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Comprehensive characterization
of ferroptosis in hepatocellular
carcinoma revealing
the association with
prognosis and tumor
immune microenvironment

Jingjuan Zhu1,2†, Xiao Xu1,2†, Man Jiang1, Fangfang Yang2,
Yingying Mei2 and Xiaochun Zhang1*

1Cancer Precision Medical Center, The Affiliated Hospital of Qingdao University, Qingdao University,
Qingdao, China, 2Qingdao Medical College, Qingdao University, Qingdao, China
Background: Ferroptosis is a type of regulatory cell death (RCD) mode that

depends on iron-mediated oxidative damage. It has the potential to improve the

efficacy of tumor immunotherapy by modulating the tumor microenvironment

(TME). Currently, immunotherapy has significantly improved the overall

treatment strategy for advanced hepatocellular carcinoma (HCC), but the

distinct immune microenvironment and high tolerance to the immune make

massive differences in the immunotherapy effect of HCC patients. As a result, it is

imperative to classify HCC patients who may benefit from immune checkpoint

therapy. Simultaneously, the predictive value of ferroptosis in HCC and its

potential role in TME immune cell infiltration also need to be further clarified.

Methods: Three ferroptosis molecular models were built on the basis of mRNA

expression profiles of ferroptosis-related genes (FRGs), with notable variations in

immunocyte infiltration, biological function, and survival prediction. In order to

further investigate the predictive impact of immunotherapy response in HCC

patients, the ferroptosis score was constructed using the principal component

analysis (PCA) algorithm to quantify the ferroptosis molecular models of

individual tumors.

Results: In HCC, there were three totally different ferroptosis molecular models.

The ferroptosis score can be used to assess genetic variation, immunotherapy

response, TME characteristics, and prognosis. Notably, tumors with low ferroptosis

scores have extensive tumor mutations and immune exhaustion, which are

associated with a poor prognosis and enhanced immunotherapy response.

Conclusions: Our study indicates that ferroptosis plays an indispensable role in

the regulation of the tumor immunemicroenvironment. For HCC, the ferroptosis
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score is an independent prognostic indicator. Assessing the molecular model of

ferroptosis in individual tumors will assist us in better understanding the

characteristics of TME, predicting the effect of immunotherapy in HCC

patients, and thus guiding a more reasonable immunotherapy program.
KEYWORDS

hepatocellular carcinoma, ferroptosis, molecular typing, prognosis, tumor
microenvironment, immunotherapy
1 Introduction

Hepatic cancer, especially hepatocellular carcinoma (HCC),

which accounts for more than 90% of primary hepatic tumors, is

the third leading cause of tumor-related deaths worldwide (1). In

recent years, immunotherapy such as immune checkpoint inhibitors

(ICIs) has completely replaced systematic chemotherapy as the first-

line treatment method for advanced HCC (2, 3). The adoption of the

Atezolizumab-Bevacizumab protocol as standard treatment, in

particular, heralds the beginning of a revolutionary age (4).

However, the complex pathophysiology, distinctive heterogeneity,

and high immunological tolerance of HCC contribute significantly to

variation in the therapeutic impact of immunotherapy in patients (5,

6). Numerous mechanisms, including immune evasion, dysfunction

of effector T lymphocytes, immunosuppression, and poor tumor

antigen expression, are present in the microenvironment of HCC (6).

Any of these potential processes could be a formidable impediment to

immunotherapy. The occurrence and development of HCC are

thought to be a multi-step process, and the precise molecular

processes leading to the formation of HCC have traditionally been

the focus of HCC research. In the past, many researchers have

discussed it from different perspectives. For instance, the

cholangiocarcinoma-like (CCL) signature (7), the hepatoblastoma

16 gene (HB16) signature (8), the NCI proliferation (NCIP) signature

(9), the hepatic stem cells (HS) signature (10), the 65 genes recurrence

risk score (RS65 score) (11), the Seoul National University recurrence

(SNUR) signature (12), the Hippo pathway signature (13), and the

Hoshida signature (14). These molecular typing based on multi-omic

data elaborated the genetic and immunological characteristics of

HCC patients from different perspectives, which is the cornerstone

for directing accurate treatment. Therefore, it is essential to perform

molecular classification of HCC patients who may benefit from

immune checkpoint therapy.

Ferroptosis is distinct from cell necrosis, apoptosis, and

autophagy (15, 16). Iron metabolism disruption and reactive

oxygen species (ROS) buildup resulting in lipid peroxidation are

the main factors contributing to ferroptosis (17). Induction of

ferroptosis has emerged as a promising cancer treatment option

in recent years, especially for refractory malignant tumors (18, 19).

Ferroptosis-related lipid peroxides encourage dendritic cells to

identify, phagocytose, and handle tumor antigens before

presenting them to CD8+T lymphocytes as a recognition signal.

CD8+T cells release IFN-g, which inhibits the cystine absorption of
02
tumor cells and activates cytotoxic T lymphocytes, hence enhancing

tumor immunotherapy (20–22). These findings suggest that

ferroptosis has a profound impact on TME and immunotherapy.

Ferroptosis provides an innovative idea for the development of new

candidate drugs for the treatment of refractory cancers. After

acquired resistance to EGFR-TKIs, EGFR-mutated lung cancer

cells showed increased sensitivity to ferroptosis inducers (23).

Jiang et al. reported that TYRO3 can promote the development of

the tumor microenvironment by reducing the ratio of M1/M2

macrophages while inhibiting TYRO3 can promote tumor

ferroptosis and make drug-resistant tumors sensitive to PD-1

therapy (24). A recent study found that the small molecule

MMRi62 can induce ferroptosis in pancreatic ductal

adenocarcinoma (PDAC) cells carrying KRAS and/or p53 gene

mutations, thus inhibiting tumor growth and preventing metastasis

(25). These recent studies indicate that the induction of ferroptosis

may overcome the drug resistance of targeting and immunotherapy.

When transforming ferroptosis into clinical application, it will be

particularly important to develop specific therapies that can induce

ferroptosis in cancer cells while avoiding systemic adverse reactions.

In this regard, nanoparticle ferroptosis inducers provide unique

advantages (26). In 2021, the scientific research team led by Jianlin

Shi proposed a non-ferrous ferroptosis-like strategy based on a

hybrid CoMoO4-phosphomolybdic acid nanosheet (CPMNS). The

ferroptosis-like cell death process is triggered by increasing ROS,

depleting GSH (glutathione), and regulating GPX4 activity. Both in

vitro and in vivo results have proved significant anticancer efficacy,

indicating that this ferroptosis-like death strategy supported by

CPMNS extends the applicability of the concept of ferroptosis to the

process of ferroptosis-like death induced by non-ferrous metals,

which will contribute to future progress in the field of cancer

treatment programs (27). Last but not least, we currently lack

biomarkers to mark ferroptosis in the body. The exploration of

suitable biomarkers will facilitate the development of further in vivo

research and clinical surveillance (28, 29).

The inflammatory state of TME has been proven to be essential

for the occurrence, development, invasion, and metastasis of almost

all solid tumors (30). In most cases, HCC is the result of chronic

liver inflammation that leads to the formation of a complex TME

composed of immune cells and stromal cells. TME involves the

development of metastasis and drug resistance. This has become a

challenge in the treatment of HCC patients because it influences the

response to targeted and immunotherapy (31). In the past decade,
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immunotherapy has developed rapidly and has been recognized as a

key strategy for controlling the progression of malignant tumors.

PD-1/PD-L1 inhibitors have been approved for many solid tumors

and hematological malignancies, including non-small cell lung

cancer, melanoma, urothelial carcinoma, esophageal carcinoma,

renal cell carcinoma, and Hodgkin’s lymphoma (32). According

to the results of the IMbrave150 study, Atezolizumab combined

with bevacizumab has been approved for the first-line treatment of

unresectable locally advanced or metastatic hepatocellular

carcinoma (33). Another promising immune checkpoint inhibitor

treatment strategy is the combination of Durvalumab (PD-L1

inhibitor) and Tremelimumab (CTLA-4 inhibitor). PD-L1 and

CTLA-4 are both inhibitory molecules expressed in T cells.

Treatment with these two antibodies recently showed promising

results in the phase III HIMALAYA clinical trial (NCT03298451).

Their effectiveness in improving the survival of HCC patients

highlights the role of T cells in the treatment of HCC (34).

Chimeric antigen receptor T cell (CAR-T) therapy is an

innovative type of tumor immunotherapy. Through genetic

engineering technology, T cells can specifically recognize tumor-

related antigens, thus exerting anti-tumor effects (35). To date, five

CAR-T cell therapies have been approved for hematological

malignancies. Several CAR-T therapies are currently undergoing

clinical trials for HCC targeting a variety of surface and intracellular

antigens (36). It is noteworthy that the characteristics of hypoxia

and nutrient deprivation of TME have seriously weakened the

adaptability and efficacy of CAR-T cells, emphasizing the need

for more complex engineering strategies (36). Another new option

for HCC immunotherapy is adaptive T cell transfer of gamma-delta

T cells ( gd T cells). Low infiltration of gd T cells in peritumoral liver

tissue is associated with a higher recurrence rate of HCC and

predicts postoperative recurrence (37). Adoptive transfer of

allogeneic-gd T cells in combination with local interventional

therapy has an encouraging clinical effect against HCC and

intrahepatic cholangiocarcinoma (ICC) (38). At present, many

drugs targeting the tumor microenvironment are under

development, including synthetic drugs, biotherapeutics, and

vaccines. Personalized treatment regimens will be needed to

achieve maximum clinical benefits for patients.

Epithelial-mesenchymal transformation (EMT) in TME was

originally thought to primarily be associated with invasive

metastasis of cancer cells, but new research has revealed that

EMT is an important mechanism of tumor treatment resistance

(39–41). Previous research has demonstrated that tumor

microenvironment (such as hypoxia), numerous growth factors,

and carcinogenic-associated signaling pathways (such as TGF-b,
Notch, MAPK, and KRAS signaling pathways), can activate the

EMT process (42–44). Mariathasan et al. gathered a set of EMT

marker genes, including EMT1 (breast cancer) (45), EMT2

(urothelial carcinoma) (46), EMT3 (metastatic melanoma) (47),

angiogenesis indicators (48), and WNT targets (49). They studied a

large number of patients with urothelial carcinoma who were taking

an anti-PD-L1 medication and discovered that a favorable immune

response was connected to CD8+T effector cell phenotype and

tumor mutation burden (TMB) (50). Schreiber et al. found that

inhibition of glutathione peroxidase 4 (GPX4) induced ferroptosis
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in mesenchymal resistant cancer cells (51). Similar to GPX4-

dependent mesenchymal resistant cancer cells, persistently drug-

resistant cancer cells are also highly sensitive to ferroptosis (52). As

a result, further understanding the role of ferroptosis in the tumor

microenvironment and EMT regulation would aid in the

investigation of tumor drug resistance mechanisms.

In this study, we screened three hub genes and performed pan-

cancer analysis. The expression verification and survival analysis were

carried out in the validation queue of our hospital. We structured three

ferroptosis molecular patterns and found that their prognosis and TME

characteristics were significantly different. Then we identified the

ferroptosis scoring system, which can accurately predict the effect of

immunotherapy, suggesting that ferroptosis has a significant impact on

the treatment of advanced HCC.
2 Material and methods

2.1 Data collection

This study analyzed mRNA expression data and clinical

information of 371 members in the TCGA-LIHC cohort available

in The Cancer Genome Atlas (TCGA, https://portal.gdc.cancer.gov/

repository) database. Additionally, 167 samples from the GSE76427

cohort were obtained from the Gene Expression Omnibus (GEO)

database (https://www.ncbi.nlm.nih.gov/geo). To further validate

the results, we analyzed the mRNA expression data of 240 samples

from the International Cancer Genome Consortium (ICGC, https://

dcc.icgc.org/) database.

The TCGA-LIHC copy number variation (CNV) information is

derived from the UCSC Xena database (https://xena.ucsc.edu/). The

TCGA-LIHC clinical information is derived from the UCSC Xena

database and research published by the TCGA team in Cell (53).

Afterward, FRGs were obtained from FerrDb, which consists of a

database of ferroptosis regulators, markers, and associations

between ferroptosis and various diseases (54). After removing

duplicate genes, in all, 258 FRGs were available for analysis

(Supplementary Table 1). In addition, the data contained in

TCGA, GEO, ICGC, and FerrDb is publicly available. TCGA,

GEO, and ICGC policies and guidelines for data acquisition and

publication were strictly followed in the conduct of this study.
2.2 FRGs screening and protein-protein
interaction network construction

The RNA high-throughput sequencing data in FPKM form was

converted to TPM using the “TCGAbiolinks” (version, 2.26.0) R

package (55). The “limma” (version, 3.54.0) package was used to

analyze 373 HCC samples and 49 paracancerous tissues from the

TCGA-LIHC cohort (56). Thus, differentially expressed FRGs were

identified (FDR<0.01, |logFC|>1). Univariate Cox regression

analysis was performed among FRGs, and p<0.01 was used as a

screening condition to identify potential prognostic genes affecting

overall survival (OS). Based on these FRGs, the PPI between

proteins were generated by the STRING database. Following this,
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hub genes were identified via Cytoscape (version, 3.9.0). The

confidence score was set as a score<0.4.
2.3 Pan-cancer analysis

To analyze the differential expression and survival prediction of

hub genes in 33 cancers, we collected gene expression information and

relevant clinical data from the TCGA database for 33 tumor types.
2.4 Immunohistochemical analysis of
clinical validation cohort

We obtained 69 surgical specimens of hepatocellular carcinoma

and 41 matched paracancerous tissues from the Affiliated Hospital of

Qingdao University (hereinafter referred to as our hospital), as well as

the corresponding clinical information. To assess the expression levels

of hub genes (HRAS, SLC7A11, and SLC2A1), immunohistochemistry

(IHC) was accomplished by GTVisionTM III Detection Systems

(Genetech, Shanghai, China) and antibodies (18295-1-AP, ab115730,

ab37185) according to the manufacturer’s instructions. The

immunohistochemical staining was assessed by two pathologists who

were uninformed of the clinical information. When their assessments

differ, the third pathologist will undertake an independent examination.

For each pathological section, we observed ten optical fields under a

high-power lens (× 400). We took the IHC staining score as the final

staining judged criteria. IHC staining score = staining area score ×

staining intensity score. The staining area score was estimated on a

scale of 0-4 (0, ≤10%; 1, 11-25%; 2, 26-50%; 3, 51-75%; 4, ≥75%); the

staining intensity score was classified as 0 (negative), 1 (weak), 2

(moderate), or 3 (strong). We grouped the IHC staining score to

demonstrate the relationship between hub gene expression and patient

survival. The IHC staining score below six was defined as low

expression group, while the score over six was defined as high

expression group. Moreover, the differences in IHC staining scores of

hub genes between tumors and adjacent normal tissues were

performed using the Wilcoxon rank sum test.
2.5 Identification of the ferroptosis
molecular patterns

We recognized the ferroptosis molecular patterns on the basis of

FRGs mRNA expression profiles by using the “ConsensuClusterPlus”

package (57). The patients from the TCGA-LIHC and GSE 76427

were then classified for further investigation. The consensus

clustering algorithm calculated the number and stability of clusters.
2.6 Enrichment of functional properties
and TME immune infiltration in ferroptosis

In order to search for potential biological behaviors between

ferroptosis molecular patterns, the GO and KEGG functional

analyses were performed by “clusterProfiler” (version, 4.6.0)

package (FDR<0.05).
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From the MSigDB database, we obtained the gene set

“c2.cp.kegg.v7.4.symbols” for our GSVA analysis by “GSVA”

(version, 1.46.0) packages (FDR<0.05). In general, GSVA is an

unsupervised, nonparametric approach for estimating the levels of

variation within biological pathways and processes in

expression datasets.

The mechanism of TME features generation was then investigated

using a Single Sample Gene Set Enrichment Analysis (ssGSEA) (58).

According to the expression of a set of tumor-infiltrating immune cells

(TIICs) and immune function marker genes obtained from Bindea

et al., the TIICs enrichment score and immune function of each HCC

sample were quantitatively assessed. Mariathasan et al. identified and

characterized a series of gene sets that relate to the following biological

processes: antigen processing machinery; epithelial-mesenchymal

transition (EMT) markers consisting of EMT1, EMT2, and EMT3;

angiogenesis signature; Pan-fibroblast TGF-b response signature (Pan-

FTBRS); WNT targets; FGFR3 related genes (Supplementary Table 2)

(50). We retrieved associated gene sets from the MSigDB database, to

further illuminate the processes by which ferroptosis influences the

tumor immune microenvironment including the following: TGF-EMT

down-regulation signal pathways; TGF-EMT up-regulation signal

pathways; MAPK signal pathways; NOTCH signal pathways; KRAS

up-regulation signal pathways; KRAS down-regulation signal

pathways; hallmark-hypoxia; HIF-1 signal pathways to

increase oxygen delivery; HIF-1 signal pathways to decrease

oxygen consumption.
2.7 The ferroptosis score

We identified differentially expressed genes (DEGs) associated with

the ferroptosis pattern through the “limma” package and screened

prognostic genes using Univariate Cox regression models (p<0.05). We

used principal component analysis (PCA) to quantify the ferroptosis

molecular models of individual tumors and constructed a scoring

system, which was termed the ferroptosis score. We defined the

ferroptosis score as follows: Ferroptosis score =∑ (PC1i + PC2i),

where i denotes the expression of prognostic DEGs associated with

ferroptosis molecular models (59, 60). Patients were divided into low

and high ferroptosis score groups in accordance with the threshold of

-23.27889 established by “Survminer”.

The independent prognostic value of the ferroptosis score was

determined with Univariate and Multivariate Cox analysis. Next, a

prediction model was constructed by integrating the ferroptosis

score and other independent clinical risk factors according to the

prognostic multivariate profile. A nomogram plot was used to

visualize the relationship between the variables in the prediction

model by following a certain scale in the same plane. A prognostic

calibration plot was used for fit analysis of the model to the actual

situation and to determine predictive efficacy.
2.8 Assessment of tumor mutation burden
and immunotherapy response

Based on the MAF files, somatic mutation data was visualized

using the “maftools” (version, 2.14.0) package (61). We calculated
frontiersin.org

https://doi.org/10.3389/fonc.2023.1145380
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhu et al. 10.3389/fonc.2023.1145380
the TMB of each patient as follows: TMB= (total count of variants)/

(total length of exons).

In addition, Jiang et al. proposed TIDE method in order to

simulate immune escape mechanisms in cancer, including T cell

dysfunction and T cell rejection (62). In this study, TIDE was used

to assess response to immunotherapy. A higher TIDE score not only

indicates that the tumor has an immune avoidance phenotype, but

also predicts a poor response to ICIs in cancer patients.
2.9 Chemotherapeutic drug
sensitivity prediction

The sensitivity of ferroptosis to chemotherapeutic agents

was assessed by the Genomics of Drug Sensitivity in Cancer

(GDSC; https://www.cancerrxgene.org/) database (63). The half

maximum inhibitory concentration (IC50) was calculated by the

“pRRophetic” (64).
2.10 Statistical analysis

We used Wilcoxon rank-sum tests for comparing the two

groups and Kruskal-Wallis tests for assessing multiple

comparisons. Based on the output from the “survminer” package,

a dividing point was determined for each subgroup. In order to

analyze the survival times of different subgroups, Kaplan-Meier

curves and log-rank tests were used.
3 Results

3.1 The landscape of genetic variation of
FRGs in hepatic cancer

A total of 258 ferroptosis-related genes (FRGs) were included in

the analysis. We found that in the TCGA-LIHC cohort, 30.6% of

FRGs (79/258), was differentially expressed in HCC tissues and

non-tumor para-cancer tissues (FDR<0.01, | logFC|>1;

Supplementary Table 3). As a result of a subsequent Univariate

Cox regression analysis, 58 FRGs were correlated with overall

survival (OS) (p<0.01; Supplementary Table 4). By cross-

overlapping 79 differentially expressed FRGs and prognostic

related genes, we obtained 32 differentially expressed prognostic

related FRGs (Figure 1A). The forest map displayed the Hazard

ratios of the 32 FRGs in the single-factor Cox regression analysis

(Figure 1B). The heat map showed that the expression levels of 32

FRGs were significantly different between tumor tissues and normal

tissues. FRGs were significantly enriched in tumor tissues

(Figure 1C). We also examined the incidence of somatic

mutations and copy number variations (CNVs) for FRGs.

According to the position of the 32 FRGs on the chromosome,

the CNV changes are shown in Figure 1D. As a result of the CNV

variation frequency analysis, CNV variation was very common in

FRGs, most of which focused on copy number amplification

(Figure 1E). We found that CDKN2A had the highest frequency
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of mutation in HCC samples, followed by NARS (Figure 1F). The

above analysis presented that the expression of FRGs in

normal liver tissue and HCC tissue was highly heterogeneous,

suggesting that the modifications in the expression of FRGs may

contribute significantly to the occurrence and development of

hepatocellular carcinoma.
3.2 Hub gene screening and
Pan-cancer analysis

We generated a protein-protein interaction network (PPI) for

FRGs and identified three hub genes via Cytoscape, including

HARS, SLC7A11, and SLC2A1 (Figure 2A, Supplementary

Figure 1A). These three FRGs showed significant differential

expression in matched samples of cancer and Normal

paracancerous tissue in TCGA-LIHC cohort (Figure 2B). Pan-

cancer analysis demonstrated that these three FRGs were

significant differential expression in most cancers (Figures 2C–E).

The survival analysis of these three genes also showed their

potential role in survival prediction (Figures 2F–H).
3.3 Clinical cohort verification

In order to evaluate the expression level of hub genes (HRAS,

SLC7A11 and SLC2A1) in hepatocellular carcinoma, we conducted

immunohistochemical (IHC) analysis. The expression of HRAS,

SLC2A1, and SLC7A11 was positive in the majority of specimens

from the validation cohort in our hospital. Among them, SLC7A11

has strongly stained in 38 (55.1%) specimens, HRAS was strongly

stained in 41 (59.4%) specimens, and SLC2A1 was strongly stained

in 32 (46.4%) specimens (Figure 3A; Supplementary Table 5).

Finally, the Kaplan-Meier curve showed that patients with high

gene expression had a shorter survival than patients with low gene

expression (Figure 3B).
3.4 Ferroptosis molecular patterns with
different TME features and function

According to the expression of the three FRGs in the TCGA-

LIHC and GSE76427 cohorts, HCC patients were subdivided into

three molecular patterns by unsupervised cluster analysis, termed

ferroptosis clusters A, B, and C (A: n=194, B: n=107, C: n=236;

Supplementary Figure 1B). It was demonstrated by the principal

component analysis (PCA) that the three subtypes were entirely

separate (Figure 4A). Among the three molecular patterns, the three

FRGs were significantly highly expressed in cluster B, and

appreciably low expressed in cluster A (Figure 4B). Prognostic

analysis revealed an exceedingly favorable outcome in ferroptosis

cluster A, whereas cluster B had the most detrimental prognosis

(p<0.001; Figure 4C).

Afterward, we evaluated the correlation among these patterns and

TME features. Immune cell infiltration varied greatly between the three

molecular patterns, especially for ferroptosis cluster A, which was
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remarkably rich in NK cells and type-II IFN (IFN-g) response.

Ferroptosis cluster B was abounding in activated dendritic cells

(aDCs), antigen-presenting cells (APCs), check-point, human

leukocyte antigen (HLA), macrophages, regulatory T cells (Tregs),

major histocompatibility complex (MHC) class I (Figure 4D). We also

explored the relationship between ferroptosis clusters and various

biological processes. The results manifested that EMT2, EMT3,

antigen processing machinery, and WNT targets scored the highest

in ferroptosis cluster B, as well as angiogenesis signature, which was

significantly enriched in ferroptosis cluster A (Figure 4E). In particular,

ferroptosis cluster B was found to be significantly enriched in hypoxia-
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related signaling pathways and EMT-related signaling pathways (such

as TGF-b, MAPK, and KRAS signaling pathway) (Figure 4F). We

further assessed the hypoxia status of the three ferroptosis molecular

patterns using the Buffa Hypoxia Score and found equally significant

differences (Supplementary Figure 1C) (65). Hypoxia and EMT are two

important tumor microenvironmental biological processes that

significantly affect the prognosis of HCC patients, which makes it

necessary to pay attention to their relationship with ferroptosis.

Their interaction may be an important clue to observing the

effect of ferroptosis on immunotherapy and the prognosis of

hepatocellular carcinoma.
B

C D

A

E F

FIGURE 1

Prognostic ferroptosis-related gene (FRGs) differentially expressed in TCGA. (A) Venn graph showing the intersection of prognostic genes and
differentially expressed genes. (B) Forest plots illustrating the Univariate Cox regression analysis of overlapping genes. (C) Expression of overlapping
genes in tumor tissue. (D) CNV alteration locations for 32 FRGs. (E) The frequency of CNV variation of 32 FRGs. Alteration frequency was
represented by the height of the column. Green dots indicating deletions; red dots indicating amplifications. (F) The mutation frequency of 32 FRGs
in 364 patients with HCC. One patient was represented by each column. The upper bar plot indicated the extent of tumor mutations. Numbers on
the right indicated the frequency of mutations in each gene. The right bar plot showed the proportions of the different types of variants. Stacked bar
plot of each sample was able to show the fraction of conversions.
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Subsequently, we explored the differences in ferroptosis

molecular patterns in biological signaling pathways. As shown in

Figure 4G, ferroptosis cluster A was markedly enriched in fatty acid

metabolism, adipocytokine signaling pathway, glycolysis and

gluconeogenesis, and PPAR signaling pathways. The ferroptosis

cluster B presented enrichment pathways prominently related to the
Frontiers in Oncology 07
p53 signaling pathway, T cell receptor signaling pathway, adherens

junction, mTOR signaling pathway, Oocyte meiosis, ubiquitin-

mediated proteolysis, cell cycle, and DNA damage repair.

Therefore, it is reasonable to speculate that cluster B may be

associated with invasive HCC, while cluster A may be associated

with metabolic disorders.
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FIGURE 2

Hub Gene Screening and Pan-carcinoma Analysis. (A) Identified PPI hub genes. (B) Differential expression of HRAS, SLC2A1, and SLC7A11 in HCC
paired samples. (C) Differential expression of HRAS in 33 cancers. ns, not significant; *p<0.05; **p<0.01; ***p<0.001. (D) Differential expression of
SLC2A1 in 33 cancers. ns: not significant; *p<0.05; **p<0.01; ***p<0.001. (E) Differential expression of SLC7A11 in 33 cancers. ns: not significant;
*p<0.05; **p<0.01; ***p<0.001. (F) Kaplan-Meier survival curve of HRAS and pan-carcinoma Univariate Cox regression analysis. (G) Kaplan-Meier
survival curve of SLC2A1 and pan-carcinoma Univariate Cox regression analysis. (H) Kaplan-Meier survival curve of SLC7A11 and pan-carcinoma
Univariate Cox regression analysis.
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3.5 Generation of ferroptosis-related
genomic patterns

As a means of further detecting potential biological processes

among the ferroptosis molecular patterns, we determined 1139

DEGs related to ferroptosis molecular patterns, then performed GO

and KEGG enrichment analysis (Figures 5A, B). As expected, DEGs

were enriched in a number of molecular functions related to cell-

substrate junction, focal adhesion, ficolin-1-rich granule, regulation of

telomerase RNA localization to Cajal body, Fc epsilon RI signaling

pathway, Cholesterol metabolism, which confirmed again that

ferroptosis molecular patterns played an effective role in tumor

immune activation, invasion and proliferation, and metabolic disorder.

In order to further verify the regulatory mechanism, the Univariate

Cox analysis was conducted on these DEGs and screened out 794

prognostic DEGs (p<0.05). On the basis of these prognostic DEGs, we

conducted an unsupervised cluster analysis, the TCGA-LIHC and

GSE76427 patients were classified into three ferroptosis genomic

patterns and we named them gene clusters A, B, and C (A: n=214, B:

n=84, and C: n=239; Supplementary Figure 1D). Further investigation

was carried out on the prognostic implications of ferroptosis gene

clusters. In general, it was found that subjects in gene cluster A recorded

a longer OS, whereas those in gene cluster B exhibited a more

pessimistic outlook (p<0.001; Figure 5C). The expression of HRAS,

SLC2A1, and SLC7A11 differed significantly between the three gene

clusters, which also matched the expected outcomes of the ferroptosis
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molecular patterns (Figure 5D). The heatmap showed that ferroptosis-

related genomic patterns were almost identical to the ferroptosis

molecular patterns (Supplementary Figure 1E).
3.6 Construction of ferroptosis
scoring system

However, our previous studies were based on patient populations.

Considering individual heterogeneity and the complex mechanisms of

HCC, we developed a PCA-based scoring algorithm to quantify the

ferroptosis molecular pattern in individual patients, which we call the

ferroptosis score. The ferroptosis scores in the ferroptosis clusters, as

well as the gene clusters, were substantially different (p<0.01;

Figures 5E, F). Ferroptosis cluster B patients had the poorest

prognosis and the lowest ferroptosis score, as predicted, whereas

cluster A patients had the opposite features (Figure 5E). The gene

cluster produced the expected result in the ferroptosis score (Figure 5F).
3.7 Development of an independent
prognostic model for HCC based
on ferroptosis

We investigated the significance of the ferroptosis score in

forecasting survival. Afterward, they were categorized into two

groups: high ferroptosis and low ferroptosis (high group: n=423,
B

A

FIGURE 3

Immunohistochemical (IHC) analysis of clinical validation cohort. (A) Comparison of SLC2A1, HRAS, and SLC7A11 expression in HCC tissues and
adjacent tissues. (B) Survival curves of HCC patients with high and low SLC2A1, HRAS, and SLC7A11 expression.
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low group: n=61). Consistent with our previous research, TCGA

and GEO samples with low ferroptosis scores implied a more

adverse prognosis than those with high ferroptosis scores

(p<0.001; Figure 6A). We also used the ICGC cohort for

validation and obtained consistent results (p<0.001; Figure 6B).

Ferroptosis score also showed good predictive power in other

indicators of clinical benefit, for example, disease special survival

(DSS), disease-free survival (DFS), and progression-free survival

(PFS) (p<0.001; Figures 6C–H). In the univariate and multivariate
Frontiers in Oncology 09
cox regression analysis, the ferroptosis score showed significantly

superior survival prediction ability compared with other molecular

classifications in previous studies (Supplementary Figure 1F).

We further established a nomogram plot to verify the accuracy of

the prediction of the ferroptosis score in HCC (Figure 6I). We assigned

a risk score to each clinical risk variable, including stage, age, gender,

and ferroptosis score. Compared with other clinical features, the

highest number of risk points was contributed by the ferroptosis

score (from -60 to 50). The calibration curve of 1-, 2-, and 3-year
B
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A

FIGURE 4

Recognition of ferroptosis molecular patterns with specific TME features and functional enrichment analysis. (A) Principal component analysis of hub
gene expression profiles distinguished three ferroptosis clusters, A (blue), B (yellow), and C (red). (B) Heat map displaying the correlation between the
hub genes expression and ferroptosis clusters. (C) Kaplan-Meier curves for the three molecular patterns of HCC patients. (D) Box plots displayed the
levels of immune infiltration in the three patterns. ns, not significant; *p<0.05; **p<0.01; ***p<0.001. (E, F) Differences in stromal activation pathway (E)
and carcinogenesis-related pathways (F) in the three ferroptosis clusters. ns, not significant; *p<0.05; **p<0.01; ***p<0.001. (G) GSVA analysis revealed
distinct activations of biological pathways in ferroptosis clusters. Blue represented the inhibition pathway and red represented the activation pathway.
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OS was illustrated in Figure 6J. When compared to the actual situation,

the predicted 1-year survival rate, 3-year survival rate, and 5-year

survival rate of the model are close to the diagonal, indicating that the

ferroptosis scoring model has a strong fitting effect.
3.8 Correlation between ferroptosis score
and clinical features

We explored the relationship between clinical characteristics,

molecular characteristics in previous studies and ferroptosis score
Frontiers in Oncology 10
group (Supplementary Table 6). Patients in the high score group

have clinical features related to good prognosis (such as relatively

low Child-Pugh classification, Stage, Grade, AFP). The median BMI

of patients in the low ferroptosis score group was 22.80, while that

in the high ferroptosis score group was 24.98. The Wilcoxon rank

sum test showed statistically significant differences between the two

groups (p=0.011).

We discovered that low score group patients had significant

aggressive features and embryonic stem cell-like expression traits

(ES signature), including CCL subtype (CCL feature), HB16 cluster
B

C D

E F

A

FIGURE 5

Generation of ferroptosis-related genomic patterns and the ferroptosis score. (A, B) GO (A) and KEGG (B) analysis based on differentially expressed
genes. (C) Kaplan-Meier curves for the three gene clusters of HCC patients. (D) Box plots showed hub gene expression in the three gene clusters.
***p<0.001. (E, F) Box plots displayed the differences in ferroptosis scores among the three ferroptosis clusters (E) and the three gene clusters (F).
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2, SOH subtype (HIPPO), HS subtype (NCIHS), high RS65 score,

and NCIP cluster A (Supplementary Table 6). This indirectly

confirmed that the ferroptosis molecular patterns may represent

different developmental stages of HCC origin cells or different

transformation mechanisms.
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3.9 TMB characteristic of ferroptosis score

The waterfall plots showed the 20 genes with the highest

mutation frequency in the somatic mutation data of patients in

the TCGA-LIHC cohort. We compared the differences in mutation
B

C D E

F G H

I J

A

FIGURE 6

HCC prognosis based on the ferroptosis score. (A, B) Kaplan-Meier survival curves for the ferroptosis score groups in TCGA+GEO (A) and ICGC
(B). (C) Box plots showed the differences in disease-free survival (DFS) between ferroptosis score groups. (D) Kaplan-Meier curves for the ferroptosis
score groups in disease-free survival (DFS). (E) Box plots showed the differences in disease special survival (DSS) between ferroptosis score groups.
(F) Kaplan-Meier curves for the ferroptosis score groups in disease special survival (DSS). (G) Box plots showed the differences in progression-free
survival (PFS) between ferroptosis score groups. (H) Kaplan-Meier curves for the ferroptosis score groups in progression-free survival (PFS). (I)
Nomogram plot of prognostic multivariate regression model. (J) Prognostic Calibration plot evaluating the fit analysis of the model to the actual
situation.
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landscape between the two ferroptosis score groups. Figures 7A, B

demonstrated that patients with low ferroptosis scores suffered

from a greater tumor mutation burden than patients with high

ferroptosis scores. It should be noted that the mutation frequency of

TP53 in the low ferroptosis score group was significantly increased,

and the ferroptosis score of TP53 mutant samples was also

significantly lower than that of wild-type samples (p<0.01;

Figure 7C). The association of TP53 mutations with poor

prognosis is well known in many cancer types. In order to more

accurately evaluate p53 functional status, the TCGA team

developed a p53 signature (53). HCC patients with low p53

expression displayed a significantly reduced OS relative to their

high p53 signature counterparts. We found that higher ferroptosis

scores also had significantly elevated p53 signatures (Figure 7D).

The quantification analysis of TMB confirmed that low

ferroptosis tumors had higher TMB levels (p=0.028; Figure 7E).

The ferroptosis score and TMB were negatively correlated (p=0.019;

Figure 7F). Further evidence showed that poor prognosis was

strongly associated with high TMB and low ferroptosis scores

(p<0.001; Figure 7G). Considering the synergistic effect of TMB
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and ferroptosis scores on the prognosis, we conducted a hierarchical

prognostic analysis. We found that patients with high ferroptosis

score and low TMB had a great survival advantage (p<0.001;

Figure 7H). These data indicate that ferroptosis score combined

with TMB can further improve the prognosis of patients.
3.10 Ferroptosis score, TME features, and
response to immunotherapy

The single sample Gene Set Enrichment Analysis (ssGSEA)

results showed that the ferroptosis score was significantly correlated

with hypoxia, NOTCH, KRAS, and TGF-EMT signaling pathways

(Figure 8A). An immune correlation analysis conducted in

Figure 8B revealed a significant positive relationship between

ferroptosis score and NK cells, T helper cells, type-I, and type-II

IFN responses, and negatively correlated with immunosuppressive

cell Tregs. Based on these findings, it was again confirmed that

ferroptosis could affect tumor growth and progression by regulating

the tumor microenvironment.
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FIGURE 7

Ferroptosis score and tumor mutation burden. (A, B) Tumor somatic mutation waterfall plots established for those with high ferroptosis scores
(A) and low ferroptosis scores (B). (C) Box plot illustrated the difference of ferroptosis score between the TP53 mutation status. (D) Box plot
illustrated the difference of p53 signature between the ferroptosis score groups. (E) Box plot illustrated the differences between the ferroptosis score
groups in tumor mutation burden. (F) Relationships among ferroptosis score, tumor mutation burden, and gene clusters. (G) Kaplan-Meier curves of
high and low tumor mutation burden patients. (H) Kaplan-Meier curves based on both the ferroptosis score and tumor mutation burden.
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Basic research and clinical trials to exploring the predictive

efficacy of immunotherapy biomarkers remain limited. To analyze

the immunological response and tolerance to immunotherapy in

HCC patients, we chose CD274, CTLA4, LAG3, HAVCR2, IDO1,

and PDCD1 as immune checkpoint-related signatures and CD8A,

CXCL10, GZMA, CXCL9, GZMB, GZMA, IFNG, PRF1, TBX2, and

TNF as immunological activity-related signatures. The majority of

immunological checkpoints and immunoreactive-related markers

were found to be significantly overexpressed in the group with poor

ferroptosis scores (Figure 8C).

In the process of DNA replication, the base mismatch loses its

repair function and causes accumulation, which causes

microsatellite instability (MSI), thus increasing the risk of tumor

occurrence. Pabolizumab has been approved for use in MSI-H/

dMMR solid tumors. This is also the first drug approved by the

Food and Drug Administration (FDA) based on molecular markers
Frontiers in Oncology 13
rather than tumor tissue sources. Therefore, the changes in MSI-H/

dMMR status and related molecules in tumor patients have

important implications. We evaluated the MSI MANTIS score

and microsatellite instability sensor (MSIsensor) score among the

ferroptosis scoring groups (p<0.01; Figures 8D, E). The MSI

MANTIS score has a positive correlation with the probability of

MSI-H status (66, 67), and MSIsensor is an effective tool to obtain

MSI status from standard tumor normal paired sequence data (68).

Not surprisingly, both MSI scores were e higher in the low

ferroptosis score group.

The Tumor Immune Dysfunction and Exclusion (TIDE)

algorithm was used to evaluate the TCGA-LIHC cohort. The

TIDE score of the high ferroptosis group was significantly higher

than that of the low ferroptosis group, and the ferroptosis score of

the ICIs-response group was significantly lower than that of the

non-response group (p<0.01; Figures 8F, G). Together, this evidence
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FIGURE 8

Ferroptosis score correlated with immunotherapy efficacy and response to immunotherapy. (A, B) Heat maps of the correlation between ferroptosis
score and carcinogenic related signaling pathways (A) and immune cell infiltration (B). *p<0.05; **p<0.01; ***p<0.001. (C) Box plot depicting the
differences between the ferroptosis score groups in the relative expression of checkpoints. ns: not significant; *p<0.05; **p<0.01; ***p<0.001. (D, E)
Differences between ferroptosis score groups and MSI MANTIS score (D) and MSIsensor score (E). (F) Box plot depicting the differences between the
ferroptosis score groups in the TIDE score. (G) Box plot depicting the differences of ferroptosis score between the immunotherapy response groups.
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strongly supports the effect of ferroptosis scores in predicting

immunotherapy outcomes.
3.11 Differences in chemotherapy
drug sensitivity between ferroptosis
score groups

We examined the relationship between the ferroptosis score

and the half-maximum inhibitory concentration (IC50) of

chemotherapy drugs. Many drugs, including 5-fluorouracil,

Dasatinib, Gemcitabine, and a variety of receptor tyrosine kinases

(RTK), were significantly associated with the ferroptosis score.

Compared with the low ferroptosis score group, the high

ferroptosis score group has a higher estimated value of IC50

(Figure 9). The relationship between ferroptosis score and the

semi-maximum inhibitory concentration (IC50) of other

chemotherapy drugs were shown in the Supplementary Figure 2.

In conclusion, the high ferroptosis score indicates that HCC

patients were more sensitive to these therapeutic drugs.
4 Discussion

In recent years, with the tremendous advancement of ICIs

monotherapy in the treatment of solid tumors, clinical

researchers have conducted extensive research into hepatocellular

carcinoma. In 2017, Nivolumab was approved by the FDA to treat

Sorafenib treated HCC patients, and became the first

immunotherapy drug approved for advanced HCC (2). But the

subsequent Checkmate-459 did not meet the primary endpoint,

implying that PD-1 inhibitors are effective in hepatocellular

carcinoma, but the single-agent efficacy of PD-1 inhibitors still

does not fulfill therapeutic needs (69). Subsequently, the

combination of PD-L1 inhibitor (Atelizumab) and Bevacizumab

(“T+A” scheme for short) in the phase III clinical trial

(IMbrave150) for the treatment of advanced hepatocellular

carcinoma significantly improved the survival period and quality

of life of patients (4, 70, 71). Consequently, with the diversification

of systematic treatment schemes for advanced hepatocellular

carcinoma, how to accurately select multi-target inhibitors and

appropriate immunotherapy schemes has emerged as a hot

research topic. Therefore, the key to the treatment of advanced

liver cancer in the future is to subdivide patients and find

personalized, highly effective, and minimally invasive whole-

course treatment strategies to improve long-term survival.

Exploring the biomarkers of immunotherapy and molecular

targeted therapy based on molecular typing can accurately screen

patients who will benefit from immunotherapy and predict the

efficacy and prognosis of drugs.

In this study, we identified 32 FRGs that displayed differential

expression and a significant correlation with survival in HCC tissues

and nearby non-tumor tissues. These FRGs play a vital role in the

occurrence, proliferation, metastasis, and even drug resistance of

malignant tumors. Then we screened three hub genes (HRAS,

SLC7A11, and SLC2A1). We discovered that the high expression
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of the three hub genes predicted a poor prognosis for patients with

liver cancer through the survival analysis of the TCGA cohort, GEO

cohort, and the validation cohort of the Affiliated Hospital of

Qingdao University. And consistent conclusions were obtained in

pan-cancer analysis. Consequently, we identified three molecular

subtypes of ferroptosis based on the mRNA expression profiles of

FRGs. These three subtypes differ significantly in terms

of prognosis, molecular function, immune infi ltration

microenvironment, and response to immunotherapy. The

findings demonstrated a considerable enrichment of NK cell and

type II interferon (IFN-g) response, as well as a particularly

pronounced survival advantage for ferroptosis cluster A. It has

been proved that NK cells directly kill tumor cells through cytolytic

granules and act synergistically with other immune cells through

proinflammatory cytokines and chemokines, which is closely

related to the prognosis of cancer patients (72–74). At the same

time, ferroptosis cluster B was considerably abundant in Tregs and

other immunosuppressive cells. Several hypoxia-related and EMT-

related signaling pathways (including the TGF-b, MAPK, and

KRAS signaling pathways) were also substantially expressed in

ferroptosis cluster B. These mechanisms are thought to inhibit

T lymphocytes.

The transcriptome differentially expressed genes (DEGs) among

different ferroptosis molecular subtypes were particularly enriched

for biological processes related to energy metabolism, proliferation,

DNA repair, and immune activation. Based on these DEGs, which

are considered the characteristic genes related to ferroptosis

subtypes, we identified three gene clusters. We found that the

ferroptosis-associated genomic patterns almost overlap with the

ferroptosis molecular patterns. This implied that there were specific

molecular patterns of ferroptosis in HCC. Therefore, a

comprehensive assessment of the molecular patterns of ferroptosis

is essential to gain insight into HCC. Considering the heterogeneity

of HCC, we evaluated each patient ferroptosis molecular patterns by

PCA, established ferroptosis scores, and divided HCC patients into

groups with high and low ferroptosis scores. Ferroptosis cluster B

and gene cluster B had the lowest survival rate and the lowest

ferroptosis score, suggesting that a low ferroptosis score may predict

unfavorable survival. By combining ferroptosis scores with other

independent clinical risk variables, we constructed prognostic

multivariate regression models. When compared to other clinical

traits, the ferroptosis score contributes the greatest risk factors and

has a good prediction efficiency for the outcome of HCC patients.

Further investigation into the association between ferroptosis score

and clinical characteristics of hepatocellular carcinoma revealed

that low ferroptosis score group was significantly related to the

features of patients with poor prognosis (such as increased AFP,

advanced stage, and poor differentiation). As a result, it was proven

that the ferroptosis score was a reliable index for evaluating

patient survival.

The prevalence of obesity has reached epidemic proportions

and has increased dramatically in recent decades. In addition to

causing metabolic and cardiovascular diseases, obesity is also an

established risk factor for several gastrointestinal cancers and is

strongly associated with pancreatic and liver cancers in particular

(75). Therefore, the hepatic molecular mechanisms involving
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obesity and NAFLD induced hepatocarcinogenesis and potential

early markers of HCC are being extensively studied (76). Body mass

index (BMI) is a commonly used international standard to measure

the degree of obesity and health (77). We investigated the difference

in BMI between ferroptosis score groups in patients with

hepatocellular carcinoma. The results showed that there was a

positive correlation between ferroptosis score and BMI. It has

been found that obesity is closely related to the disturbance of

iron metabolism, mainly characterized by high ferritin levels (78).

Ferroptosis caused by iron accumulation is accompanied by

elevated ROS, decreased GSH and inflammatory reactions, insulin

resistance and mitochondrial dysfunction, leading to metabolic

disorders and the development of obesity (79–81). In terms of

immunity, obesity may lead to ferroptosis in Tregs and B1 cells by

reducing the levels of NRF2, GPX4 and GCH1 (80, 82). In our

previous study, biological processes such as fatty acid and glucose

metabolism were also enriched in ferroptosis cluster A. Therefore, it

is reasonable to speculate that the occurrence or development

mechanism of this subset of HCC patients is related to metabolism.

Several studies have shown that HCC subtypes with poor

prognosis may arise from hepatic progenitor cells. The diverse

cell origins of HCC may play an important role in the

heterogeneous course of HCC. Therefore, we also explored the

link between ferroptosis scoring systems and previously developed

molecular models. These molecular models focus on the exploration
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of the tissue origin of HCC and the mechanism between molecular

and clinical pathology and clinical behavior. We discovered that the

low ferroptosis score group was closely connected to hepatic stem

cell origin subtype (CCL subtype, HB16 cluster 2, SOH subtype, HS

subtype, and NCIP cluster A) and early recurrence subtype (RS65,

SNUR). These subtypes are characterized by a high degree of

malignancy, an abundance of hepatic progenitor cell markers

(such as cytokeratin 19 and Ep-CAM), a low level of

differentiation, increased vascular invasion, and satellite lesions

(known risk factors for early recurrence).

Jiang et al. discovered that p53 may inhibit Cys absorption and

trigger ferroptosis by preventing SLC7A11 gene expression, thereby

inhibiting the growth of tumor cells (83). Woo et al. constructed the

p53 signature to evaluate the expression functional status of p53 and

found that it was significantly associated with reduced OS. Tumors

with low p53 expression were significantly associated with increased

copy number instability, increased pathological grading, decreased

expression of marker genes in mature hepatocytes, increased risk of

tumor recurrence (53, 84, 85). All of these results confirm that the

formation of cancers with invasive characteristics is significantly

influenced by TP53. In our study, TP53 mutations and p53

signatures were evaluated to determine the functional status and

activity of p53. We found that p53 signatures were significantly

reduced in the low ferroptosis score group, consistent with the

conclusions of Woo et al.
FIGURE 9

Correlation of ferroptosis scores with chemotherapeutic drug sensitivity.
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As the main components of tumor microenvironment, immune

cells and stromal cells play a crucial role in the regulation of tumor

genesis and development. Additionally, immune cell phenotypic

and function will be directly impacted by ferroptosis. Our study

found that the immune exhaustion subtypes characterized by low

ferroptosis score have significant tumor promoting signals (such as

activated stroma, T cell exhaustion and immunosuppressive

components). Immune dysfunction may be caused by

immunosuppressive cells (such as Tregs). The overexpression of

immune checkpoint molecules (PD-1, PD-L1, CTLA4, LAG3, and

TIM3) in the low ferroptosis score group also indicated T

cell exhaustion.

At present, there is no recognized biomarker to accurately

predict the efficacy of immunotherapy for HCC. PD-L1

expression, TMB, MSI are the most commonly used indicators to

predict the efficacy of ICIs, but their predictive value in HCC lacks

the support of high-level clinical evidence (6). The pan-cancer study

by Yarchoan et al. demonstrated that patients with high PD-L1

expression and TMB at the same time had the best ICIs efficacy

(86). If the PD-L1 level reflects the degree of immune escape from

the tumor, TMB represents the immunogenicity of the tumor itself.

These are two different dimensions of whether immunotherapy is

working. TMB has been found to be inversely associated with

survival outcomes in HCC patients, but patients with higher TMB

are more likely to respond to checkpoint therapy (87). In contrast to

patients with microsatellite instability-low (MSI-L) cancers, those

with MSI-high (MSI-H) tumors had a higher response rate to ICIs

(88). Therefore, we comprehensively evaluated the immune

checkpoint expression, TMB and MSI in HCC patients. We

found that there were significant statistical differences among the

three indicators in different ferroptosis score groups. Low

ferroptosis score was associated with better immunotherapeutic

response in all three indicators. Our study also showed that the

ferroptosis score combined with TMB could further improve the

survival prediction of patients. Additionally, the TIDE score was

applied to the TCGA cohort to forecast immunotherapy, which

again verified the predictive value of the ferroptosis score for

immunotherapy response. According to our analysis of drug

sensitivity, the half maximal inhibitory concentration (IC50) of

several drugs, including 5-fluorouracil, Dasatinib, Gemcitabine,

and a variety of receptor tyrosine kinases (RTK), showed a

significant positive correlation with the ferroptosis score. The

ferroptosis scoring system can stratify patients, screen sensitive

patients, and find newmethods to overcome the problems related to

chemotherapy resistance. These drug sensitivity analyses provide a

potential direction for future treatment work.

Overall, our study has a comprehensive exploration of

predictive efficacy, clinical characteristics linkage, immune

microenvironment, and immunotherapy. We believe that rigorous

multifaceted validation analysis will help improve our

understanding of this field. However, due to limited time and

experimental conditions, there are some unavoidable flaws in our

research that cannot be avoided. The specific molecular and

biological regulation mechanism of ferroptosis affecting the
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prognosis of hepatocellular carcinoma has not been verified by

experiments. It is hoped that in future studies, we will be able to

determine the role of ferroptosis and its related pathways in the

development and progression of hepatocellular carcinoma and

clarify its signaling mechanisms, which will ultimately help

clinicians evaluate the prognosis of hepatocellular carcinoma in

order to guide patients to better receive individualized treatment

and select appropriate drugs. We hope these studies can provide

some valuable clues for future scientific research and

clinical practice.
5 Conclusions

In this study, we systematically evaluated the ferroptosis

molecular patterns in HCC. In order to quantify the ferroptosis

status of each patient, we also developed an ferroptosis score. The

results showed that ferroptosis score plays a non-negligible role in

evaluating the origin of tumor tissue, TME landscape, survival

prognosis and predicting the effect of immunotherapy. These

results suggested that ferroptosis score might serve as a basis for

molecular classification of HCC in order to develop effective

targeted therapies and scientifically designed clinical trials.
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