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cancer progression-free survival
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Bioquı́mica, Instituto Nacional de Ciencias Médicas y Nutrición, Salvador Zubirán (INCMNSZ), Ciudad
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Introduction: Metastatic breast cancer causes the most breast cancer-related

deaths around the world, especially in countries where breast cancer is detected

late into its development. Genetic testing for cancer susceptibility started with

the BRCA 1 and 2 genes. Still, recent research has shown that variations in other

members of the DNA damage response (DDR) are also associated with elevated

cancer risk, opening new opportunities for enhanced genetic testing strategies.

Methods:We sequenced BRCA1/2 and twelve other DDR genes from aMexican-

mestizo population of 40 metastatic breast cancer patients through

semiconductor sequencing.

Results:Overall, we found 22 variants –9 of them reported for the first time– and

a strikingly high proportion of variations in ARID1A. The presence of at least one

variant in the ARID1A, BRCA1, BRCA2, or FANCA genes was associated with

worse progression-free survival and overall survival in our patient cohort.

Discussion: Our results reflected the unique characteristics of the Mexican-

mestizo population as the proportion of variants we found differed from that of

other global populations. Based on these findings, we suggest routine screening

for variants in ARID1A along with BRCA1/2 in breast cancer patients from the

Mexican-mestizo population.

KEYWORDS

metastatic breast cancer, DNA damage response, Latin American population, Mexican-
mestizo population, Progression free survival (PFS)
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1 Introduction

As the number of new breast cancer cases and fatalities

continues to rise worldwide (1), detection and treatment of this

disease is more of a pressing issue for researchers and health

professionals. Widely adopted screening programs have proven

efficient at detecting stage I-II cases before they develop further

into stage III and compromise survival, effectively decreasing the

fatal cases. Yet, a significant amount of these deaths occur in stage

IV or metastatic patients (2, 3).

An important aspect of the screening programs that has become

increasingly widespread with the advancement of technology is

genetic testing for cancer susceptibility. The first surveyed genes

were BRCA 1 and 2, where germline variants are associated with

around 25% of breast cancer cases (4). But recent research has

revealed that several other genes that also participate in the DNA

damage response (DDR) also confer increased breast cancer risk,

such as PALB2, TP53, RAD50, RAD51D, and CHEK2, among others

(5, 6). For example, variants in PALB2 (Partner and Localizer of

BRCA2) are associated with an estimated cumulative risk of breast

cancer of 14% (7). Somatic alterations, on the other hand, are

associated with high-grade tumor progression; for instance, TP53

variants correlate with metastasis spread and relapse risk (8, 9).

Both germline and somatic alterations drive tumor development

cooperatively and influence response to treatment (10, 11).

Variants in the DNA damage response (DDR) genes –a

complex machinery encompassing several pathways that maintain

the integrity of DNA within the cell (12)– produce malfunctioning

proteins that restrict the ability of cells to repair DNA lesions,

rendering them susceptible to genetic instability and cancer

development (13); such is the case of ARID1A, a recently studied

subunit of the SWI/SNF chromatin remodeler complex whose

variants have been associated with breast cancer brain metastasis

(14).The presence of these variants also influences treatment choice,

as patients carrying them can benefit from treatment alternatives

that target the DDR to create synthetic lethality by inhibiting the

Poly ADP-ribose (PARP) –a polymerase that synthesizes DNA in

the final steps of the repair process– with purpose-designed drugs

(15, 16).

Our group is interested in studying the distribution of BRCA

variants, particularly in the Mexican-mestizo population, where we

have found unreported variants (17, 18), confirming that variation

distribution can vary significantly from one geographical location to

another (19, 20). So, surveying local populations looking for

characteristic individual variations or patterns is an important

stepping stone toward universal tailored diagnostics and

treatments, especially in Latin American countries where breast

cancer is mostly diagnosed in later stages (21).

In this work, we sequenced fourteen DDR genes in a Mexican

cohort of 40 metastatic breast cancer patients, searching for an

association between variants in DDR genes and response to

treatment. The genes we sequenced belong mainly to the DNA

Interstrand Crosslink Repair, a DDR pathway that has been recently

associated which high tumor burden in breast carcinomas (22); the

rest were DNA damage sensors (ATM, CHK2) and transcriptional

activators (ARID1A, TP53) that had been recently associated with
Frontiers in Oncology 02
metastatic breast cancer (23–25). We found 19 unique variants,

from which 9 had not been reported before, and a correlation

between the combination of alterations in the ARID1A, BRCA1,

BRCA2, and FANCA genes and progression-free survival. To our

knowledge, the association between alterations in DDR genes other

than BRCA and treatment response in metastatic breast cancer had

not been surveyed yet in the Mexican-mestizo population.
2 Materials and methods

2.1 Patient cohort

This study included prospectively tumor biopsy and clinical

data from forty stage-IV breast cancer patients that attended the

Instituto Nacional de Cancerologıá (INCan, Mexico City, Mexico.

The study was approved by INCan’s Review Board and Ethics

Committee (016/010/IBI; CEI/1001/16); all patients signed

informed consent. After the surgical excision, tumor biopsies

were segmented into two pieces, one for pathological

confirmation and another for DNA extraction.
2.2 Patients and clinical outcome
assessment

A total of 40 patients were enrolled diagnosed with metastatic

breast cancer confirmed by positron emission tomography (PET)

and computed tomography (CT) scans. All patients were treated

according to the National Comprehensive Cancer Network

(NCCN) guidelines. Clinical outcome was evaluated by The

Response Evaluation Criteria in Solid Tumors (RECIST Version

1.1) at baseline and at 6 months (26). Progression-free survival

(PFS) was defined as the time from the commencement of

treatment until disease progression or the last visit. Overall

survival (OS) was defined as the time from diagnosis until death

or the last visit.
2.3 DNA extraction

Tumor DNA was extracted using the QIAamp DNA Blood

Mini kit (Qiagen, cat. no. 51106). following the manufacturer’s

recommendations. DNA integrity was verified by agarose

electrophoresis and the concentration was determined using

RNase P Detection Reagent (FAM) (Applied Biosystems, cat.

no. 4316831).
2.4 Targeted sequencing

Fourteen DDR genes were selected for sequencing. Two of

them, BRCA1 and BRCA2, were amplified using Ion Ampliseq

BRCA 1 and 2 panel (Thermo Fisher Scientific); this panel includes

167 primers pairs in three pools. The remaining genes, ARID1A,

ATM, CHK2, FANCA, FANCB, FANCC, FANCD2, PARP1, PALB2,
frontiersin.org
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RAD50, RAD51, and TP53 were amplified with the custom panel

IAD94476_197_Designed; this panel includes 440 primers in two

pools. (Supplementary Table 1). Libraries were prepared from 25 ng

DNA, and amplification of each patient’s DDR-genes was

identified using a unique Ion Xpress barcode adapter (Thermo

Fisher Scientific cat. no. 4471250). For sequencing, we used

the Ion PGM Hi-Q Sequencing kit (REFA25589) in the Ion

torrent PGM (Personal Genome Machine) instrument (Thermo

Fisher Scientific).
2.5 Data analysis

The sequences were aligned to the hg19 human reference

genome (GRCh37). The.bam files were exported to the

Ion Reporter version 5.18 for variation analysis. Pathogenic

and probably pathogenic variants were classified according to

the American College of Medical Genetics and Genomics

guidelines (27)

Kaplan–Meier curves and Cox regressions were calculated using

the survival package in R (R version 4.2.2, we used the survival

package version 3.4.0.). Variable selection for the Multivariate Cox

regressions was performed using a forward stepwise procedure.

Statistical significance was defined as p <0.05 (two sided).
3 Results

The 40 stage-IV screened tumor samples came from patients

with a mean age of 53 years, ranging from 27 to 81 (n = 40). Most

tumors were ductal (85%) and the remainder, lobular (15%). The

molecular type corresponded with previously reported proportions;

Luminal A and B tumors were more frequent that HER+ and

TNBC. Notably, 16 of the 40 samples came from patients with a

family history of cancer (Table 1). Twenty-two of the samples

carried at least one variant in the sequenced genes, one had multiple

variants in BRCA1, two had multiple variants in TP53, and two had

variants in two genes –ARID1A and ATM or FANCA and TP53

(Figure 1, Table 2)

Overall, we found 19 unique sequence variants in the 22

samples carrying them, 10 had been already identified and 9 were

previously unreported. Ten (52%) of the found variants were in the

TP53 gene. The most frequent alterations in this gene –c.742C>T

and c.215_216insG– were only the second most frequent, while the

first was c.3980_3981insC, in ARID1A. Thirteen variants were

found only once in the studied population. Strikingly, no variants

in the CHK2, FANCB, FANCC, FANCD2, PALB2, RAD50, or

RAD51 genes were present in our cohort (Figure 1, Table 3).

Pathogenic or likely pathogenic variants are depicted in

Supplementary Table 1.

An overall survival analysis was performed considering the

patients included with a median follow-up of 5 years (1-13 years).

The median PFS of all patients was 6 months (0-45) and median OS

was 34 months (1-161). An univariate and multivariate Cox analysis

were performed examining the association of the individual

variants, with the clinical outcomes (PFS and OS), nevertheless,
Frontiers in Oncology 03
no significant association was observed (data not shown). So, we

considered the genes with highest number of variants observed at

the multivariate analysis combined (ARID1A, BRCA1, BRCA2 and

FANC genes) and regrouped the variation frequencies of these genes

into a single binary variant where at least one variation needed to be
TABLE 1 Clinical characteristics of 40 unrelated metastatic breast
cancer patients.

Characteristics No. (%) (n= 40)

Age, mean (range, years) 53 (27-81)

Menopausal status

Premenopausal 18 (45)

Postmenopausal 22 (55)

Histology

Ductal 34 (85)

Lobular 6 (15)

Tumor size

TX 1 (2.5)

T1 1 (2.5)

T2 4 (10)

T3 7 (17.5)

T4 27 (67.5)

Nodes

N1 8 (20)

N2 8 (20)

N3 24 (60)

Molecular subtype

Luminal A 18 (45)

Luminal B 10 (25)

HER+ 5 (12.5)

TNBC 7 (17.5)

Cancer family history

Breast/Ovarian cancer 6 (15)

Other cancers 10 (25)

No 24 (60)

Chemotherapy regime

Antimitotic 14 (35)

Hormone therapy 12 (30)

Alkylating-antimitotic 10 (25)

Alkylating 4 (10)

Status

Alive 13 (32.5)

Dead 27 (67.5)
Numbers in parenthesis express percentages.
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met. To assess the association between the combination of these

variants and clinical outcome, we compared PFS and OS between

patient’s with or without variants in those genes. Median PFS was 8

months in patients without sequence variants in selected genes,

versus 4 months in patients with at least one variant of the genes

selected (p-value=0.0025) (Figure 2). Besides, the median OS in

patients without variants was 51 months versus 31 months for

patients with variants of the genes selected (p-value=

0.014) (Figure 3).

A univariate and multivariate analysis was performed

comparing the presence/absence of pathogenic variants in at least

one selected gene and clinical outcome (PFS and OS). At PFS Cox

models, the presence of at least one pathogenic variant,

demonstrated to be predictors of PFS (univariate, HR: 3.3 (95%

CI 1.5-7.5), p-value=0.004) (multivariate, HR: 3.74 (95% CI 1.44-

9.74), p-value=0.006). Additionally, at OS Cox models, the presence

of at least one pathogenic variant, also demonstrated to be
Frontiers in Oncology 04
predictors of OS (univariate, HR: 2.7 (95% CI 1.2-6), p-

value=0.017) (multivariate HR: 2.87 (95% CI 1.07-7.67), p-

value=0.035) (Table 4).
4 Discussion

Variants in DNA damage response (DDR) genes in cancer are

important biomarkers for treatment selection and are also

functionally important, since malfunctioning DDR can potentially

increase genomic instability, eventually leading to treatment

resistance or relapse (Reviewed in 28). Here we analyzed a 40-

patient cohort of metastatic breast cancer patients in search for

variations in DDR genes and found 13 previously identified variants

and 9 that had not been reported before. These findings contribute

to the understanding of the genomic landscape of metastatic breast

cancer in the Mexican-mestizo population which, due to its diverse

ancestry (29), is likely to differ from the mostly Caucasian

populations of North America (30) and Europe (31) where the

genomic characterizations of metastatic breast cancer has

been reported.

Sequence variants in TP53 accounted for roughly half of our

findings. A similar proportion was previously reported in metastatic

tumors (31) but in breast tumors in general, TP53 variants

accounted for less than 10% (32), highlighting the high risk of

metastasis associated with TP53 variants. Half (5/10) of the variants

that we report here had not been reported before, suggesting they

are exclusive or more frequent in the Mexican-mestizo population

and underlining the importance of studying local populations.

Variants in PALB2 are usually reported in frequencies around

1%, second to the BRCA genes at 3-5% (6, 33, 34). The absence of is

PALB2 variants in our cohort is similar to the low incidence

observed in a separate study where only two of 115 patients

carried PALB2 variants (35), suggesting that PALB2 variants are

scarce in the Mexican-mestizo population.

We found a significant association between the presence of at

least one pathogenic variant and worse PFS and OS. Three of these

genes are related to the DNA Interstrand Crosslink Repair: BRCA1

and BRCA2 are the quintessential breast cancer susceptibility genes

(36). FANCA variations are the most frequent in Fanconi anemia

(37) and, according to recent reports, it might be the only FANC

gene involved in hereditary cancer (38). These findings bolster

previous reports on the association between variations in individual

genes of the DNA Interstrand Crosslink Repair pathway and breast

cancer susceptibility in Iranian (39) and Chinese populations (40).

Interestingly, while there is evidence that variations in the DDR

pathways –particularly HR– sensitize several cancer types to

chemotherapy (15), secondary variants in these genes can

generate resistance to alkylating agent therapy (41, 42). These

findings suggest that the variants in BRCA1, BRCA2, and FANCA,

associated with worse prognosis in our sample set, might have

contributed to chemotherapy resistance. The mechanisms

underlying this phenomenon will undoubtedly motivate further

analysis. Sequence variants in the fourth gene, ARID1A, have been

associated with breast cancer brain metastasis, though the specific

variants that we found had not been reported before (14).
FIGURE 1

Heat map showing somatic variants profiles of metastatic breast cancer.
TABLE 2 Genes with variants in unrelated metastatic breast cancer
samples.

ARID1A ATM BRCA1 BRCA2 FANCA TP53

M11 M15 M05 (3) M31 M42 M06 (2)

M12 M33 M34 M08

M15 M40 M18 (2)

M16 M20 (3)

M19 M22

M38 M24

M26

M28

M32

M42
Numbers in parentheses indicate the different variations present in the samples.
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In Latin America, breast cancer is detected late in its

development (21) a trend that can only be reverted through

optimized screening strategies. Since tumors with altered ARID1A

are sensible to PARP inhibitors (43) and its variants are frequent in

cohorts as small as the 40 patients that we report here, we suggest
Frontiers in Oncology 05
screening tumors for variants ARID1A in the Mexican-mestizo

population. Such screening might broaden the treatment options

for breast cancer patients, as these variants have been associated

with enhanced effects of treatments such as ATR inhibitors and

Gemcitabine in ovarian cancer (44). Further studies will confirm
TABLE 3 Variants found in 40 unrelated metastatic breast cancer samples.

Gene Coding Sequence Position AminoAcid Change Significance* dbSNP Frequency

ARID1A c.3977_3980delCGCA p.Pro1326ArgfsTer154 LP not reported 2

ARID1A c.3980_3981insC p.Gln1327HisfsTer11 LP not reported 4

ATM c.6861delA p.Val2288SerfsTer22 LP not reported 1

ATM c.8124T>A p.Asp2708Glu LP rs587781990 2

BRCA1 c.3759_3760delTA p.Lys1254GlufsTer12 P rs80357520 1

BRCA1 c.5054_5060delCTCATGT p.Thr1685MetfsTer3 LP not reported 2

BRCA1 c.5277 + 1delG splice site P rs273901754 1

BRCA2 c.5635G>T p.Glu1879Ter P rs55996097 1

FANCA c.709 + 5G>A splice site P rs759877008 1

TP53 c.1123C>T p.Gln375Ter LP rs1555524156 1

TP53 c.215_216insG p.Val73ArgfsTer76 LP not reported 3

TP53 c.522_539delGCGCTGCCCCCACCATGA p.Pro177_Cys182del P not reported 1

TP53 c.560-1G>A splice site P rs1202793339 1

TP53 c.586C>T p.Arg196Ter P rs397516435 1

TP53 c.626_627delGA p.Arg209LysfsTer6 P rs1057517840 1

TP53 c.718delA p.Ser240ValfsTer7 LP not reported 1

TP53 c.742C>T p.Arg248Trp P rs121912651 3

TP53 c.815_817dup p.Val272_Arg273insLeu P not reported 1

TP53 c.866_873delTCCGCAAG p.Leu289GlnfsTer14 LP not reported 1
*Clinical Significance according to stablished criteria [24]. LP, likely pathogenic; P, pathogenic.
FIGURE 2

The presence of at least one variant in ARID1A, BRCA1, BRCA2 or
FANCA genes correlates with lower PFS.
FIGURE 3

The presence of at least one variant in ARID1A, BRCA1, BRCA2 or
FANCA genes correlates with lower OS.
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whether the high prevalence of ARID1A variants in tumor

samples is valid for other Latin American populations and

whether there is a functional relationship between ARID1A and

the DNA Interstrand Crosslink Repair genes. Additionally, whether

the ARID1A variants we observed were acquired during tumor

development or already present in the germline and thus related to

cancer susceptibility besides response to treatment remains to be

determines. If these variants are germline, ARID1A might be a

better indicator of cancer risk than PALB2 in the Mexican-

mestizo populations.

Our study was limited by the number of genes sequenced and

the relatively low number of samples; additionally, the sequencing

was performed only from tumor. A larger sample would provide a

more comprehensive perspective of the variations in these and

other genes; however, our sample included only metastatic breast

cancer patients, which represent less than 20% of the total breast

cancer cases (45, 46).

5 Conclusions

Our findings contribute to the description of the sequence

variation landscape of metastatic breast cancer in the Mexican-

mestizo population. We found the expected high frequency variants

in TP53 and BRCA 1 and 2; conversely, PALB2 variants seem scarce
Frontiers in Oncology 06
compared to other reported populations. The presence of at least

one pathogenic variant in the ARID1A, BRCA1, BRCA2, or FANCA

genes remains predictor of worse progression-free survival and

overall survival.
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PFS OS
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95%)

p-
value

HR (IC
95%)

p-
value

HR (IC
95%)

p-
value

HR (IC
95%)

p-
value

Histology
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