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Background: It is well-established that patients with glioma have a poor

prognosis. Although the past few decades have witnessed unprecedented

medical advances, the 5-year survival remains dismally low.

Objective: This study aims to investigate the role of transmembrane protein-

related genes in the development and prognosis of glioma and provide new

insights into the pathogenesis of the disease

Methods: The datasets of glioma patients, including RNA sequencing data and

relative clinical information, were obtained from The Cancer Genome Atlas

(TCGA), Chinese Glioma Genome Atlas (CGGA) and Gene Expression Omnibus

(GEO) databases. Prognostic transmembrane protein-related genes were

identified by univariate Cox analysis. New disease subtypes were recognized

based on the consensus clustering method, and their biological uniqueness was

verified via various algorithms. The prognosis signature was constructed using the

LASSO-Cox regression model, and its predictive power was validated in external

datasets by receiver operating characteristic (ROC) curve analysis. An independent

prognostic analysis was conducted to evaluate whether the signature could be

considered a prognostic factor independent of other variables. A nomogram was

constructed in conjunction with traditional clinical variables. The concordance

index (C-index) and Decision Curve Analysis (DCA) were used to assess the net

clinical benefit of the signature over traditional clinical variables. Seven different

softwares were used to compare the differences in immune infiltration between

the high- and low-risk groups to explore potential mechanisms of glioma

development and prognosis. Hub genes were found using the random forest

method, and their expression was based on multiple single-cell datasets.

Results: Four molecular subtypes were identified, among which the C1 group had

the worst prognosis. Principal Component Analysis (PCA) results and heatmaps

indicated that prognosis-related transmembrane protein genes exhibited

differential expression in all four groups. Besides, the microenvironment of the
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four groups exhibited significant heterogeneity. The 6 gene-based signatures

could predict the 1-, 2-, and 3-year overall survival (OS) of glioma patients. The

signature could be used as an independent prognosis factor of gliomaOS and was

superior to traditional clinical variables. More immune cells were infiltrated in the

high-risk group, suggesting immune escape. According to our signature, many

genes were associated with the content of immune cells, which revealed that

transmembrane protein-related genes might influence the development and

prognosis of glioma by regulating the immune microenvironment. TMEM158

was identified as the most important gene using the random forest method. The

single-cell datasets consistently showed that TMEM158 was expressed in multiple

malignant cells.

Conclusion: The expression of transmembrane protein-related genes is closely

related to the immune status and prognosis of glioma patients by regulating

tumor progression in various ways. The interaction between transmembrane

protein-related genes and immunity during glioma development lays the

groundwork for future studies on the molecular mechanism and targeted

therapy of glioma.
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Introduction

Glioma accounts for the largest proportion of malignant

craniocerebral tumors (1), with high invasiveness and lethality

(2). Clinical cancer research has made great progress in recent

years. Nonetheless, the overall survival (OS) remains poor (3).

Current treatment alternatives include radical surgical resection,

radiotherapy, and chemotherapy. However, these conventional

approaches exhibit many limitations in treating this malignant

disease, with high recurrence risks. Moreover, radiotherapy and

chemotherapy can lead to the toxicity of other important organs,

resulting in the lowered life quality of patients. Therefore, emphasis

should be placed on comprehensive and individualized treatment,

which emphasizes the importance of the quest to identify more

specific biomarkers for glioma.

The transmembrane protein (TMEM) family refers to a group

of proteins that span the lipid bilayer; however, their structure,

biological functions and effects have been largely underinvestigated

(4). TMEMs have been documented in all kinds of cells,

cytomembranes, the mitochondria, endoplasmic reticulum (ER),

and lysosome or Golgi apparatus. Some studies have revealed that

different TMEM genes are up or downregulated in cancers,

suggesting their potential as tumor suppressors or promoters.

Their role has also been described as chemotherapeutic resistance

and response to anticancer treatments (5). Current evidence

suggests that TMEM proteins are involved in cancer-related

signaling pathways, significantly impacting cancer metastasis,

recurrence, and patient survival. In ovarian cancer, TMEM119

has been demonstrated to promote tumor cell proliferation,
02
invasion and migration by activating the PDGFRB/PI3K/AKT

signaling pathway (6). In hepatocellular carcinoma, TMEM206

upregulation has been associated with poorer patient prognosis

(7). What’s more, TMEM43 upregulation has been closely

associated with malignant brain tumors, and the inhibition of

TMEM43 expression inhibited the growth of brain tumor cells in

vitro and in vivo (8). Hence, identifying TMEMs involved in tumor

development and progression is a promising approach to finding

new targets for glioma therapy.

In this study, we probed different public online datasets from the

GEO, TCGA and CGGA databases. 22 TMEM genes were identified

in glioma patients, and a prognostic signature was established based

on six prognosis-related TMEM genes. The relationship between the

signature and clinical attributes and cancer characteristics was

assessed. Our signature could accurately predict the clinical

outcomes of glioma patients and could be used as an independent

prognostic factor, providing new insights for exploring the molecular

mechanisms and targeted treatments in this patient population. The

random forest method showed that TMEM158 is a potential

biomarker for diagnosing and treating glioma.
Materials and methods

Data retrieval and preprocessing

First, HTSeq-FPKM gene expression data and relative clinical

information were downloaded from The Cancer Genome Atlas

(TCGA) database (https://portal.gdc.cancer.gov/) as the training
frontiersin.org
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group. After patients without complete survival data were excluded,

631 glioma patients with complete follow-up data and follow-up

time longer than 30 days were enrolled. During the validation

process, the same inclusion criteria were adopted, from the Chinese

Glioma Genome Atlas (CGGA) database (http://www.cgga.org.cn/),

618 glioma patients were included from the dataset CGGA-693 and

306 glioma patients from the dataset CGGA-325. 249 glioma

patients were enrolled in the dataset GSE16011 (https://

www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE16011)

downloaded from the Gene Expression Omnibus (GEO) database.

Using the “Combat” algorithm from the R package “sva”, batch

effects due to the abiotic bias were removed among the TCGA-

glioma, CGGA-693, CGGA-325, and GSE16011 datasets (9).

Finally, 22 transmembrane protein-related genes were obtained

and 14 present in all four datasets (ANO1, TMEM17, TMEM25,

TMEM45A, TMEM88, TMEM97, TMEM98, TMEM140,

TMEM156, TMEM158, TMEM176A, TMEM43, TMEM116) (10).
Identification of transmembrane
proteins-related subtypes to validate
the value of transmembrane
proteins-related genes in glioma

The R package “survival” was used to conduct the univariate

Cox and Kaplan Meier (KM) survival analyses in the TCGA-

glioma, CGGA-693, CGGA-325, and GSE16011 datasets. To

ensure the accuracy of the results, a P value< 0.001 was used as

the screening criteria to identify transmembrane protein-related

prognostic genes. The R package “ConsensusClusterPlus” was

used for unsupervised clustering to identify new subtypes to

further understand the prognostic value of transmembrane

protein-related prognostic genes (11). The number of new

subgroupswase was based on the consensus cumulative

distribution function (CDF) plot, delta area plot, and cluster

consensus. The packages “survival” and “survminer” were

applied to conduct KM survival analysis and the log-rank test

on transmembrane protein subtypes. The heatmap showed the

differential expression profiles of all transmembrane protein-

related prognostic genes in the four subtypes. Principal

Component Analysis (PCA) was performed to reduce the

dimensionality of the data and verify differential expression

patterns among various subtypes. The Microenvironment Cell

Populations-counter (MCP-Counter) method was used to

evaluate the abundance of immune cells in the subtypes (12).

Moreover, the Estimation of Stromal and Immune cells in

Malignant Tumors using Expression data (ESTIMATE)

algorithm was adopted to estimate mesenchymal and immune

cells in malignant tumor tissues and calculate the tumor purity of

different molecular subpopulations (13). In addition, we applied

the gene set variation analysis (GSVA) algorithm to compare the

tumor microenvironment (TME) differences (14, 15). Moreover, we

compared the differential HLA expression levels in different subtypes.
Frontiers in Oncology 03
Establishment, evaluation and
implementation of the transmembrane
protein-related gene signature

Using the TCGA-glioma dataset as the training cohort, the

Lasso-Cox regression analysis was performed to screen out nine

transmembrane proteins-related prognostic genes (TPRPGs), and

the multicollinearity was eliminated. At last, a risk score signature

was obtained by multiplying the b (Coef) value by the TPRPG

expression value as follows (b1*TPRPG1+b2* TPRPG2 +b3*
TPRPG3+⋯+bn* TPRPGn), where b refers to the coefficient of

TPRPGs (16, 17). The median risk score was set as the threshold to

divide 631 patients into high- or low-risk groups. Then KM survival

and receiver operating characteristic (ROC) analyses were

conducted. To determine whether the signature could be used as

an independent prognosis index of clinical traits, including age,

gender, and staging, univariate and multivariate Cox regression

analyses were performed on age, gender, staging and the signature

of glioma patients. Decision Curve Analysis (DCA) was conducted

to assess whether the signature could benefit patients. Additionally,

we used the R package “rms” to improve the accuracy during glioma

prognosis prediction to construct a nomogram based on

multivariate characteristics. The ROC and calibration curves were

depicted to evaluate the accuracy of the nomogram.
Exploration of the potential mechanisms
of glioma

Seven different softwares (12, 18–23) were used to quantify and

compare the abundance of immune infiltration between high- and low-

risk groups. Moreover, the Pearson correlation between the signature

genes and risk scores with immune cell contents was calculated. In a

study by Thorsson V et al. (24), immunogenomics analysis was

conducted on more than 10000 tumors, and six immune subtypes of

pan-cancer (C1 (wound healing), C2 (IFN-g dominant), C3

(inflammatory), C4 (lymphocyte depleted), C5 (immunologically

quiet), C6 (TGF-b dominant) were identified. These immune

subtypes could be used to identify patterns of immune responses

that may influence prognosis. Three main immune types were

identified in the TCGA-glioma, namely C3 (inflammatory), C4

(lymphocyte depleted), and C5 (immunologically quiet). Finally, we

assessed the distribution of each immune subtype in the at-

risk population.
Hub gene identification

According to the random forest algorithm, we sorted the genes

in the signature based on the survival importance to determine hub

genes (25). Moreover, the Tumor Immune Single-cell Hub (TISCH)

database was used to locate the expression profiles of the hub gene

at the single-cell level (26).
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Results

The biological uniqueness of the four
subtypes was verified based on the
transmembrane protein transcription level

The flowchart of this study is shown in Figure 1. Nine key

TPRPGs (ANO1, TMEM25, TMEM45A, TMEM88, TMEM97,

TMEM140, TMEM158, TMEM176A, and TMEM43) were related

to prognosis (Figure 2A). Based on the integrated results from the

consensus cumulative distribution function (CDF) plot, delta area

plot, and cluster-consensus, the optimal number of clusters was

determined to be four, indicating the presence of four

transmembrane protein-related subtypes (C1, C2, C3, C4)

(Figures 2B–E). The PCA plots (Figures 2F, G) and the heatmap

(Figure 2H) showed that the prognostic transmembrane protein-

related genes exhibited differential expression in the four subgroups.

Among all groups, most deaths were observed in C1 (Figure 3A).

Based on KM survival analysis, C1 had the worst prognosis

(Figure 3B). The tumor purity of C1 was the lowest, while it was

the highest in C2 (Figure 3C). Consistent with the results from the

ESTIMATE algorithm, almost all TME-related scores were highest

in the C1 subgroup based on the signature (Figure 3D). The

abundance of immune and non-immune cells was higher in C1

than in other subgroups (Figure 3E). Besides, HLA expression in C1

was the highest (Figure 3F).
The transmembrane protein-associated
signature is an independent risk factor
for glioma

The LASSO regression model was conducted using the

expression profile data of 9 transmembrane protein-related

prognostic genes, and the transmembrane protein-related

prognostic risk signature was then established. The “cv.glmnet”

function was used to perform 10-fold cross-validation to identify six

genes (TMEM45A, TMEM88, TMEM140, TMEM158,

TMEM176A, and TMEM43) with a regression coefficient. The

risk scoring formula was as follows: risk score = (0.1667

82270191739*TMEM45A) + (-0.105110143608762*TMEM88) +
Frontiers in Oncology 04
(0.429175423075546*TMEM140) + (0.333132856396644*TM

EM158) + (0.275424964997017*TMEM176A)+(0.118615470

161412*TMEM43) (Figures 4A–C). Univariate (Figure 4D) and

multivariate (Figure 4E) Cox regression analyses were used to

distinguish independent risk factors. Results showed that age,

staging and risk score were independent predictors of OS in

glioma patients. All patients were divided into high- or low-risk

groups according to the median value in the training group. KM

curves showed that the low-risk group had a relatively better

prognosis (Figures 4F–I). Moreover, the 1-, 2-, and 3-year area

under curve (AUC) values of the 6-gene risk signature yielded

satisfactory sensitivity and specificity in both the training group and

the external validation set (Figures 4J–M).
The transmembrane protein-related
signature yielded better predictive
performances than traditional
clinical variables

The staging index is an important clinicopathological feature of

glioma. Our results revealed that the risk score had significant

differences in G2 and G3 grades (p value< 0.001) (Figure 5A). DCA

plots illustrated a net clinical benefit of the signature to predict

glioma survival compared with traditional clinical variables

(Figure 5B). Then, a nomogram was established to predict the OS

for glioma patients (Figure 5C). Based on the results of multivariate

analysis, a score was assigned for each predictor, and three factors

were integrated into the nomogram to predict OS in patients with

glioma. The calibration curve showed that the 1-, 2-, and 3-year OS

predicted by the nomogram were in accordance with the actual

outcomes (Figure 5D). Besides, the 1-, 2-, and 3-year AUC values

were 0.901, 0.856 and 0.775, respectively (Figure 5E).
Transmembrane protein-related genes may
influence the development and prognosis
of glioma by regulating the immune
microenvironment

The high- and low-risk groups exhibited significant

microenvironmental heterogeneity, and the high-risk group was

associated with relatively more immune cell infiltration (Figure 6A).

Glioma patients were identified as three immune subtypes,

including inflammatory (immune C3), lymphocyte depleted

(immune C4) and immunologically quiet (immune C5). C4 and

C5 were the main types, while the latter had a higher risk score

(Figures 6B, C). The risk score and six genes identified by the

signature were correlated with the abundance of immune cells.

Multi-software analysis showed that CD8+T cell, memory CD4+ T

cell, Macrophage (M0, M1, M2), and Myeloid dendritic cell

exhibited a low to moderate positive correlation with the risk

score. Besides, a low to moderate negative correlation was found

between B cells and the risk score (Figures 6D–J), demonstrating

that transmembrane protein-related genes may influence the
FIGURE 1

The work flowchart.
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development and prognosis of glioma by regulating the

immune microenvironment.
TMEM158 was expressed in a variety of
malignant cells

Further, we adopted the “randomForestSRC” R package to

undergo feature selection. Figure 7A exhibited the relationship
Frontiers in Oncology 05
between the error rate and the number of classification trees and the

out-of-bag feature importance of 6 genes, among which TMEM158

was the most important. The TISCH database was utilized to analyze

the expression profile of TMEM158 based on the single-cell dataset

Glioma_GSE148842 (Figure 7B). TMEM158 was mainly expressed in

malignant cells but was low in oligodendrocytes (Figure 7C). Results

from the 15 single-cell datasets were consistent, corroborating that

TMEM158was expressed inmultiplemalignant cells, especially inAC-

like malignant cells (Figure 7D).
B C

D

E F G

A

H

FIGURE 2

Identification of transmembrane protein-related subtypes. (A) Forest plot of nine prognostic transmembrane protein-related genes in glioma based
on the univariate Cox regression analysis. (B) Subgroups of glioma defined by nine prognostic transmembrane protein-related genes. The 4 cohorts’
consensus score matrix for all samples when k =4. When two random samples had a higher consensus score in distinct interactions, they were more
likely to be clustered. (C) The Delta Area Plot shows the relative change between k and k-1 relative to the area under the CDF curve. When k = 5, the
area under the curve only increases slightly, so 4 was the appropriate k value. (D) Cluster-Consensus Plot shows the cluster-consensus value of
each category under different k values (the mean of pairwise consensus values of members in the cluster). The higher (lower) the value represents,
the higher (lower) the stability. It can determine the cluster-consensus value under the same k value and between different k values. k= 4 is the most
suitable choice for satisfying both the maximum clustering and relatively high Cluster-Consensus conditions. (E) The consistency Cumulative
Distribution Function (CDF) plot shows the cumulative distribution function when k takes different values, which is used to determine when k takes
what value; the CDF reaches an approximate maximum when the clustering analysis results are the most reliable. Given the small k value for the
CDF negative slope, k=4 was selected. (F, G) The principal component analysis (PCA) of glioma samples. The points of different colors represent
samples of different groups. A closer distance between the points suggests that the expression of transmembrane protein-related genes is similar.
(H) The heatmap of the expression of transmembrane protein-related genes in the four types of samples. The rows represent genes, the columns
represent samples, red indicates high expression, blue indicates low expression, and the categories of samples are marked with different colors on
the top of the heatmap. Survival analysis was performed using univariate Cox regression analysis. Molecular subtypes were identified using the
unsupervised hierarchical clustering method. Differential analysis was conducted using the Kruskal-Wallis test. ****p < 0.0001.
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Discussion

As the most prevalent primary tumor of the brain and spinal

cord (27), glioma is widely thought to be derived from the

neuroglial stem or progenitor cells (28). Due to the high

recurrence rate and poor prognosis of glioma, it is essential to

predict clinical outcomes to guide treatment strategies for this

patient population. Conventional therapies, including surgery,

chemotherapy, and radiotherapy, exhibit limitations in improving

the clinical prognosis of glioma patients. The advent of

immunotherapy has brought new hope, given its ability to
Frontiers in Oncology 06
penetrate the blood-brain barrier since the pioneering discovery

of lymphatics in the central nervous system (29). However, not all

patients can benefit from the long-term treatment course.

Therefore, the quest for potent biomarkers should be emphasized

for the optimal selection of patients for individualized treatment.

In this study, we found that the overall expression pattern of

transmembrane protein-related genes was associated with

malignant characteristics and the prognosis of glioma. Upon

further validation, we inferred that these genes are significant for

in-depth exploration of the pathogenesis of glioma. After the

screening, six hub genes (TMEM45A, TMEM88, TMEM140,
B C

D

E F

A

FIGURE 3

Discrimination of Different Subtypes. (A) The proportion of survival status of patients in four transmembrane protein-related subtypes. (B) Kaplan–
Meier survival analysis of OS for patients with the four transmembrane protein-related subtypes. (C) Comparisons between the four subgroups in
terms of tumor purity in tumor tissues. (D) Boxplots were used to display the expressions difference of tumor microenvironment signature.
(E) Comparison of the abundance of immune-infiltrating cells among the four subgroups by the MCP-counter algorithm in tumor tissues. (F)
Boxplots were used to display the expressions difference of HLA genes. ∗∗∗P < 0.001; ∗∗∗∗p < 0.0001. Survival analysis was conducted using the
Kaplan-Meier method. Figure 2C adopted the Wilcoxon test method. Other Differential analyses were conducted using the Kruskal-Wallis test.
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TMEM158, TMEM176A, and TMEM43) were identified, and a risk

signature was constructed. The signature was validated using a

series of approaches to more accurately and effectively predict

clinical outcomes of glioma than traditional clinical variables and

reflect clinicopathologic features associated with malignancy. In

addition, we systematically analyzed the correlations between

characteristic risk score-related genes and immune cell contents

in gliomas and targeted the expression of hub genes based on 15

single-cell datasets. These findings may explain the poorer survival

rates in the high-risk group to some extent and highlight the role of

transmembrane protein-related genes in further stratifying the

survival of glioma patients. Our transmembrane protein-related

gene signature may be a vital auxiliary tool to assist clinicians in

predicting the prognosis of glioma.

We analyzed the expression data of 14 transmembrane protein-

related genes in glioma patients who were followed up for more
Frontiers in Oncology 07
than 30 days in the TCGA, CGGA and GEO databases and

screened 9 transmembrane protein-related genes with prognostic

significance. Finally, a 6-gene signature was built based on the risk

genes TMEM45A, TMEM140, TMEM158, TMEM176A and

TMEM43, and the protective gene TMEM88 by comparing their

coefficient values. Over the years, these genes have been extensively

studied, especially in some cancer types. In this respect, TMEM45A

has been associated with various cancer features, such as cell

proliferation, invasion, migration, and Epithelial-Mesenchymal

Transition (EMT), and silencing TMEM45A can reverse cisplatin

resistance (30–33). TMEM140 has been underexplored in the field

of oncology. However, it can reportedly inhibit herpes simplex

virus-1 (HSV-1) proliferation by selectively blocking the exit of the

viral nucleocapsid during viral assembly (34). TMEM158 plays an

important role in many cancers since it is upregulated in the renin-

angiotensin system (Ras)-induced senescence process (35).
B C

D E

F G H I

J K L M

A

FIGURE 4

Identification of the transmembrane protein prognostic signature. (A, B) LASSO Cox regression analysis of the 9 OS-related transmembrane proteins.
(C) The 6 genes included in the signature. Corresponding coefficients were depicted by horizontal bars, respectively. (D, E) Univariate and
multivariate Cox regression revealed significant survival-related clinicopathological parameters in the forest plots diagram. (F-I) Kaplan–Meier OS
curves with difference detection by log-rank test for patients from the training and validation datasets. TCGA-glioma, GSE16011, CGGA693, and
CGGA325 datasets are arranged from left to right. (J-M) ROC analysis of the 6-genes signature in the four datasets.
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Moreover, TMEM158 has been reported as the key regulator for

tumorigenesis and drug resistance in colorectal cancer (36). What’s

more, overexpression of TMEM158 is significantly associated with

clinicopathologic features (including tumor size, TNM staging, and

vascular infiltration) and poor prognosis of pancreatic cancer (PC)

patients, and it could promote proliferation, migration, and

invasion of PC cells through activation of transforming growth

factor (TGF)-b1 and Phosphoinositide 3-Kinase (PI3K)/protein

kinase B (AKT) signaling pathways (37).
Frontiers in Oncology 08
Cuajungco MP et al. confirmed that human TMEM176A and

176B protein levels were significantly elevated in lymphoma and

lung carcinoma but not in normal tissues, which substantiated that

TMEM176A and 176B could be potential biomarkers for some

human cancers (38). An increasing body of evidence suggests that

TMEM176A can inhibit tumor cell growth and migration by

constraining extracellular signal-regulated kinase (ERK) signal

transduction in lung, pancreatic and liver cancer (39–41).

Intriguingly, upregulated TMEM176A expression has been
B

C

D E

A

FIGURE 5

Prognostic prediction of glioma patients with other clinical factors based on the OS model. (A) Boxplots were used to display the difference in risk
scores in different tumor grades. (B) Decision curve analysis of the constructed risk prediction model. Using the signature to predict patient survival
can benefit the patient similar to other conventional clinical variables. (C) Nomogram integrating risk and clinical characteristics. (D) calibration of the
nomogram at 1-year, 3- year and 5-year survival in the TCGA cohort. (E) Time-dependent ROC curve of the constructed nomogram model.
Nomogram was built using the Multivariate proportional hazards model. Differential analyses were conducted using the Wilcoxon test. ***p < 0.001.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1145676
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhang et al. 10.3389/fonc.2023.1145676
demonstrated to prevent dendritic cell (DC) maturation and inhibit

DC activity in the general population when DCs have been shown

to mediate recovery from central nervous system damage and/or

protective autoimmunity (42). These findings might illustrate its

potential role as a risk factor in glioma. Moreover, TMEM43 has

been correlated with different diseases. For example, the deficiency

of TMEM43 is widely thought to cause arrhythmogenic right

ventricular cardiomyopathy type 5 (ARVD5) (43). Furthermore,

Jiang C et al. verified that high TMEM43 expression was closely

related to brain tumor malignancy, and inhibiting the expression of

TMEM43 in brain tumor cells could lead to its growth in vitro and

in vivo (8). In contrast, the TMEM88 gene was found to be a

protective factor against glioma in the present study. Consistently,

TMEM88 upregulation can result in the decreased ability of cell

proliferation and invasion dramatically in bladder cancer, and nude

mouse models substantiated that the overexpression of TMEM88

prevents tumor formation and growth of bladder cancer cells (44).

Similar findings have been reported in thyroid cancer (45). Overall,

patients in the low-risk group had higher OS than those in the high-

risk group based our novel signature. External dataset and internal
Frontiers in Oncology 09
KM validations demonstrated that the signature had good

predictive efficacy and was independent of other clinical traits.

Importantly, our novel signature could enable clinicians to assess

patient survival more accurately and effectively.

The tumor microenvironment is a complex system that plays an

essential role in the proliferation and progression of tumor cells.

Based on our signature, it was found that differential TME features

were displayed in the high- and low-risk group. Moreover, the low-

risk group was associated with more significant immune cell

infiltration. Meanwhile, the low-risk group had a better prognosis.

Additionally, some types of immune cells like CD8+T cells, CD4+

memory T cells, Macrophages (M0, M1, M2), and Myeloid DCs

were positively correlated with risk scores. In contrast, B cells and

risk scores were negatively correlated, possibly due to potential

immune escape in the high-risk group. Glioma-associated microglia

or macrophages and medullary suppressor cells were the most

infiltrated cell types in the TME of gliomas, and their levels

negatively correlated with the prognosis of cancer. In addition,

bone marrow-derived suppressor cells inhibit NK cell-mediated

cytotoxic responses (46). Immune cells perform immune
B
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FIGURE 6

Immune cell infiltration in glioma. (A) Differences in immune cell infiltration between high- and low-risk patients. (B) Three immune types were
identified in the TCGA-glioma dataset, namely Inflammatory (Immune C3), Lymphocyte Depleted (Immune C4) and Immunologically Quiet (Immune
C5). Significant differences in risk scores were observed between different immune subtypes. (C) The association between risk groups with immune
subtypes in the TCGA-Glioma cohort. (D-J) Correlation between risk score, genes in the model and different types of immune cell content based on
7 immune infiltration algorithms. Correlation analysis was conducted using Pearson correlation analysis. Differential analyses were conducted using
the Wilcoxon test.
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surveillance functions through cell migration. It has been

established that glioma has a rather complex tumor immune

microenvironment (TIME). Interestingly, glioma-associated

myeloid cells significantly promoted the invasiveness of glioma

tumor cells (47). Moreover, a high infiltration of regulatory T cells is

closely associated with poor clinical outcomes in glioma (48). A

study revealed that in the TIME of glioma patients, immune cell

infiltration was elevated in the high-risk group, with higher

infiltration of tumor immune cells correlated with more advanced

tumor grade (49), consistent with our findings.

However, the limitations of our study should be acknowledged.

Our findings were based on retrospective data from TCGA, CGGA
Frontiers in Oncology 10
and GEO databases, with missing data on treatment and relapse.

Indeed, in vivo or in vitro experiments and prospective clinical

studies are warranted to validate our findings.
Conclusions

In summary, this study identified a 6-gene signature with

prognostic value for glioma patients. Our study presents a

predictive model and biomarker for glioma patients and provides

the foothold for further research to improve the outcomes of this

patient population.
B
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FIGURE 7

Identification of hub genes using the random forest algorithm. (A) The graph shows the error rate of the data as a function of the classification tree
and the out-of-bag importance values for the predictors. (B) Annotation of all cell types in dataset GSE148842 based on the TISCH database.
(C, D) Expressions of TMEM158 in GSE148842 and other Glioma single-cell datasets.
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Glossary

TCGA The Cancer Genome Atlas

CGCA Chinese Glioma Genome Atlas

GEO Gene Expression Omnibus

ROC receiver operating characteristic

C-index Concordance-index

DCA Decision Curve Analysis

PCA Principal Component Analysis

OS overall survival

TMEM transmembrane protein

ER endoplasmic reticulum

KM Kaplan Meier

CDF cumulative distribution function

MCP-
Counter

Microenvironment Cell Populations-counter

ESTIMATE Estimation of Stromal and Immune cells in Malignant Tumors
using Expression data

GSVA gene set variation analysis

TME tumor microenvironment

TPRPGs transmembrane proteins-related prognostic genes

TISCH Tumor Immune Single-cell Hub

AUC area under curve

EMT Epithelial-Mesenchymal Transition

HSV-1 herpes simplex virus-1

RAS renin-angiotensin system

PC pancreatic cancer

TGF transforming growth factor

PI3K Phosphoinositide 3-Kinase

AKT protein kinase B

ERK extracellular signal-regulated kinase

DC dendritic cell

ARVD5 arrhythmogenic right ventricular cardiomyopathy type 5

TIME tumor immune microenvironment
F
rontiers in On
cology frontiersin.org13

https://doi.org/10.3389/fonc.2023.1145676
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

	Illustrating the biological functions and diagnostic value of transmembrane protein family members in glioma
	Introduction
	Materials and methods
	Data retrieval and preprocessing
	Identification of transmembrane proteins-related subtypes to validate the value of transmembrane proteins-related genes in glioma
	Establishment, evaluation and implementation of the transmembrane protein-related gene signature
	Exploration of the potential mechanisms of glioma
	Hub gene identification

	Results
	The biological uniqueness of the four subtypes was verified based on the transmembrane protein transcription level
	The transmembrane protein-associated signature is an independent risk factor for glioma
	The transmembrane protein-related signature yielded better predictive performances than traditional clinical variables
	Transmembrane protein-related genes may influence the development and prognosis of glioma by regulating the immune microenvironment
	TMEM158 was expressed in a variety of malignant cells

	Discussion
	Conclusions
	Data availability statement
	Author contributions 
	Acknowledgments
	Supplementary material
	References
	Glossary



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


