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Cyclin D1 functions as a mitogenic sensor that specifically binds to CDK4/6,

thereby integrating external mitogenic inputs and cell cycle progression. Cyclin

D1 interacts with transcription factors and regulates various important cellular

processes, including differentiation, proliferation, apoptosis, and DNA repair.

Therefore, its dysregulation contributes to carcinogenesis. Cyclin D1 is highly

expressed in papillary thyroid carcinoma (PTC). However, the particular cellular

mechanisms through which abnormal cyclin D1 expression causes PTC are

poorly understood. Unveiling the regulatory mechanisms of cyclin D1 and its

function in PTC may help determine clinically effective strategies, and open up

better opportunities for further research, leading to the development of novel

PTC regimens that are clinically effective. This review explores the mechanisms

underlying cyclin D1 overexpression in PTC. Furthermore, we discuss the role of

cyclin D1 in PTC tumorigenesis via its interactions with other regulatory

elements. Finally, recent progress in the development of therapeutic options

targeting cyclin D1 in PTC is examined and summarized.
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Introduction

The global incidence of thyroid cancer has increased considerably over the past few

decades (1). Papillary thyroid carcinoma (PTC), derived from thyroid follicular cells, is the

most common endocrine malignancy, accounting for up to 80% of all thyroid carcinomas

(2, 3). Early-stage of PTC can be detected using ultrasonography and fine-needle biopsy.

However, the typically indolent nature of PTC often leads to a delay in diagnosis that may

substantially worsen the course of the disease (4). Consequently, the incidence of advanced

large-sized PTCs has increased (2).

Despite the overall survival of patients with PTC being high, lymph node metastasis is

observed during diagnosis in almost 36% of cases (5, 6). The biology of PTC is extremely

diverse, ranging from non-progressive lesions to aggressive metastatic carcinomas. Although
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traditional thyroidectomy combined with radioactive iodine therapy is

recommended as the first-line treatment for PTC, it is often incurable,

leading to a high recurrence rate (4). Recurrence in the neck is a serious

complication that may be considered as a sign indicating a potentially

lethal outcome (7, 8). Patients at low risk for PTC death may still

experience significant or even disastrous morbidities, including

invasion of the paratracheal regions, large cervical vessels, and

recurrent laryngeal nerves (3, 9). Thus, a deeper understanding of

the various signaling pathways involved in PTC progression may help

facilitate the development of effective molecular drugs.

Cyclins and their catalytic partners, cyclin-dependent kinases

(CDKs), which regulate the eukaryotic cell cycle, are considered as

promising candidates for primary involvement in oncogenesis (10).

The cyclin D1 gene (CCND1), located on human chromosome

11q13, is an established oncogene (11). The dysregulation of cyclin

D1 expression or CDK4/6 activation can directly lead to some of the

hallmarks of cancer upregulation via causing proliferation or

overriding of checkpoints (12, 13). In human cancer cell lines,

cyclin D1 dysregulation contributes to cancer development via its

interactions with more than 100 proteins (14). Cyclin D1

overexpression leads to dysregulated cell proliferation, as well as

malignant tumor transformation and development, including PTC

(15–17). In this review, we address the role of cyclin D1 in PTC and

discuss the potential therapeutics of cyclin D1-based treatments.
Cyclin D1 in normal cells

Unique cyclins accumulate at various stages of the cell cycle,

contributing to transcription and protein degradation inhibition
Frontiers in Oncology 02
(18). The synthesis of a single cyclin and the subsequent activation

of CDK form active heterodimeric complexes at specific cell cycle

phases (13, 19) that coordinate DNA replication and cell division

(20). In normal cells, the processes of expression, activation,

distribution, stabilization, and degradation of cyclin D1 are strictly

regulated by the on/off signal response of mitosis (21, 22). In contrast

to cancer cells, normal cells require extracellular signaling to

proliferate via the binding of extracellular matrix components to

adhesion receptors (integrins) and growth factor receptors (receptor

tyrosine kinases). Thus, integrin and growth factor signaling

pathways ensure that cell proliferation is restricted to cells exposed

to appropriate chemical and physical cues (19, 23, 24).

The G1 phase represents the stage at which cells respond to

extracellular signals (25). Cell cycle regulation requires sustained

activation of signaling pathways, such as the ERK pathway.

Continuous stimulation of mitogen-activated protein kinase

(MAPK) is a common requirement for cyclin D1 expression in the

G1 phase and cell cycle re-entry (Figure 1) (22, 26, 27). Syntheses of

CCND1 mRNA and cyclin D1 protein begins when mitogenic

stimulation induces quiescent cells to enter the G1 phase (28).

Activation of the RAS-mediated signaling cascade and

phosphoinositide-3-kinase (PI3K)/AKT induces CCND1 translation

and reduces cyclin D1 degradation (23, 28–30). Growth factor

signaling accelerates the formation of cyclin D1-CDK4/6 dipolymer

via a Ras-dependent pathway (30). CyclinD1-CDK4/6 phosphorylates

and inactivates retinoblastoma proteins (pRB), resulting in the

expression of a subset of proliferation-associated E2F target genes in

response to G1 progression (13, 31). This process initiates DNA

replication and regulates the transcription of specific cell

proliferation genes (13). Cyclin D1 levels increase from early to late
FIGURE 1

Function of cyclin D1 in normal cells. When mitogenic stimulation induces quiescent cells to enter G1, the synthesis of CCND1 mRNA and cyclin D1
protein begins. Cyclin D1, by forming different heterodimeric complexes with CDK4/6, phosphorylates and inactivates retinoblastoma protein (pRB),
causing the expression of a subset of proliferation associated E2F target genes. This, in turn activate some genes in response to the G1 phase
progression, thereby initiating DNA replication and regulating the transcription of specific cell proliferation genes. Cyclin D1 is then transported to
the cytoplasm and degraded by UPS.
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G1 phase and then decrease during the S phase (32–34). From G1 to S

phase, cyclin D1 is exported to the cytoplasm and degraded by the

ubiquitin-proteasome system (UPS) via the phosphorylation of a

threonine residue (Thr286) at the carboxyl terminus (28, 35, 36).

Studies have shown that Thr286 is mutated in a variety of cancers and

that, in animal models, the production of mutant alleles generates

spontaneous tumors, demonstrating the tumorigenic potential of

cyclin D1 (35, 37, 38). The SCF complex, consisting of an S-phase

kinase-associated protein (SKP1) adaptor, CUL1 scaffold and F-box

proteins, facilitates the ubiquitination of phosphorylated cyclin D1 in

the cytoplasm (33, 39–41). There are at least four E3 ubiquitin ligases in

the F-box family, three of which (SKP2, FBXW8, and FBXO4)

participate in the normal cell cycle, whereas the fourth (FBXO31) is

involved in genotoxic stress (33, 39–41). Cyclin D1 degradation occurs

via its direct interaction with the FBXO31 F-box motif and its

phosphorylation at Thr286 (40). Cyclin D1-specific E3 ubiquitin

ligase mutations result in the accumulation of cyclin D1 in cancer

cells (41, 42).
Cyclin D1 as a human oncogene

In line with high CCND1 expression in solid cancers, cyclin D1

is more frequently dysregulated than cyclin D2 or D3 (43–46).

There are several explanations for upregulation of cyclin D1,

including gene amplification, chromosomal rearrangement,

increased gene transcription and protein translation, decreased

miRNA expression, and ubiquitination-mediated protein

degradation inefficiency or loss (11, 32). Chromosomal

translocation in the mantle cell lymphoma (MCL) places the

CCND1 under the control of the immunoglobulin heavy chain

enhancer, resulting in the abnormal accumulation of cyclin D1 in

tumor cells (46–48). In breast cancer, the cyclin D1 overexpression

may be attributed to an increase in CCND1 copy numbers (49, 50).

In addition, the positive association between cyclin D1 expression

and tumor progression has been validated in different cancers,

including lung adenocarcinoma, head and neck squamous cell

carcinoma, and esophageal squamous cell carcinoma (ESCC)

(51–53).
Cyclin D1 and PTC

Dysregulation of cyclin D1 in PTC

Tumor markers constitute the principle of rationalizing the

complexity of occurrence and development of tumor diseases that

includes, maintaining proliferation signals, evading growth

inhibitors, resisting cell death, achieving replication immortality,

inducing angiogenesis, and activating invasion and metastasis (12).

A high prevalence of cyclin D1 overexpression in PTC has been

demonstrated by several studies (54–60). It is possible that various

forms of primary clonal damage may secondarily lead to the

dysregulation of cyclin D1, thus providing alternative pathways

for cells to develop similar tumor characteristics. Although cyclin

D1 is aberrantly overexpressed in PTC, neither translocation nor
Frontiers in Oncology 03
gene amplification has been reported (61, 62), indicating that

pathogenic activation of cyclin D1 may occur via additional

mechanisms, including transcriptional and post-transcriptional

dysregulation (63, 64). Jeon S et al., showed that CCND1 mRNA

levels in PTC are higher than those in benign diseases (65). It is

hypothesized that overexpression of cyclin D1 in PTC with high

cyclin D1 levels, may not be due to CCND1 amplification, but rather

to deregulation of a trans-acting inducer of expression or mRNA

degradation machinery.

The expression of cyclin D1 can be regulated by miRNAs (57,

66, 67) that negatively modulate gene expression by binding to the

3′-UTRs of targeted mRNA (68). MiR-211 has been found to bind

directly to cyclin D1 mRNA and inhibit its expression in cancers

(69, 70). Molecular evidence obtained from clinical PTC samples

has revealed a significant inverse correlation between MiR-195 and

CCND1 (71). A dual-luciferase reporter assay revealed that co-

transfection of MiR-195 inhibits the activity of the luciferase

reporter with wild-type 3′-UTR of CCND1, resulting in a

consistent negative correlation with the above clinical samples

(71). In addition, MiR-195 suppresses the Wnt/b-catenin pathway

in PTC, thus significantly reducing the protein levels (cyclin D1)

involved in this pathway (71). Targeting MiR-195 may reverse

cyclin D1-mediated cellular effects, including cell proliferation,

apoptosis, migration, and invasion in PTC (71). Paired box gene

8 (PAX8) plays a critical role in thyroid development (72). MiR-

144-3p binds to PAX8, that indirectly regulates the expression of

cyclin D1 in PTC, thereby promoting cell cycle progression (72).

MiR-1256 inhibits PTC cell growth and induces G0/G1 phase

arrest. MiR-1256 is downregulated in PTC and its inhibitory

effect on 5-hydroxy tryptamine receptor 3A (HTR3A) is

dysregulated. High levels of HTR3A in PTC cells can partially

eliminate the inhibitory effect of MiR-1256 on cyclin D1 expression

(73). HTR3A knockdown significantly induces cell cycle arrest at

the G0/G1 phase, hampering PTC cell proliferation (73). Lou et al.,

established the hsa_circ_0088494-miR-876-3p-CTNNB1/CCND1

axis using database analysis and found that it was associated with

PTC carcinogenesis and progression (67).

Cyclin D1 is a target molecule in the aberrantly activated Wnt/

b-catenin signaling pathway (74, 75). Peptidyl-prolyl cis-trans

isomerase NIMA-interacting 1 (PIN1) contributes to the

upregulation of cyclin D1, either directly or via the abnormal

accumulation of b-catenin in tumor cells (76). PIN1 increases

cyclin D1 expression, both transcriptionally and post-

transcriptionally (77, 78). PIN1 interacts with c-Jun that is

phosphorylated on Ser63/67-Pro motifs by activated oncogenic

Ras/JNK, and subsequently boosts transcriptional activity of c-Jun

to the cyclin D1 promoter (77). Moreover, PIN1 improves the

protein stability and increases nuclear accumulation of cyclin D1

via heterodimerization (78). PIN1 inhibits nuclear export and

protein degradation of b-catenin (79). Increased nuclear

accumulation of b-catenin during Wnt/b-catenin cell signaling

leads to enhanced transcriptional activity of b-catenin on

downstream target genes, including CCND1 (74). APC gene

mutation is a common event in familial adenomatous polyposis

coil (FAP)-related PTC, accompanied by nuclear b-catenin
translocation (76, 80). In PTC cell lines, the formation of a
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destruction complex with APC is inhibited by PIN1 (76). Therefore,

overexpression of PIN1 may be a factor of cyclin D1 upregulation

and abnormal b-catenin expression during malignant thyroid

gland transformation.

The constitutive activation of the MAPK pathway plays an

important role in PTC development (81, 82). MAPK induces several

mitotic and survival processes, including proliferation and

protection from apoptosis via cell membrane substrate

interactions and subsequent phosphorylation of transcription

factors (83). The mutant genes involved encode the cell

membrane-receptor tyrosine kinases, RET and NTRK1, as well as

the intracellular signal transduction genes, BRAF and RAS (82).

These mutations, which occur in approximately 70% of patients

with PTC, are associated with specific clinical and biological tumor

characteristics (16, 84–86). Important oncogenic mechanisms of the

MAPK pathway in PTC include modulation of type 3 deiodinase

(DIO3) to increase cyclin D1 expression (81). Nelfinavir (NFV), a

MAPK/ERK pathway inhibitor, accelerates PTC cell arrest at the

G0/G1 phase and downregulates cyclin D1 and CDK4 (87).

Cyclin D1 expression is also transcriptionally regulated by

signal transducers and activators of transcription 3 (STAT3),

known to be important for angiogenesis, tumorigenesis, and

metastasis (88–92). STAT3 regulates the expression of cyclin D1

by binding to the CCND1 promoter (93). Cyclin D1 mRNA levels

are increased in tumor cells that express the STAT3 oncogenic

variant (STAT3-C) or vSrc that constitutively phosphorylate

STAT3 (93). Moreover, it has been proved that cyclin D1 is

necessary for STAT3-C and vSrc-mediated anchorage-

independent growth (93). In addition, both STAT3 and cyclin D1

protein levels in human PTC tissues are higher than those in

adjacent non-tumorous thyroid tissues (88, 94).

The association between cyclin D1 and clinical parameters of

PTC have been studied. In PTC, high cyclin D1 levels are associated

with larger tumor size, intraglandular metastasis, extrathyroidal

extension, lymph node metastasis, and aggressive behavior (17, 95–

98). High cyclin D1 levels are linked to poor prognoses and high

recurrence rates (56). These observations indicate that deregulated

cyclin D1 expression may play an important role in determining the

clinical course of PTC.
Oncogenic consequences of cyclin D1
dysregulation in PTC

An essential characteristic of tumor cells is their ability to

progress through proliferation limits set by tumor suppressors

under conditions of cellular stress (18). In PTC, the dysregulation

of cyclin D1 represents the initiation of sustained proliferative

signaling acquisition and the malignant transformation of thyroid

follicular cells. Activation of cyclin D1-CDK4/6 phosphorylates

various substrates that regulate PTC cell proliferation, growth,

migration, DNA repair, and centrosome duplication (11, 87). The

cyclin D1-CDK4/6-Rb-E2F pathway regulates the G1 to S phase

transition. During the S phase, cyclin D1 is exported to the

cytoplasm and degraded (99). Dysregulation of these processes

leads to the abnormal accumulation of cyclin D1 (100). Cell
Frontiers in Oncology 04
proliferation becomes independent of extracellular signals and

bypasses cell cycle checkpoints responsible for ensuring genomic

integrity (101, 102). Increased cyclin D1-CDK4/6 induces E2F-

dependent transcription and promotes continuous proliferation of

PTC cells by preventing cell cycle exit (18, 102–105).

Transcriptional regulation is one of the major non-catalytic

functions of cyclin D1. Cyclin D1 affects the promoters of many

genes by interacting with various transcription factors (106).

Thrombospondin 1 (TSP-1), a multifunctional matricellular ECM

and secreted protein (107), effectively inhibits tumorigenesis,

cellular metastasis, and in vivo neovascularization (107, 108). Its

promoter activity is repressed by cyclin D1 in a dose-dependent

manner (108). Cyclin D1 inhibits TSP-1 transcription and mRNA

expression and promotes cell migration (108, 109). Compared with

those in normal thyroid tissues, TSP-1 mRNA levels are

significantly lower in PTC tissues (110). The extrathyroidal

infiltration of PTC is inversely correlated with TSP-1 expression

(111). It has been shown that TSP-1 suppresses angiogenesis in PTC

(17). These results further confirm that cyclin D1 promotes PTC

carcinogenesis by downregulating TSP-1 expression.

Many studies have suggested the presence of a tight link between

estrogen receptor-a (Era) and cyclin D1 in PTC (112, 113). Cyclin D1

interacts with several members of the steroid hormone receptor

superfamily and their co-regulators (63, 114). Cyclin D1 enhances

the activity of Era by interactingwith its co-regulators, SRC1 (NCOA1)

andAIB1 (NCOA3), in tumor cells (11). It also interacts with SRC1 and

SRC3 to recruit additional transcriptional cofactors that increase the

transcriptional activity of ER (115). Consequently, abnormally

upregulated ER signaling leads to increased proliferation of PTC cell

lines (112). These findings suggest that cyclin D1 overexpression

promotes PTC development via the enhancement of Era function.
Cyclin D1-targeted treatments

Oncoproteins are appealing therapeutic targets due to their

involvement in malignant cell behavior (116). Given its importance

in PTC, cyclin D1 has come to be considered as an attractive drug

target for clinical treatments. Fibroblasts, epithelial cells, and

macrophages exhibit increased cellular adhesion and decreased

motility in the absence of cyclin D1 (108, 117, 118). Previous

studies have shown that suppression of cyclin D1 in PTC cells

reduces cell proliferation, migration, and invasion (108, 119, 120).

If an important component of the oncogenic action of cyclin D1

is accomplished via CDK-independent mechanisms, anti-cyclin D1

may be expected to be especially efficacious in cyclin D1-driven

PTCs. The effective use of such new approaches is centered on the

tailored selection of PTC subgroups that are likely to respond to

treatment. In PTC, high nuclear cyclin D1 levels are associated with

aggressive clinicopathological features, including lymph node

metastasis, tumor recurrence, extrathyroidal invasion, and more

advanced initial tumor stages. As described, aberration of activated

Wnt/b-catenin signaling pathway enhances the transcriptional

activity of CCND1 and increases nuclear accumulation of cyclin

D1. Activation of MAPK and PI3K/AKT pathways, which is usually

induced by BRAF and RAS family mutations, are the two most
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fundamental causative factors of PTC (121, 122). The RAS–MAPK

pathway regulates cell cycle entry by upregulating cyclin D1

expression in PTC cells (56). Therefore, b-catenin, BRAF, and
RAS may serve as useful biomarkers in patients requiring cyclin

D1-based therapy for PTC. Patients receiving this therapy may have

longer progression-free and a better overall survival than those

receiving standard therapies that are accepted in cases of

unsuccessful surgery and radioiodine therapy. However, targeting

cyclin D1 is often considered difficult because of its lack of intrinsic

enzymatic activity (11). Drug combination therapies that affect

CCND1 transcription or cyclin D1 degradation, target several end

points of cyclin D1 function. Alternative methods may be employed

to target cyclin D1 and block PTC progression (Figure 2).

Targeting of cyclin D1 using a combination of the retinoid X

receptor (RXR) activator (Bexarotene) and a EGFR inhibitor

(Erlotinib) has shown satisfactory levels of efficacy in clinical
Frontiers in Oncology 05
studies (123). Rosiglitazone diminishes the expression of cyclin

D1, increases the expression of cell cycle inhibitors p21 and p27,

and suppresses the proliferation and migration of tumor cells in a

dose-dependent manner (124, 125). Both rosiglitazone and

bexarotene exhibit anti-cancer activities against human PTC cells

(126). The sodium/iodine symporter (NIS) is positively expressed in

thyroid cancers with a good prognosis and plays a key role in

response to radioiodine therapy. Moreover, NIS downregulation

usually predicts tumor recurrence or treatment failure (126). In the

setting of normal or hypoxic conditions, bexarotene synergizes with

rosiglitazone to inhibit malignant cell growth and increase NIS

levels in PTC, thereby demonstrating its potential as a

chemotherapeutic candidate for PTC. However, despite their

promising anti-proliferative effects, the efficacy and safety of

rosiglitazone and bexarotene for PTC in humans require

further verification.
FIGURE 2

Cyclin D1 is a promising target in PTC. Downregulating cyclin D1 or inhibiting the end points of cyclin D1 action are two possible therapeutic
approaches for cyclin D1-dependent cancers. Inhibition of PTC cell proliferation by CDK4/6 inhibition or broader targeting of cyclin D1 action by
drugs that cause cyclin D1 downregulation or protein degradation.
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Translation of CCND1 mRNA is dependent on mTOR, raising

the possibility that mTOR inhibitors may hamper the cell cycle and

tumor progression via cyclin D1 (101, 127). A recent clinical trial

found, rapamycin, an mTOR inhibitor, to be therapeutically

beneficial for nearly 40% of patients with advanced MCLs (128).

An elaborate study demonstrated that the mTOR kinase inhibitor,

CZ415, decreases cyclin D1 expression and induces G1-S arrest in

human PTC cells. Moreover, it proved that CZ415 plays a role in the

inhibition of cell proliferation and xenograft tumor growth in PTC

(129). Thus, future studies on mTOR kinase inhibitor-based

therapies may help improve the survival of patients with PTC.

Abnormal dysregulation of cyclin-CDK perturbs cell cycle

control and allows continuous cell division (31, 130, 131). The

earliest identified function of cyclin D1 was its role as a regulatory

partner of CDK4/6 (11). Owing to increasing clinical applications of

specific kinase inhibitors, a more direct and feasible method is to

target cyclin D1 by inhibiting CDK4/6 (25, 132). Many first-

generation CDK inhibitors have been excluded from research

studies, partly because nonselective pan-CDK inhibition causes

cytotoxicity in noncancerous cells (133, 134). However, these

issues have been largely addressed by the newly developed CDK

4/6 pharmaceuticals with high specificity (132). Manageable

cytotoxicity makes CDK 4/6 inhibitors (palbociclib, abemaciclib,

and ribociclib) attractive candidates for anti-cancer drugs (135,

136). A key phase III trial of palbociclib for advanced ER-positive

breast cancer showed improved progression-free as well as overall

survival, with well tolerated toxicity. Testing for CDK4/6 inhibitors

in low-risk patients with PTC might be difficult for ethical reasons.

Extending the use of CDK4/6 inhibitors beyond ER-positive breast

cancer is challenging and requires biomarkers that are predictive of

the applicable standards. Antonello et al., demonstrated that

targeting CDK4/6 in aggressive PTC helps overcome CDK4/6-

dependent cell cycle checkpoint dysfunction and triggers

apoptosis (137). Combination therapy with CDK4/6 inhibitors

downregulates pAKT levels, resulting in changes in its

downstream effectors. In addition, combination treatments with

CDK4/6 inhibitors showed impressive improvements in the ability

to overcome both primary and secondary resistance offered to

treatments with single agents in invasive human PTC cell lines

(137). Radioactive iodine (RAI) is administered for differentiated

thyroid cancer (DTC) with intermediate to high-risk features (138).

However, some patients with DTC and distant metastases exhibit

dedifferentiation and decreased iodine uptake, rendering adjuvant

treatment with RAI ineffective (138). Anaplastic thyroid carcinoma

(ATC) is the most aggressive type of thyroid cancer. It accounts for

a disproportionate number of thyroid cancer-related deaths,

because of its resistance to current therapeutic approaches (138,

139). The selective CDK4/6 inhibitor, ribociclib, induces cell cycle

arrest at the G0-G1 phase, facilitates cell apoptosis, and inhibits cell

proliferation in ATC (140). Lack of expression or dysfunction of

NIS is considered to be an important causative factor of iodine-

resistant tumors (138). Studies have indicated that mutations in

MAPK and/or PI3K (BRAF V600E and RAS) may decrease NIS

expression by directly affecting its transcription (141, 142). BRAF

V600E and MEK inhibitors can re-sensitize dedifferentiated thyroid

cancer to iodine, thus allowing RAI treatment, leading to improved
Frontiers in Oncology 06
disease control (143, 144). The selective BRAF inhibitor

(dabrafenib) can stimulate radioiodine uptake in patients with

metastatic BRAF V600E mutant iodine-refractory PTC (143).

Taken together, these studies suggest that BRAF V600E may serve

as a promising biomarker for predicting high-risk radioiodine-

resistant PTC, in patients enrolled for CDK4/6 inhibitor clinical

trials. Specific CDK4/6 inhibitors have fewer therapeutic targets and

are, therefore, more specific than multi-kinase inhibitors. Although,

a clinical study of combined therapy with CDK4/6 inhibitors

against PTC, is yet to be conducted, this approach may provide

new insights to the possibility of improving the overall survival of

patients with PTC and minimizing the risk of drug resistance and

side effects.
Conclusion

Since the discovery of CCND1 in 1991, considerable progress

has been made towards a better understanding of its physiology and

role in various diseases. Cyclin D1 is frequently deregulated in PTC

and serves as a biomarker of cancer phenotype and disease

progression. In this review, we discuss recent studies that

uncovered the detailed role of cyclin D1 in cell cycle control and

specific changes in PTC cells. With due consideration given to the

oncogenic role of cyclin D1 in PTC carcinogenesis, cyclin D1 shows

promise as a potential therapeutic target against PTC. Through

high-throughput screening techniques, it is possible to identify

novel and effective cyclin D1 inhibitors from a diverse library of

chemical compounds. Meanwhile, the effective use of potential

therapies towards cyclin D1 or CDK4/6 will rely on the

development of biomarkers for the therapeutic response.

Considering that the efficacy of most targeted therapies is limited

due to drug resistance, it is important to understand the

mechanisms underlying resistance to cyclin D1 or CDK4/6

inhibition. Thus, further studies leading to the development of

optimization methods that enhance the anti-cancer effects of cyclin

D1 inhibitors in PTC are warranted.
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