulating and promoting tumorigenesis through their modifications

of histone and non-histone substrates (175). A comprehensive

summary of the functions of the methyltransferase enzymes

described herein can be found in Table 4.
3.3 Inhibition of histone demethylases and
methyltransferases in GBM

Numerous inhibitors have been used in the laboratory to better

understand the role of histone methyltransferases and demethylases in

GBM pathophysiology, with many shown to have anti-proliferative
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effects. A summary of these inhibitors can be found in Table 5.

Inhibitors that target KDMs range from broad class inhibition to

individual enzyme specificity. Examples of KDM inhibitors with broad

enzymatic targets include dimethyloxaloglycine (DMOG), GSK-14,

and JIB-04. DMOG has been shown to induce DNA damage and

apoptosis in GSCs through targeting of the Jumonji (JMJ) family of

demethylases (KDM2-KDM7) (116). Although GSK-14 is a broad

KDM class inhibitor, its antiproliferative effects in GCSs appear to

operate through inhibition of KDM2B (111). JIB-04 is another broad

inhibitor of KDMs with some specificity for KDM5A and has been

shown to activate autophagy and apoptosis in established GBM cells

lines in vitro (118). Additional work demonstrated a synergistic effect

when JIB-04 is combined with GSKJ4, a KDM6B inhibitor, in TMZ

resistant cells in vitro (120). Several targeted inhibitors of KDM1A,

KDM4C, and KDM6B have been investigated in GBM. The tricyclic

antidepressant tranylcypromine, which also functions as a KDM1A

inhibitor, caused apoptosis in established GBM cells lines when

combined with vorinostat (106). NCL-1 and NCD-38 are small

molecule inhibitors that target KDM1A and preferentially affect

GSCs, leading to apoptosis in vitro and increased survival in vivo,

without notable effects on differentiated cells (105). Similarly, selective

inhibition of KMD4C by SD70 decreased cell viability in vitro in
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established GBM cell lines (117). In GSCs, inhibition of KDM6B via

GSKJ4 inhibited cell growth through activation of apoptosis pathways

(36, 120).

The majority of the work on HMT inhibitors has focused on

EZH2 and to a lesser extent EHMT2, with more recent work

focusing on arginine methyltransferases. The most studied

inhibitor of EZH2 is 3-deazanoplanocin A (DZNep), with

numerous studies demonstrating its ability to decrease GBM cell

self-renewal and viability in vitro and decrease tumor growth in vivo

(14, 19, 131, 132, 190, 192). In vitro and in vivo work in a murine

flank tumor model demonstrated that AC1Q3QWB, a small

molecule inhibitor of EZH2’s interaction with the lncRNA

HOTAIR, increases cell death and decreases tumor growth (184).

Similarly, the small molecule inhibitor EPZ6438 has been used to

inhibit EZH2 in GSCs and murine GBM models, leading to

increased apoptosis in vitro and increased survival in vivo (135,

181). EPZ6438 has also been shown to accumulate intracranially in

murine tumors (181). In contrast, although targeting EZH2 with

UNC1999 decreased GSC viability and self-renewal in vitro, in vivo

studies did not show benefit in orthotopic xenografts despite

decreased growth in flank models, suggesting low brain

penetration. Further in vitro studies demonstrated reduced cell
TABLE 4 The function of histone methyltransferases in GBM.

Enzyme Associated role in GBM Cell lines/model system used References

EZH2 Overexpressed in GBM. Increases cell cycle progression,
invasiveness, tumorigenicity, and tumor growth. Modulates

metabolism, differentiation, and immune signaling.

A172, BCRC 60380, BCRC 60163, GL261, H4, LN18, LN229, N33,
T98G, U87MG, U251, patient-derived GSCs, patient-derived
neurospheres, nude mouse model, syngeneic mouse model

(12–14, 19, 32, 127,
128, 130, 132, 134–

145, 176–186)

EHMT2 Promotes proliferation, migration, and invasion. Reduces
differentiation, apoptosis, and autophagy.

A172, LN18, LN229, U87MG, U251MG, patient derived GBM cell
cultures, patient derived GSCs, nude mouse model

(148–152, 187)

Suv39H1 Overexpressed in GBM. Promotes proliferation, migration,
and colony formation.

T98G, U87MG (155, 156)

SETDB1 Overexpressed in GBM. Promotes proliferation, migration,
and colony formation.

T98G, U87MG (155, 156)

PRMT1 Decreases GBM cell viability in a counter-regulatory fashion
to EHMT2

A172, U87MG (152)

PRMT3 Overexpressed in GBM. Regulates glycolysis and inhibition
increases apoptosis, inhibitors cell cycle progression,

decreases tumor growth

U87, U251, patient derived GSCs, nude mouse flank model (163)

PRMT5 Overexpressed in GBM. Promotes colony formation,
migration, and cell cycle progression.

LN229, U87EGFRvIII, patient derived GBM cell cultures, patient
derived neurospheres, patient derived GSCs, zebrafish GBM model,
nude mouse model

(161, 164, 166,
167)

PRMT6 Overexpressed in GBM. Promotes cell proliferation. T98G, U87, patient derived GBM cells, nude mouse model (162)

MLL1 Promotes self-renewal and tumor formation. Patient derived GSCs, nude mouse model (168)

MLL5 Promotes self-renewal Patient derived GBM cell lines, nude mouse model (169)

SMYD3 Promotes cell proliferation and tumorigenicity HEB, LN18, T98G, U87, U373, nude mouse flank model (188)

DPY30 Promotes cell viability through regulation of hypoxia and
angiogenesis

Patient derived GBM cell lines, patient derived GSCs, nude mouse
model

(170, 189)

SETD2 Antiproliferative effects are neutralized in GBM through
mutation or EGFR suppression

Patient derived GBM cell lines, patient derived GSCs, nude mouse
model

(171, 172)

KMT5B/
5C

Dysregulation implicated in gliomagenesis Baboon and mouse-derived NSCs (173)
A summary of the functions of individual histone methytransferase enzymes in GBM pathophysiology, the associated histone post-translational modification, and the corresponding model
system(s) used and reference to the original publication(s).
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viability and increased apoptosis via inhibition of EZH2 with the

small molecule inhibitors PCI-2478, MC4040, and MC4041 (137,

139, 179). Multiple studies have evaluated the role of BIX01294 as

an EHMT2 inhibitor in GBM. In vitro experiments demonstrated

decreased GBM cell viability via apoptosis and autophagy and

increased GSC differentiation, in line with in vivo experiments

which showed reduced tumorigenicity (62, 148, 150, 151, 187,

190). Finally, one study utilized chaetocin to inhibit SUV39H1,

which reduced GBM cell clonogenic potential and migratory

ability (156).

Multiple inhibitors of arginine methyltransferase enzymes

PRMT3, PRMT5, and PRMT6 have shown promising results in
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recent years. Work in patient-derived GSCs and a nude mouse flank

model demonstrated decreased glycolysis, cell growth, and tumor

growth with SGC707, a small molecule PRMT3 inhibitor (163). A

zebrafish GBM model was used to identify numerous inhibitors of

PRMT5 with anti-proliferative effects. Three compounds (HLCL65,

CMP12, CMP5) were identified, all of which provided in vitro

cytotoxicity and increased survival in vivo, although CMP5

appeared most promising as treatment led to a significant

number of long-term survivors (165). Further work targeting

PRMT5 in GSCs showed that the compounds GSK591 and LLY-

283 decreased in vitro proliferation and sphere-forming capacity

with evidence of blood-brain barrier (BBB) drug penetration by
TABLE 5 The effect of select histone methyltransferase and histone demethylase inhibitors in GBM pathophysiology.

Treatment/
Drug

Target Effect Cell model(s) used References

Tranylcypromine KDM1A Increased cell death in combination with vorinostat LN-18, U87 (106)

NCL-1 & NCD-
38

KDM1A Reduced viability and increased survival GSCs, U251, murine mouse model (105)

GSK-14 KDM class/
KDM2B

Decreased cell viability GSCs (111)

SD70 KDM4C Decreased cell viability U251, U87 (117)

JIB-04 KDM class/
KDM5A

Activated autophagy and apoptosis A172, U251, GSCs (118, 120)

GSKJ4 KDM6B Decreased cell growth and increased apoptosis U251, GSCs (36, 120)

DMOG KDMs 2-7 Induced DNA damage and apoptosis GSCs (116)

AC1Q3QWB EZH2 Increased cell death and decreases tumor growth when combined
with DZNep

N5, N33, murine flank model (184)

DZNep EZH2 Decreased self-renewal and tumor growth U87, U251, LN229, D54, GSCs, murine
mouse models

(12, 19, 131, 132,
181, 190)

GSK126 EZH2 Decreased pSTAT3 GSCs (19)

PCI-24781 EZH2 Reduced proliferation and induced cell cycle arrest and apoptosis LN18, LN229, U87 (137)

UNC1999 EZH2 Decrease cell viability, induced autophagy, reduce flank tumor
growth

GSCs, murine mouse model (179)

EPZ6438 EZH2 Increased apoptosis and survival GSCs, murine mouse model (135, 181)

MC4040 &
MC4041

EZH2 Cell cycle arrest, decreased invasiveness U87, patient derived cell cultures (139)

BIX01294 EHMT2 Decreased self-renewal and cell viability, activation of autophagy,
reduced tumor growth

U87, U251, LN18, LN229, D54, GSCs,
murine mouse model

(148, 150, 151,
187, 190, 191)

Chaetocin SUV39H1 Reduced proliferation and clongenic ability T98G (156)

SGC707 PRMT3 Inhibited cell growth and glycolysis, Inhibited tumor growth U87, U251, patient derived GSCs, nude
mouse flank model

(163)

HLCL65, CMP12 PRMT5 Increased cell death, improved survival Patient derived cell cultures, zebrafish
GBM model

(165)

CMP5 PRMT5 Inhibits self-renewal and cell cycle progression, increased
apoptosis and survival, long term survivors

Patient derived cell cultures, zebrafish
GBM model

(165)

GSK591 & LLY-
283

PRMT5 Inhibits proliferation and sphere formation, increases apoptosis
and survival, crosses BBB

GSCs, murine mouse model (167)

EPZ020411 PRMT6 Induces cell cycle arrest, decreases sphere formation, increased
survival

GSCs, murine mouse model (162)
A summary of the impact of select histone methyltransferase and histone demethylase inhibitors on GBM pathophysiology, and the corresponding model system(s) used and reference to the
original publication(s).
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LLY-283, leading to increased survival in vivo (167). The PRMT5

inhibitor, EPZ01566, in concert with mTOR inhibitors provided

anti-proliferative effects in vitro and increased survival in vivo (166).

A sole PRMT6 inhibitor (EPZ020411) has been shown in GSCs to

induce differentiation and cell cycle arrest, and increased in vivo

survival was most pronounced when combined with ionizing

radiation (162). Overall, these numerous studies demonstrate the

utility of using small molecule inhibitors to target histone modifying

enzymes in GBM, but work investigating the brain penetration of

these drugs or opportunities to combine these drugs with BBB

modulating technologies, as well as studies characterizing their

impact on non-GBM cells in the tumor micro-environment

(TME) are needed.
4 Genomic landscape of GBM

The potential functional impact of the diverse enzymes with roles

in histone PTMs can be seen through the presence and location of these

various alterations across the genome. A summary of selected

modifications can be seen above in Figure 1. Early work in this area

explored the conversion of GSCs to more terminally-differentiated

brain tumor cells, a process dependent on PRC2-mediated H3K27me3

at the BMP5 locus and a concordant loss of this modification at the

Wnt1 promoter (131). The essentiality of Wnt signaling in GSC

maintenance was further underscored by the dual observation of

increased expression of Wnt-pathway activator ASCL1 in GSCs and

ASCL1 binding to a H3K4me1-marked poised enhancer of Wnt

signaling inhibitor DKK1, preventing its expression (193). However,

further research into the role of ASCL1 in promoting stemness or

differentiation suggested that its role may be context-dependent, as

separate work suggested that ASCL1 can independently direct GSCs to
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a neuronal fate, downregulate cell cycle genes in vivo, and act as a

potential pioneer factor for neuronal target genes (194, 195). Loss of

stem-like properties in GSC populations is also associated with global

chromatin changes in H3K4me3/H3K27me3 (“bivalent”) histone

modifications. Genome-wide profiling of H3K4me3 and H3K27me3

in eight GSC lines in comparison to human astrocytes revealed unique

bivalent modifications at loci for a variety of gene families, including

HOX family genes, Wnt pathway genes, Hedgehog signaling, and

solute carrier family genes (196, 197). In comparison to fetal neural

stem cells (fNSCs), roughly 37% of H3K4me3/H3K27me3 marks at

promoter regions were found to be unique to GSCs, with 137 promoter

regions containing this bivalent modification in fNSCs but only the

H3K4me3modification in GSCs, and 191 promoter regions containing

both modifications in fNSCs but only the H3K27me3 modification in

GSCs (198). A similar comparison of chromatin states between fNSCs

and GSCs revealed that GSCs had lost brain-specific H3K4me1-

marked active enhancers, as well as transitioning to poised or active

enhancer marks in other tissue-specific enhancers. Additionally, GSC

specific regions with colocalized H3K4me1 and H3K27ac marks were

enriched for gene ontology terms related to angiogenesis and DNA

damage response pathways (199). Upon repression of stem cell-like

properties in GSCs, genes with histone mark changes from H3K4me3

to H3K27me3 included Wnt-signaling pathway mediator LEF1, and

ARNT2, a mediator of the hypoxia response pathway involved in

promoting the expression of stem cell markers OLIG2, POU3F2, and

SOX9 (200). Expanding upon the observation that primary GBM

tumors contain only a small fraction of cycling cells, Liau et al. used

receptor tyrosine kinase inhibitors to induce a similar, slowly cycling

quiescent state within a GSC population. This change from

proliferation to quiescence was accompanied by changes in H3K27ac

and H3K27me3 marks, with H3K27ac-associated motifs specific to the

quiescent population being marked with H3K27me3 in the untreated/
FIGURE 1

Cartoon depiction of common histone H3 modification locations and their associated modifications, transcriptional state associations, and/or
regulation in GBM.
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RTK-naïve population, and motifs related to neural stem cell

development becoming enriched in H3K27ac marks in the quiescent

population (36). Separate research integrated this mark of active

enhancer regions with gene expression and DNA methylation data

to define the enhancer landscape within GBM, finding many of the

concordant loci located at genes with important functions in stem cell

maintenance, such as SOX2, EGFR, POU3F2, and SALL3. Further

profiling of the H3K27ac landscape in primary tumor tissue samples

revealed SOX2 to be a shared TF among all GBM subtypes and normal

brain tissue, while POU3F2 was preferentially found in proneural

tumor samples (201). Mapping of enhancer regions from H3K27ac

ChIP-seq data to high resolution fetal brain Hi-C data identified 116

enhancer-promoter pairs with significant contact frequency,

corresponding to 96 total genes of which 17 were differentially

expressed in GBM as compared to lower grade glioma and pilocytic

astrocytoma. This list included ANXA2R, which encodes the receptor

for annexin 2, a gene overexpressed in GBM and other malignancies,

which is thought to contribute to cellular migration and growth (202,

203). Similar research investigating broader changes in histone lysine

PTMs upon GSC differentiation observed alterations in the active

enhancer regions, finding regions with both H3K27ac and H3K4me1

modifications in GSCs losing the H3K27ac modification upon

differentiation, as well as increases in larger (3-50 kb) domains

containing repressive H3K9me3 and H3K27me3 modifications (116).

Unsurprisingly, in addition to correlations with varying degrees of GSC

differentiation, there are correlations between transcriptional state and

promoter histone PTMs. By superimposing paired multiplexed single

cell reduced representation bisulfite sequencing and scRNA-seq onto

existing ChIP-seq data, Chaligne et al. found connections between

these three modalities, specifically that hypomethylated promoters in

astrocyte-like and mesenchymal-like cells primarily contained

H3K4me3, H3K27ac, and H3K36me3 modifications, which are

associated with active transcription (204). Similarly, hypomethylated

promoters in neural progenitor-like and oligodendrocyte progenitor-

like cells primarily had H3K4me3 and H3K27me3 (bivalent)

modifications, recapitulating the observed change from bivalent to

single histone modifications during differentiation given that

progenitor-like cells are less terminally-differentiated than MES- and

AC-like cells (35, 204). As methods to simultaneously profile histone

PTMs and gene expression at single-cell resolution become more

accessible, our understanding of the correlations between the

epigenetic and transcriptional landscape of GBM will increase,

allowing us to better grasp the interplay between individual histone

modifications, and histone modifications and downstream

gene expression.
5 Challenges and knowledge gaps

Work on the role of EZH2 in GBM pathophysiology has revealed

the more general concept that the effects of canonical histone

modifying enzymes may in fact be mediated by both histone and

non-histone substrates. For instance, enrichment of H3K27me3 at

the PTEN promoter decreased gene expression, allowing for

increased AKT/mTOR signaling (185). But in contrast to a histone

remodeling mechanism, EZH2 also exerts a direct activating effect on
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STAT3 via methylation of lysine residue 180 (K180) (19). As

highlighted by these EZH2-dependent mechanisms, there is a

comparative lack of clarity surrounding the mechanism of action of

many histone modifying enzymes in GBM pathophysiology.

Furthermore, many of the studies that modulate the expression of

individual histone modifying enzymes in GBM have used phenotypic

changes as an endpoint. This results in ambiguity as to the effector(s)

of these phenotypes, as they could be the result of either genomic and

transcriptional dysregulation, or alterations in the function of non-

histone substrates. Incorporating epigenomic profiling methods such

as ChIPseq, CUT&RUN, CUT&Tag, Hi-C, and their single-cell

variants would allow observation of the genomic consequences of

these alterations, whereas coimmunoprecipitation, affinity

purification with mass spectrometry, and similar protein-based

assays could point to similar implications of altering histone PTM

enzymes on non-histone substrates. Additionally, the degree to which

established immortalized GBM cell lines replicate the transcriptional

landscape of primary tumors has been brought into question, and

recapitulating the effects of single or multi-target inhibition in

multiple model systems as well as both in vitro and in vivo has

become increasingly important, as previous screening between these

environments has showcased a vast difference in environment-

specific gene dependencies (189, 205, 206). While there have been

several studies investigating the impact of single-target perturbations

in GBM, many of these have relied on immortalized cell line cultures

in vitro. This presents both a limitation of the existing work as well as

an opportunity for future research in model systems and

environments which better mimic that of GBM. In recent years,

organoid-based model systems and embryonic stem cell-derived

model systems have been validated in their ability to reflect

characteristics of GBM biology (207, 208). Application of

epigenetic and biochemical profiling techniques to these model

systems, as well as model systems mimicking the current standard

of care or in vivo systems could help illuminate the functional

dependency of tumor cells on specific epigenetic states or

enzymatic actions.

Perturbations at the DNA or RNA levels and small molecule

inhibitors are powerful tools for unraveling the biological function

of a gene product and have been used extensively to elucidate the

role of histone modifying enzymes in GBM. Inhibition of these

enzymes also holds promise in clinical therapies when found to

preferentially target cancer-dependent pathways. Most human

clinical trials have focused on the use of HDAC inhibitors in

GBM and a recent systematic review was published supporting

the use of valproic acid to increase overall survival in GBM,

although prospective randomized control trials are needed to

confirm these findings (209). In contrast to valproic acid,

vorinostat and panobinostat have demonstrated less promising

data with vorinostat leading to toxicities or failing to show

benefit, and similar lack of benefit in panobinostat (85). Another

challenge for HDACi trials has been difficulty with recruiting

patients. It is likely that the anti-epileptic role of valproic acid has

increased its use and subsequent study in glioblastoma patients.

Outside of histone acetylation, there has been little clinical

investigation of methylation inhibitors with a currently recruiting

phase II clinical trial for the EZH2 inhibitor EPZ6438, but in
frontiersin.org

https://doi.org/10.3389/fonc.2023.1144184
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


McCornack et al. 10.3389/fonc.2023.1144184
pediatric gliomas. An active, but no longer recruiting phase I clinical

trial is investigation PRT811, a PRMT5 inhibitor, but again without

a glioblastoma focus as the trial is treating all high grade gliomas

(clinicaltrials.gov). A challenge in using some of the drugs listed in

this review is an inability to penetrate the BBB. This challenge can

be better managed moving forward with the emergence of BBB

modulating therapies such as laser interstitial thermal therapy and

focused ultrasound (210, 211).

As inhibitors of histone modifying enzymes are being translated

to the clinical setting, it is imperative to understand the role that these

inhibitors play not just on the cancer cells but also on the tumor

microenvironment, including blood and lymph vessels and tumor

infiltrating immune cells. Thus, although the use of immunodeficient

mice to mimic an in vivo environment has improved our

understanding of human cancer biology, these environments lack

the adaptive immune component of the human tumor

microenvironment. As the number of successful immunotherapies

across human malignancies grows and with increasing appreciation

for the role of adaptive and innate immunity in GBM treatment

resistance, the need for more complex models is needed. Multiple

syngeneic mouse tumor lines have been developed to model GBM in

the setting of an intact immune system. Due to the differences

between human and mouse tumor biology and it is imperative that

newly developed mouse tumor cell lines recapitulate the starkly

immunosuppressive microenvironment of glioblastoma to ensure

clinical utility. GL261 is an examples of a syngeneic mouse tumor

line that possesses significant mutation burden and expresses elevated

MHC1 levels, leading to a favorable immune response that arguably

does not capture the full complexity of human disease (212). In

contrast, the SB28 model demonstrates a greater resistance to

immune checkpoint blockade, more faithfully recapitulating human

glioblastoma immune characteristics (213). A recent review

highlighting the importance of diverse cellular and extracellular

components that contribute to the TME found in human

glioblastoma adds salience to the need for more robust pre-clinical

models (214, 215). Additional examples supporting the need for

immunocompetent mouse models include, as mentioned earlier,

prolonged inhibition of EZH2 leading to a reversion back to a pro-

growth state (141). Further work in immunocompetent models has

shown the role of macrophages in supporting an immunosuppressive

TME partially through immune-induced changes in DNA

methylation in GSCs (216). Orthogonal work in immune cells and

blood cancers has shown that HDAC inhibitors affect the immune

microenvironment in multiple ways. Although HDAC inhibitors

appear to downregulate the primary immune response and increase

the expression of PD-L1 in cancer cells, these inhibitors can also

increase the adaptive immune response (217–221). Further work is

clearly needed to understand the global impact of histone modifying

enzyme inhibition in the GBM tumor ecosystem.
6 Conclusion

Encouraging efforts across the GBM research community are

increasing our understanding of the roles that histone modifying
Frontiers in Oncology 13
enzymes play in GBM pathophysiology. Our work here summarizes

these efforts and provides a framework for improvements in the field

moving forward. Given the dysregulated expression of enzymes

involved in histone acetylation and methylation within GBM, it is

important to understand how this aspect of epigenetics potentially

influences tumorigenicity and transcriptional plasticity. Furthermore,

the subtype-specific correlation of histone PTMs with gene

expression and methylation, as well as the reversibility of histone

PTMs in response to selective inhibition, highlight the link between

these epigenetic modifications and our current understanding of

transcriptional heterogeneity and plasticity in GBM. Inhibition of

these numerous enzymes thus holds promise as a clinical target to

improve GBM patient outcomes. Although numerous clinical trials

using HDAC and HMT inhibitors are underway, there remains the

need for greater efforts in understanding how altering enzymatic

activity of histone PTM modifying enzymes impacts genomic

architecture, non-histone substrates and their respective pathways,

and the complex tumor microenvironment. Our understanding of

the core molecular pathways, genetic aberrations, and transcriptional

states that define GBM have progressed immensely since the clinical

trials that define the current standard of care, yet these advancements

have unfortunately not yet led to similar transformations in the clinic.

By incorporating this existing knowledge with further studies into the

targetability and pathophysiology of histone PTMs with orthogonal

research on the immune microenvironment, metabolome, and

neuronal and glial interactions, we can provide the best scientific

foundation for the success of future clinical trials and improved care

for patients with GBM.
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