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Triple-negative breast cancer (TNBC) is known as the most difficult molecular

subtype of breast cancer to treat. Recent studies revealed that cancer stem cells

(CSCs) play a critical role in TNBC recurrence and metastasis. In this study, we

developed a recombinant replication-deficient adenoviral vector (Ad-CD44-N-

HIF-3a4), which contains a gene encoding a synthetic Notch (synNotch)

receptor composed of the extracellular domain of CD44 (CD44-ECD) and the

hypoxia-inducible factor (HIF)-3a4 connected by the Notch core regulatory

region. CD44 is a transmembrane glycoprotein and known as a CSC marker in

breast cancer and other malignancies. HIF-3a4 is a dominant-negative regulator

of HIF-1a and HIF-2a and inhibits hypoxia-inducing effect. Both CD44 and HIF

signals contribute cancer stemness and maintaining CSCs in breast cancer. The

CD44-ECD in the synNotch receptor acts as the CD44 decoy receptor, and after

a ligand such as a hyaluronic acid binds to the CD44-ECD, HIF-3a4 is released

from the Notch core domain. We performed an in vivo study using a mouse

xenograft model of MDA-MB-231, a highly invasive TNBC cell, and confirmed the

significant antitumor activity of the intratumoral injections of Ad-CD44-N-

HIF3a4. Our findings in this study warrant the further development of Ad-

CD44-N-HIF3a4 for the treatment of patients with TNBC.
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1 Introduction

Breast cancer can be categorized into molecular subtypes by genetic information

including the status of estrogen receptor (ER) and progesterone receptor (PR) and human

epidermal growth factor receptor 2 (HER2) (1). In most studies the molecular subtypes of

breast cancer are divided into four major groups: luminal A (ER-positive, PR-positive and
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HER2-negative), luminal B (ER-positive, PR-negative and HER2

positive), HER2 positive (ER-negative, PR-negative and HER2

positive), and triple negative breast cancer (TNBC, ER-negative,

PR-negative and HER2 negative) (2). Hormone therapy is

considered effective against the luminal A and luminal B

molecular subtypes, and molecular (HER2) targeted therapy is

considered effective against the luminal B and HER2 positive

molecular subtypes (3). However, TNBC is refractory to both

hormone therapy and HER2 targeted therapy because of the

deficiency of target receptors (4, 5). Therefore, TNBC is

recognized as the most difficult molecular subtype of breast

cancer to treat. Establishing an effective therapeutic modality for

TNBC is an urgent unmet need.

Currently, a conventional cytotoxic chemotherapy comprising

taxane, anthracycline and/or platinum is the only available option

for the systemic treatment of TNBC (6). Although about 20% of

TNBC patients achieve a pathological complete response (pCR) to

neoadjuvant chemotherapy, most patients suffer early recurrence

and metastasis after the initial chemotherapy (7). It is well known

that cancer stem cells (CSCs) play an important role in the

acquisition of chemoresistance (8, 9), and thus the development

of novel TNBC therapies targeting breast cancer stem cells (BCSCs)

is attracting great attention (10). CD44 is one of the cell surface

adhesion receptors for extracellular matrix proteins, including

hyaluronic acid (HA), and is also a known cancer stem cell

marker in breast cancer (11). In addition, CD44 is a marker

mostly expressed on stem cells, but these cells are very

heterogeneous in BC, showing different phenotypes. Cancer stem

cells in breast cancer are also identified by CD44+/CD24-/low/

EpCAM+ and Aldefuor+ (12). Recent studies have indicated the

close association of CD44 with the metastatic ability and stemness

of breast cancer cells (13). CD44 ligand-receptor signaling activates

kinases that are involved in cell proliferation and migration such as

proto-oncogene tyrosine-kinase Src (Src), focal adhesion kinase

(FAK) and mitogen-activated protein kinase (MAPK) (14, 15).

After the ligand-receptor signaling, the intracellular domain of

CD44 (CD44-ICD) is cleaved by protease and then transfers into

the cell nucleus, while the CD44-ECD is released as free soluble

CD44 (16, 17). CD44-ICD, after entering the cell nucleus, promotes

tumor cell proliferation, migration, angiogenesis, and

metastasis (Figure 1A).

Reportedly, cytotoxic chemotherapy agents including taxane,

anthracycline and platinum induce the expression of hypoxia-

inducible factor-1a (HIF-1a) and increase the subpopulation of

BCSCs (18). Indeed, the CD44+/CD24-/low CSC phenotype is

associated with the expression oh HIF-1a and poor survival of

patients with breast cancer (19). HIF is a heterodimeric complex

composed of an oxygen (O2)-labile a subunit and a stable b subunit,
which is the aryl hydrocarbon receptor nuclear translocator

(ARNT). The HIF a subunit includes HIF-1a, HIF-2a and HIF-

3a, and the HIF b subunit includes HIF-1b. HIF-1a and HIF-2a
form a heterodimer with HIF-1b and then bind to the hypoxia-

responsive elements (HREs), which activate the transcription of

various hypoxia target genes (20, 21) promoting tumorigenesis and

CSC maintenance (Figure 1A) (22). HIF-3a exists as multiple splice

variants, and some variants including HIF-3a4 inhibit the gene
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transcriptions mediated by HIF-1a and HIF-2a in a dominant

negative fashion (23).

Recent studies revealed that BCSCs play a critical role in TNBC

recurrence and metastasis (24, 25). Additionally, an exposure to

cytotoxic chemotherapies increases the subpopulation of BSCSs (5).

Thus, a novel therapy targeting BCSCs has a great potential to

suppress the acquisition of TNBC chemoresistance, recurrence and

metastasis (10). It is well known that both CD44 and HIF contribute

cancer stemness in the tumor microenvironment (26, 27). To target

both CD44 and HIF simultaneously, we constructed a recombinant

replication-deficient adenovirus vector (Ad-CD44-N-HIF3a4)
containing a gene encoding a synthetic Notch (synNotch)

receptor (CD44-N-HIF3a4) composed of the extracellular

domain of CD44 (CD44-ECD) and HIF-3a4 connected by the

Notch core regulatory region (Figure 1B). Ad-CD44-N-HIF3a4 can
induce overexpression of the synNotch receptor of CD44-N-

HIF3a4 in cancer cells. The CD44-ECD in the synNotch receptor

acts as a CD44 decoy receptor in the tumor microenvironment

(TME), and after a ligand binds to the CD44-ECD, HIF-3a4 is

released from the Notch core regulatory region at the cell

membrane to inhibit the hypoxia-induced responses (Figure 1B).

Notch signaling is highly conserved in multicellular organisms and

features signaling through direct interactions among adjacent cells

(27). Notch receptors bind Jagged and Delta-like ligands on

adjacent cell surfaces, and the ICD of Notch is cleaved by a

disintegrin and metalloproteinases (ADAMs) and multiprotein g-
secretase complexes, and then transfers to the nucleus to promote

transcription of target genes (28, 29).

In the present study we explored the feasibility of using Ad-

CD44-N-HIF3a4 to treat TNBC by in vitro and in vivo experiments

using MDA-MB-231 a human TNBC cells and compared it’s in vivo

anti-tumor activities with other adenovirus vectors, Ad-SOCS3 (30)

and Ad-p53 (31). These Ad-vectors had been intensively

investigated in animal or human studies (30. 31) and were used

as the control drugs in this study. As the results, we confirmed that

Ad-CD44-N-HIF3a4 showed the strongest anti-tumor activity in

MDA-MB-231 xenograft model in vivo compared to the other

Ad-vectors.
2 Materials and methods

2.1 Cell lines

MDA-MB-231, a human TNBC cell line, was purchased from

The European Collection of Cell Cultures (ECACC, Salisbury, UK)

and cultured in Leibovitz’s L-15 Medium (FUJIFILM Wako Pure

Chemical Corporation, Osaka, Japan) supplemented with 15% fetal

bovine serum (FBS; Sigma Aldrich, St. Louis, MO), 100 U/mL

penicillin, and 100 mg/mL streptomycin (Nacalai Tesque, Kyoto,

Japan) at 37°C. MCF-7, a human breast cancer cell line (Luminal A,

ER+, HER2-), HEK293, a human embryonic kidney cell line, and

SV-HUC-1, a human uroepithelium cell line were purchased from

American Type Culture Collection (ATCC, Manassas, VA) and

cultured in Dulbecco’s modified Eagle’s medium (DMEM,

FUJIFILM Wako Pure Chemical Corporation) supplemented with
frontiersin.org
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10% FBS, 100 U/mL penicillin, and 100 mg/mL streptomycin at

37°C in a humidified atmosphere of 5% CO2. To generate a hypoxia

culture condition, we used Anaero Pack 2%, Anaerobic cultivation

sets (Mitsubishi Gas Chemical Company, Inc., Tokyo, Japan).
2.2 Construction of Ad-CD44-N-HIF3a4

The construction of the synNotch receptor fusion gene, CD44-N-

HIF3a4, was outsourced to GENEWIZ (South Plainfield, NJ, USA).

The synNotch receptor gene, which had previously been subjected to

restriction enzyme treatment with SwaI enzyme (TaKaRa Bio Inc.,

Kusatsu, Japan), electrophoresis, and purification, was used as an insert

DNA. The respective domains of the synNotch receptor gene were

designed based on published articles (32–34), the transmembrane

domain search tool TMHMM (http://www.cbs.dtu.dk/services/

TMHMM/), and the signal peptide sequence tool SignalP (http://
Frontiers in Oncology 03
www.cbs.dtu.dk/services/SignalP/). Subsequently, the sequences

thereof were determined. The pAxCAwtit2 cosmid vector, which was

included in the Adenovirus Dual Expression Kit (TaKaRa Bio Inc.),

was used as vector DNA for constructing Ad-CD44-N-HIF3a4. Ad-
CD44-N-HIF-3a was constructed by transfecting this vector DNA

(Figure 1C) to HEK293 cells. The abovementioned procedures were

conducted as per the manual of the Adenovirus Dual Expression Kit.
2.3 Ad-SOCS3 and Ad-p53

Ad-SOCS3, a replication-deficient recombinant adenoviral

vector expressing human Suppressor of cytokine signalling 3

(SOCS3) gene, Ad-p53, a replication-deficient recombinant

adenoviral vector expressing human p53 gene, and Ad-LacZ, a

replication-deficient recombinant adenoviral vector expressing b-
galactosidase (LacZ) gene, were constructed by the cosmid-
A B

C

FIGURE 1

Mechanism of synthetic Notch (synNotch) receptor (CD44-N-HIF3a4) and construction of Ad-CD44-N-HIF3a4 (A) CD44 protein: Hyaluronic acid
(HA), a ligand of CD44-extracellular domain (CD44-ECD), initiates the CD44 signaling cascade and then induces the cleavage of the intracellular
domain of CD44 (CD44-ICD). CD44-ICD moves into the cell nucleus to promote tumor cell proliferation, migration, angiogenesis, and metastasis.
(B) synNotch receptor (CD44-N-HIF3a4): Hypoxia-inducible factor (HIF) in hypoxic tumor microenvironments also activates the transcription of
various hypoxia target genes promoting tumorigenesis and cancer stemness. Ad-CD44-N-HIF3a4 contains a gene encoding a synNotch receptor
(CD44-N-HIF3a4) composed of the CD44-ECD and HIF-3a4 connected by the Notch core regulatory region. CD44-ECD in the synNotch receptor
acts as a decoy receptor for the endogenous CD44 protein in the tumor microenvironment. The signal of CD44-ligands such as HA is converted via
the Notch core regulatory region at the cell membrane and inhibits hypoxia-induced responses by HIF-3a4, which is released from synNotch
receptor. (C) Construction of recombinant replication-deficient adenoviral vector, Ad-CD44-N-HIF3a4 A synthetic fusion gene encoding a
synNotch receptor composed of the extracellular domain of CD44 (CD44-ECD) and HIF-3a4 connected by the Notch core regulatory region was
introduced into the DE1 region of the adenovirus type 5 vector to construct a recombinant replication-deficient adenoviral vector, Ad-CD44-N-
HIF3a4. HA, Hyaluronic acid; ECD, Extracellular Domain; TMD, Transmembrane Domain; ICD, Intracellular Domain; HIF, Hypoxia-inducible factor.
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adenoviral DNA terminal protein complex method (35–37). Ad-

SOCS3, Ad-p53 and Ad-LacZ were designed to express SOCS3 gene,

p53 gene and LacZ gene, respectively, under the control of the CAG

promoter (a modified chicken b-actin promoter with a

cytomegalovirus immediate early enhancer) (38). The viruses

were amplified in HEK293 cells and purified using CsCL2 step

gradient ultracentrifugation followed by CsCl2 linear gradient

ultracentrifugation. The purified viruses were dialyzed against a

solution containing 10 mM Tris-HCl (pH 7.5), 1 mM MgCl2, and

10% glycerol and stored at -80°C (39). Viral particle and biological

titers were determined using a standard plaque-forming assay (37).

This study was approved by the Committee for Safe Handling of

Living Modified Organisms of Kobe University and carried out

according to the committee guidelines.
2.4 Flow cytometry

The expressions of coxsackievirus and adenovirus receptor

(CAR) and CD44 on the surface of MDA-MB-231 and MCF-7

cells were assessed by flow cytometry. Briefly, the cells (1×106

cells/well) were seeded in 6-well flat bottom culture plates

(Corning, Corning, NY) and incubated for 48 hours at 37°C and

5% CO2, and then washed with phosphate buffer solution (PBS).

Blocking One Histo (Nacalai Tesque, Inc., Kyoto, Japan) was used

to conduct 10-minute blocking at room temperature. Cells were

re-washed with PBS after blocking. The 100 fold-diluted PE anti-

CAR antibody, Clone: RmcB (Catalog#: 05-644, Sigma-Aldrich)

or the 100 fold-diluted PE mouse IgG1, k Isotype Ctrl, Clone:

MOPC-21 (Catalog#: 400101, BioLegend, San Diego, CA) for

CAR, and the 200 fold-diluted FITC anti-mouse/human CD44

antibody, Clone : IM7 (BioLegend) or the 100 fold-diluted FITC

Rat IgG2a, k Isotype Ctrl, Clone: RTK2758 (Catalog#: 103007,

BioLegend) for CD44, was added for a 30-minute reaction on ice.

Cells were re-washed with PBS after reaction and 100 fold-diluted

BD Pharmingen™ 7-AAD (BD Biosciences, San Diego, CA) was

added for a 5-minute reaction on ice under light-resistant

conditions. Cells were re-washed with PBS after this reaction.

expression of CAR and CD44 were determined by Guava®

easyCyte™ (Merck Millipore, Burlington, MA), and data were

analyzed with InCyte software.
2.5 Real-time reverse transcriptase-
polymerase chain reaction

The induction of HIF-1a and vascular endothelial growth factor

(VEGF) mRNAs by hypoxia (2%) in MDA-MB-231 and MCF-7

cells were examined by real-time RT-PCR. Also, gene expressions of

hyaluronan synthase (HAS) 1, HAS2 and HAS3 mRNAs in MDA-

MB-231, MCF-7 and SV-HUC-1 cell lines were examined by real-

time RT-PCR. The gene transduction with recombinant adenoviral

vectors including Ad-CD44-N-HIF3a4 and the anti-tumor effect

obtained thereby were verified by real-time RT-PCR. Briefly, the

cells (1×106 cells/well) were seeded in the 6-well flat-bottomed

culture plates (Corning Inc.), and cultured overnight at 37°C and
Frontiers in Oncology 04
5% CO2 under conditions of normoxia (21%) or under conditions

of hypoxia (2%). AnaeroPack®-Kenki (Mitsubishi Gas Chemical

Co., Ltd.) and HA (40-80 kDa; PG Research, Tokyo, Japan) were

used to generate the culture condition of hypoxia (2%). The cells

were infected with Ad-CD44-N-HIF3a4, Ad-SOCS3, Ad-p53, or
Ad-LacZ respectively at a multiplicity of infection (MOI) of 40 pfu/

cell. Cells were incubated for another 48 hours and then retrieved to

extract total RNA by using NucleoSpin® RNA (TaKaRa Bio). cDNA

was synthesized from extracted RNA using the PrimeScript™ RT

Regent Kit with gDNA Eraser (TaKaRa Bio Inc.). The primers

(Table 1), TB Green™ Prime Ex Taq™ (TaKaRa Bio Inc.), and

Thermal Cycler Dice® Real Time System (TaKaRa Bio Inc.) were

used to conduct real-time RT-PCR prior to analyses according to

the DDCt method.
2.6 Western blotting

MDA-MB-231 and MCF-7 cells were plated in 6-well plates at a

density of 5×105 cells/well and incubated at 37°C and 5% CO2 for 24
TABLE 1 Primer sequences for real-time RT-PCR.

Genes Sequences

HIF-1a Forward: 5’-TATGAGCCAGAAGAACTTTAGGC-3’

Reverse: 5’-CACCTCTTTTGGCAAGCATCCTG-3’

VEGF Forward: 5’-GGGCCTCCGAAACCATGAAC-3’

Reverse: 5’-CAAGGCTCCAATGCACCCAA-3’

HAS1 Forward: 5’-GGAATAACCTCTTGCAGCAGTTTC-3’

Reverse: 5’-GCCGGTCATCCCCAAAAG-3’

HAS2 Forward: 5’-TCGCAACACGTAACGCAAT-3’

Reverse: 5’-ACTTCTCTTTTTCCACCCCATTT-3’

HAS3 Forward: 5’-AACAAGTACGACTCATGGATTTCCT-3’

Reverse: 5’-GCCCGCTCCACGTTGA-3’

HIF-3a4 Forward: 5’-GGGAGACATGGCTTACCTGT-3’

Reverse: 5’-GCGTACTCTTCATGCGCAAG-3’

SOCS3 Forward: 5’-GACCAGCGCCACTTCTTCAC-3’

Reverse: 5’-CTGGATGCGCAGGTTCTTG-3’

p53 Forward: 5’-CAGCCAAGTCTGTGACTTGCACGTAC-3’

Reverse: 5’-CTATGTCGAAAAGTGTTTCTGTCATC-3’

Survivin Forward: 5’-AGAACTGGCCCTTCTTGGAGG-3’

Reverse: 5’-CTTTTTATGTTCCTCTATGGGGTC-3’

CCL2 Forward: 5’-AAGATCTCAGTGCAGAGGCTCG-3’

Reverse: 5’-TTGCTTGTCCAGGTGGTCCAT-3’

Bcl-xL Forward: 5’-CCCAGAAAGGATACAGCTGG-3’

Reverse: 5’-GCGATCCGACTCACCAATAC-3’

TBP Forward: 5’-GCCAGCTTCGGAGAGTTCTGGGATT-3’

Reverse: 5’-CGGGCACGAAGTCAATGGTCTTTA-3’
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hours. Then cells were infected with Ad-CD44-N-HIF3a4 at 5, 25, 50
and 100MOIs and incubated an additional 48 hours. These cells were

harvested and washed by PBS, then lysed in 8 M urea buffer

containing 0.1% dithiothreitol, and protein concentration was

determined. Equal amounts of each sample were added into sample

buffer (Nacalai Tesque) and heated at 95°C for 5 minutes. The

samples were separated by sodium dodecyl sulfate-polyacrylamide

gel electrophoresis (SDS-PAGE) and transferred to a polyvinylidene

difluoride membrane. After blocking with Blocking One (Nacalai

Tesque) 1 hour at room temperature (RT), followed by washing, the

membranes were incubated overnight at RTwith anti-CD44 (E7K2Y)

monoclonal antibody (Catalog#: 37259S, Cell Signaling Technology,

Danvers, MA), 1:1000, or anti-beta-actin antibody (Catalog#: sc-

47778, Santa Cruz Biotechnology, Dallas, TX), 1:1000. The CD44

antibody was diluted with Can Get Signal Immunoreaction Enhancer

Solution (TOYOBO, Osaka, Japan), and beta-actin antibodies was

diluted with PBS-Tween 20%. After another washing, membranes

were incubated for 1 hour at RT with horse radish peroxidase (HRP)

conjugated goat anti-mouse IgG or anti-rabbit IgG 1:1000. Antibody

binding to proteins was detected by enhanced chemiluminescence.
2.7 Cell proliferation assay

MDA-MB-231 and MCF-7 cells were seeded at a density of

2.0×10³ cells/well in a 96-well plate (Thermo Fisher Scientific,

Waltham, MA) and cultured for 24 hours. Then, the cells were

treated with 50 MOI of Ad-LacZ or Ad-CD44-N-HIF3a4 and were

incubated at 37°C for 5 days at 2% or 21% oxygen concentration.

And then, colorimetric reagents Cell Titer 96 Aqueous One Solution

Cell Proliferation Assay (Promega, Madison, WI) were added and

the absorbance was measured at a wavelength of 490 nm using

microplate photometer (Thermo Fisher Scientific). The relative cell

proliferation rate was determined by calculating the rate of reduce

of the obtained absorbance with cell only as 1.
2.8 Transwell migration assay

To investigate the cell migration ability of MDA-MB-231 after

transduction of CD44-Notch-HIF3a4 gene, MDA-MB-231 cells

were seeded at a density of 5.0×104 cells/well in a 6-well plate

(Corning, Inc.) and cultured for 24 hours. Then, the cells were

treated with 50 MOI of Ad-LacZ or Ad-CD44-N-HIF3a4 and were

incubated at 37°C for another 24 h at 2% or 21% oxygen

concentration. And then those cells were seeded in the insert

chamber (1.0×104 cells per chamber) under serum-free condition,

and 10% FBS was determined as a chemoattractant in the bottom

well of the Transwell® 6.5 mm Polycarbonate Membrane Inserts

Pre-Loaded in 24-Well Culture Plates, Pore Size: 8 μm (Corning

Inc.) and the cells were incubated for additional 24 h. The migrated

cells on the bottom side of membrane were stained with crystal

violet and viewed under a microscope. The numbers of migrating

cells per field of view were counted using a microscope

at ×100 magnification.
Frontiers in Oncology 05
2.9 Animal studies

An in vivo study in mice was conducted to compare the anti-tumor

effect of Ad-CD44-N-HIF-3a4 with other adenoviral vectors. Briefly,

the mixture of MDA-MB-231 cells (1×106 cells/70 mL) and 70 mL of

Matrigel® Matrix Basement Membrane HC (Corning, Inc.) was

subcutaneously inoculated into the right lumbar region of 25 female

BALB/c-nu/nu mice aged 6 weeks (CLEA Japan, Inc., Tokyo, Japan).

Tumor implantation was verified on day 14 after xenografting, and the

25 mice were randomly allocated to 5 treatment groups in blinded

manner. The treatment groups were established for a total of 8

intratumoral injections of adenoviral vectors and control on alternate

days (days 14, 16, 18, 20, 22, 24, 26, and 28): Ad-CD44-N-HIF3a4, Ad-
SOCS3, Ad-p53, and Ad-LacZ (1×109 PFU/50 μL each), and PBS

control (50 mL). Tumor diameters were measured 5 times in total, twice

weekly, from the start day of injection. The major (L) and minor (W)

axes of the tumor were measured to calculate tumor volume according

to the formula; (W2×L)/2. After treatment completion, tumors were

removed and fixed with 4% paraformaldehyde phosphate buffer

solution (FUJIFILM Wako Pure Chemical Corporation) for

immunohistochemical studies.
2.10 Immunohistochemical staining

Tumor tissues were resected and fixed with paraformaldehyde.

Paraffin embedded MDA-MB-231 tumor tissue sections were

deparaffinized and rehydrated. Antigen retrieval was performed in

Bond epitope retrieval buffer (pH6.0; Leica Microsystems, Wetzlar,

Germany) at 98°C for 20 minutes. Immunohisochemical staining was

performed in an automatic tissue processor (LeicaMicrosystems Bond)

according to the manufacturer’s standard protocol. Briefly, tissue

sections were incubated at RT for 15 minutes with anti-CD44

antibody (F10-44-2) (1:100, Catalog#: ab6124, Abcam, Cambridge,

UK). After washing, sections were incubated with HRP conjugated

secondary antibodies. After washing, sections were incubated with 3,3’-

diaminobenzidine (Muto Pure Chemicals Co., Ltd., Tokyo, Japan) and

counterstained with hematoxylin. The resulting tissue slides were

observed under a BZ-X710 microscope (Keyence, Osaka, Japan).
2.11 Statistical analysis

Comparisons between two groups were performed by the

student’s t -test and comparisons between multiple groups were

performed by one-way ANOVA followed by the Tukey–Kramer

method. Differences among experimental groups were considered

significant when p<0.05. The sample size of animal study was

calculated by the power analysis approach.
2.12 Study approval

All experiments and methods were performed in accordance with

relevant guidelines and regulations, and all experimental protocols were
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https://doi.org/10.3389/fonc.2023.1147668
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


A et al. 10.3389/fonc.2023.1147668
approved by the committees of the Kobe University Graduate School of

Medicine. Specifically, the animal experimental design and procedure

were reviewed and approved by the institutional ethics and animal

welfare committees of the Kobe University Graduate School of Medicine.
3 Results

3.1 MDA-MB-231 cells express CAR and
CD44 and mRNA expressions of HIF-1a
and VEGF are increased under hypoxia

Prior to investigation of anti-tumor activity of Ad-CD44-N-HIF-

3a4 in MDA-MB-231 (TNBC) cells, we confirmed the expressions of

CAR and CD44 on the cell surface and the induction of HIF-1a and

VEGFmRNA by hypoxia. The expression of CAR on the cell surface is

strongly correlated with the infectivity of adenovirus type 5 (40), thus

confirmation of cell-surface expression of CAR protein is important for

the further evaluation of Ad-vectors. The significantly higher

expressions of CAR and CD44 compared to each isotype controls
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were confirmed by flow cytometry (p < 0.01; Figure 2A). The CAR and

CD44 double positive population of MDA-MB-231 and MCF-7 cells

are 53% and 19%, respectively (Figure 2A). Also, the mRNA levels of

HIF-1a and VEGF were significantly increased in 2% hypoxia culture

condition compared to 21% condition inMDA-MB-231 cells (p < 0.01;

Figure 2B). These results indicate that MDA-MB-231 cell line is

suitable for further investigating the anti-tumor activity of Ad-CD44-

N-HIF 3a4. As for the control breast cancer cell line, we employed

MCF-7 (Luminal A, ER+, HER2-) cell line in this examination.

Although MCF-7 cells expressed CAR and CD44 proteins, the

expression of CD44 was relatively lower compared to MDA-MB-231

cells (Figure 2A). In addition, mRNA level of HIF-1a in MCF-7 cells

was not increased in hypoxia, while VEGF was significantly increased

in hypoxia (Figure 2B).
3.2 MDA-MB-231 cells express HAS2 mRNA

Some types of cancer cells express hyaluronan synthases (HAS1,

HAS2, and HAS3), as well as embryonic cells, and HAS2-CD44
A

B

FIGURE 2

Expressions of CAR and CD44, and induction of HIF-1a mRNA by hypoxia in MDA-MB-231 and MCF-7 cells (A) The expressions of CAR and CD44
on the cell surface of MDA-MB-231 and MCF-7 cells were determined by flow cytometry. Mean fluorescence intensities (MFI) and their
representative histograms are shown. Both CAR and CD44 expressions were significantly higher than their isotype controls (n=3, average ± SE bars,
**p< 0.01). However, the CD44 expression in MCF-7 was relatively lower than MDA-MB-231 cells. The upper right corner of the histogram
represents CD44 and CAR double positive cells. (B) The mRNA expressions of HIF-1a and VEGF in MDA-MB-231 and MCF-7 cells were measured by
real-time RT-PCR under the culture conditions of O2 concentrations of 21% and 2%. The mRNA levels of HIF-1a and VEGF in MDA-MB-231 cells
were significantly increased in 2% hypoxia culture condition compared to 21% condition. In addition, mRNA level of HIF-1a in MCF-7 cells was not
increased in hypoxia, while VEGF was significantly increased in hypoxia (n=3, average ± SE bars, **p< 0.01).
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signaling is considered to play a vital role in malignant progression

(41). We compared the mRNA expressions of HAS1, HAS2 and

HAS3 in MDA-MB-231 and MCF-7 cells to those in non-malignant

SV-HUC-1 cells (Figures 3A–C). As the result, only HAS2 mRNA

expression in MDA-MB-231 cells was significantly increased

compared to SV-HUC-1 cells (p < 0.01; Figure 3B), but not in

MCF-7 cells.
3.3 Ad-CD44-N-HIF3a4 transduces CD44-
ECD proteins both in MDA-MB-231 and
MCF-7 cells in dose-dependent manner
but inhibits the cell growth of only MDA-
MB-231 cells

To confirm that Ad-CD44-N-HIF3a4 could transduce the

CD44-ECD protein, we performed the western botting assay

using anti-CD44 antibody in various doses (0, 5, 25, 50, and 100

MOIs) of Ad-CD44-N-HIF3a4. As a result, beside the endogenous
CD44 protein, we confirmed the expression of CD44-ECD synthetic

fusion proteins in both MDA-MB-231 and MCF-7 cells in dose

dependent manners (Figure 4A). In addition, the strong expressions

of endogenous CD44 proteins were observed in MDA-MB-231

cells, while they were merely seen in MCF-7 cells. Generally, it is

well known that MDA-MB-231 (TNBC) cell line has more

metastatic characteristics than MCF-7 (Luminal A, ER+, HER2-)

cell line (42). Thus, we decided to use the MDA-MB-231 cell line for

further evaluations of Ad-CD44-N-HIF3a4 in vitro and in vivo

experiments. Furthermore, in our cell proliferation analysis, Ad-

CD44-N-HIF3a4 significantly inhibited the cell growth of MDA-

MB-231 cells both in normoxia and hypoxia conditions compared
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to cell only (no treatment) group but did not inhibit the cell growth

of MCF-7 cells (p<0.01; Figure 4B).
3.4 Ad-CD44-N-HIF3a4 inhibits migration
in MDA-MB-231 in hypoxia condition

In the transwell migration assay, Ad-CD44-N-HIF3a4
significantly inhibited the cell migration of MDA-MB-231 cells in

hypoxia condition but not in normoxia condition (p<0.05; Figure 5).
3.5 Recombinant adenoviral vectors
induced respective gene transductions

MDA-MB-231 cells were infected with the recombinant adenoviral

vectors Ad-CD44-N-HIF3a4, Ad-SOCS3, and Ad-p53 in vitro, and

real-time RT-PCR was conducted to assess whether their respective

genes were efficiently transduced. The mRNA expressions of the HIF-

3a4 gene, the SOCS3 gene, and the p53 gene were significantly

increased by infection with Ad-CD44-N-HIF3a4 (Figure 6A), Ad-

SOCS3 (Figure 6B), and Ad-p53 (Figure 6C), respectively (p < 0.01).
3.6 Ad-CD44-N-HIF3a4 significantly
suppressed CD44-downstream genes
under culture conditions of hypoxia

MDA-MB-231 cells were infected with the Ad-CD44-N-HIF3a4,
Ad-SOCS3, Ad-p53 and Ad-LacZ adenoviral vectors in vitro to

examine whether Ad-CD44-N-HIF3a4 could suppress the

downstream genes of CD44 via the CD44 decoy receptor function of
A B C

FIGURE 3

Detection of hyaluronan synthases (HAS1, HAS2, and HAS3) mRNA in MDA-MB-231 and MCF-7 cells (A) The mRNA expressions of HAS1, HAS2 and
HAS3 in MDA-MB-231 and MCF-7 cells were measured by real-time RT-PCR and compared to those in non-malignant SV-HUC-1 cells. The mRNA
expressions of HAS1 in MDA-MB-231 and MCF-7 cells was not increased compared to those of SV-HUC-1 cells. (B) The mRNA expression of HAS2
in MDA-MB-231 cells was significantly increased compared to that in SV-HUC-1 cells, but not in MCF-7 cells. (C) The mRNA expressions of HAS3 in
MDA-MB-231 and MCF-7 cells was not increased compared to that in SV-HUC-1 cells. mRNA levels were standardized by the expression levels of
control gene TATA-binding protein (TBP). (n=3, average ± SE bars, **p< 0.01).
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the synNotch receptor. The relative mRNA expressions of survivin and

CCL2, downstream genes of CD44, in the cells infected with Ad-CD44-

N-HIF3a4 were significantly lower than in cells infected with the other
adenoviral vectors and controls cells under culture conditions of

hypoxia (p < 0.01; Figures 7A, B). Conversely, no significant change

was observed under culture conditions of normoxia (Figures 7A, B).

3.7 Ad-CD44-N-HIF3a4 significantly
suppressed hypoxia target genes under
hypoxia

The adenoviral vectors: MDA-MB-231 cells were infected with

Ad-CD44-N-HIF3a4, Ad-SOCS3, Ad-p53 or Ad-LacZ in vitro to

examine whether Ad-CD44-N-HIF3a4 could suppress hypoxia

target genes via the function of HIF-3a4 released from the

synNotch receptor of CD44-N-HIF3a4 fusion protein. Under

culture conditions of hypoxia, Ad-CD44-N-HIF3a4 significantly

decreased the mRNA expression of VEGF compared to the other
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adenoviral vectors or no infection (p < 0.05; Figure 7C), and the

mRNA expression of B-cell lymphoma-extra arge (Bcl-xL) was

significantly decreased in the cells infected with Ad-CD44-N-

HIF-3a4 compared to cells infected with Ad-SOCS3 (p < 0.05;

Figure 7D), while these changes were not observed under culture

conditions of normoxia (Figures 7C, D). However, these changes

are relatively small compared to the changes in Survivin and CCL2

genes, which are the downstream signals of CD44.
3.8 Intratumoral injections of Ad-CD44-N-
HIF3a4 induced CD44 overexpression in
the cell membrane in MDA-MB-231
xenograft tumors in vivo

Immunohistochemical staining showed that Endogenous CD44

protein was positive in the cell membrane in MDA-MB-231 tumors

in all treatment groups (Figure 8). However, the strongest signal was
A

B

FIGURE 4

Ad-CD44-N-HIF3a4 transduced CD44-ECD protein in MDA-MB231 and MCF-7 cells in dose-dependent manner but inhibits the cell growth of only
MDA-MB-231 cells (A) Western blotting using anti-CD44 antibody revealed that MDA-MB-231 highly expressed endogenous CD44 protein (around
80 kDa) but MCF-7 does not express the endogenous CD44 protein. Ad-CD44-N-HIF3a4 could induce the synNotch receptor protein including
CD44-ECD in dose dependent manner both in MDA-MB-231 and MCF-7. (B) Cell proliferation analysis, Ad-CD44-N-HIF3a4 significantly inhibited
the cell growth of MDA-MB-231 cells in normoxia and hypoxia conditions compared to cell only (no treatment) group but did not inhibit the cell
growth of MCF-7 cells (n=3, average ± SE bars, **p< 0.01).
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clearly observed in tumors treated with Ad-CD44-N-HIF3a4
(Figure 8). This result was consistent with the CD44 transduction

by Ad-CD44-N-HIF3a4 confirmed with the western blotting

(Figure 4), indicating that Ad-CD44-N-HIF3a4 could induce the

overexpression of CD44-ECD at the cell surface of infected

tumor cells.
3.9 Intratumoral injections of Ad-CD44-N-
HIF3a4 significantly suppressed the growth
of MDA-MB-231 xenograft tumors in vivo

The adenoviral vectors Ad-CD44-N-HIF3a4, Ad-SOCS3, Ad-
p53 and Ad-LacZ or PBS were intratumorally injected into the

MDA-MB-231 subcutaneous xenograft tumors to examine the in

vivo anti-tumor activity of Ad-CD44-N-HIF3a4 in comparison

with Ad-SOCS3 and Ad-p53. Briefly, the intratumoral injection of

each adenoviral vector was initiated at Day 14 after the MDA-MB-

231 cell inoculation. Subsequently, the adenoviral vectors or PBS

were injected every other day for a total of 8 times. At Day 28, Ad-

CD44-N-HIF3a4 significantly suppressed the tumor growth

compared to the other adenoviral vectors or PBS ((p < 0.05 for
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Ad-p53, p<0.01 for the other groups; Figure 9). Ad-SOCS3 and Ad-

p53 did not demonstrate significant in vivo anti-tumor activity

compared to Ad-LacZ or PBS (Figure 9).
4 Discussion

In the present study, we constructed Ad-CD44-N-HIF3a4
containing the synNotch receptor gene, which encodes a fusion

protein comprised of CD44-ECD acting as a CD44 decoy receptor

and HIF-3a4, a dominant negative inhibitor of HIF-1a and HIF-

2a, connected by the Notch core regulatory region (Figures 1B, C).

Recently, synNotch receptors have been developed to generate

synthetic Notch signaling pathways (43, 44). SynNotch receptors

consist of the Notch regulatory core region with an appended

extracellular recognition domain and synthetic intracellular

transcriptional domain (45, 46). Previously, Roybal and colleagues

(43) constructed engineered T cells with synNotch receptors, in

which Notch-ECD was replaced with a single-chain variable

fragment (scFv) against cancer antigens such as CD19 and HER2,

and Notch-ICD was replaced with the Gal4 DNA binding domain

fused to the tetrameric viral transcriptional activator domain, VP64
FIGURE 5

Ad-CD44-N-HIF3a4 inhibited migration in MDA-MB-231 in hypoxia condition, Ad-CD44-N-HIF3a4 significantly inhibited the cell migration of MDA-
MB-231 cells in hypoxia condition but not in normoxia condition. Magnification: ×100 (n=3, average ± SE bars, *p< 0.05).
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A B C

FIGURE 6

Gene expression of HIF-3a4, SOCS3 and p53 induced by adenovirus vectors in MDA-MB-231 cells The gene expression of HIF-3a4 (A), SOCS3 (B) and p53
(C) in MDA-MB-231 cells were measured by real-time RT-PCR after Ad-CD44-N-HIF3a4, Ad-SOCS3, Ad-p53 and Ad-lacZ infections. mRNA levels were
standardized by the expression levels of control gene TATA binding protein (TBP). The significantly increased levels of mRNA expressions of HIF-3a4 (A),
SOCS3 (B) and p53 (C) were observed in cells infected with Ad-CD44-N-HIF3a4, Ad-SOCS3 or Ad-p53, respectively (n=3, average ± SE bars, **p< 0.01).
A B

C D

FIGURE 7

Gene expression of survivin, CCL2, VEGF and Bcl-xL in MDA-MB-231 cells infected with adenovirus vectors were measured by real-time RT-PCR. Cells were
cultured under hypoxic conditions or under normoxic conditions. The significantly decreased mRNA expressions of (A) survivin and (B) CCL2 were observed
in cells infected with Ad-CD44-N-HIF3a4 compared to cells infected with the other adenovirus vectors and no virus only in the culture conditions under
hypoxic. The significantly decreased mRNA expressions of (C) VEGF and (D) Bcl-xL were observed in cells infected with Ad-CD44-N-HIF3a4 compared to
cells infected with the other adenovirus vectors and no virus only in the culture conditions under hypoxic. mRNA levels were standardized by the expression
levels of control gene TBP. (n=3, average ± SE bars, *p< 0.05,**p< 0.01).
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(47). The synNotch receptors of the engineered T cells could bind to

the target antigens on the targeted cancer cells and sequentially

activate transcription of the intended genes to induce the activation

of T cells or cancer cell apoptosis (43).

To evaluate the anti-tumor activity of Ad-CD44-N-HIF3a4 in

advanced breast cancer, we employed MDA-MB-231 cell line. Both

MDA-MB-231 and MCF-7 (Luminal A, ER+, HER2-) cells

expressed CAR and CD44, but the expression of CD44 proteins

in MDA-MB-231 was higher than that in MCF-7 cells (Figure 2A).

However, Cho and his colleagues reported that CD44-ICD is

strongly expressed in both MAD-MB-231 and MCF-7 cells (48).

Reportedly, the expression levels of CD44 protein in MDA-MB-231

and MCF7 cells are higher than that in MCF10A, which is normal

brest cell line (49) Although hypoxia condition increased VEGF in

both MDA-MB-231 and MCF-7 cells, HIF-1a was increase by

hypoxia only in MDA-MB-231 but not in MCF-7 (Figure 2B). In

addition, MDA-MB-231 but not MCF-7 cells express HAS2

(Figure 3B). This result is consistent with a previous report that

the expression level of HAS2 in MDA-MB-231 is higher than MCF-

7 and MCF10A cells (50). It is well known that HAS2 promotes

breast cancer cell invasion through the CD44 pathway (41). Indeed,

in our experiments, Ad-CD44-N-HIF3a4 could transduce CD44-

ECD in both MDA-MB-231 and MCF-7 cells (Figure 4A), however,

the cell growth was significantly inhibited by Ad-CD44-N-HIF3a4
only in MDA-MB-231 cells but not in MCF-7 (Figure 4B). These

results suggested that Ad-CD44-N-HIF3a4 specifically worked in

CD44 over expressing cancer cells. All taken together we selected
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MDA-MB-231 cells to evaluate the efficacy of Ad-CD44-N-HIF3a4
in advanced breast cancer. As well as inhibition of cell proliferation,

we confirmed that Ad-CD44-N-HIF3a4 could inhibit the cell

migration of MDA-MB-231 cells in hypoxic condition (Figure 5).

To evaluate the efficacy of Ad-CD44-N-HIF3a4, we compared

it`s in vivo anti-tumor activities with other adenovirus vectors, Ad-

SOCS3 (30) and Ad-p53 (31). In addition, the interaction between

CD44 and HA enhances the infectivity of Ad-vectors (51). The

suppressor of cytokine signaling (SOCS) family proteins are

inhibitors of the Janus kinase/signal transducer and activator of

transcription (JAK/STAT) signaling pathway. Higher expressions of

SOCS1, 3, 4, and 7 are associated with good prognosis in breast

cancer (52), and STAT3 is constitutively activated in breast cancer

(53). Previously we demonstrated that Ad-SOCS3 could inhibit the

growth of human and mouse prostate cancer cells via inhibition of

interleukin-6 (IL-6)/JAK/STAT signaling (30). The p53 gene

mutation is frequently observed in TNBC cells, including the

MDA-MB-231 cell line (54), and it is well known that Ad-p53 can

increase the sensitivity to conventional cytotoxic agents (55, 56).

First, we confirmed that Ad-CD44-N-HIF3a4, Ad-SOCS3 and

Ad-p53 could efficiently transduce HIF-3a4, SOCS3 and p53 genes in

MDA-MB-231 cells (Figures 6A–C) respectively. To confirm the

function of Ad-CD44-N-HIF3a4, we examined the function of Ad-

CD44-N-HIF-3a4 under in vitro culture conditions of hypoxia in

MDA-MB-231 cells. We confirmed that Ad-CD44-N-HIF3a4
significantly suppressed the mRNA expressions of survivin and CCL2

genes, which are CD44-downstream target genes, compared to the
FIGURE 8

Immunohistochemical staining for CD44 in MDA-MB-231 tumor injected with adenovirus vectors One million MDA-MB-231 cells were
subcutaneously inoculated into nude mice for tumor formation, followed by intratumoral injections of Ad-CD44-N-HIF3a4, Ad-SOCS3, Ad-p53, Ad-
LacZ or PBS. After the treatments, tumors were resected and stained for CD44 expressions. The remarkably increased expression of CD44 was
detected in the cell membrane of tumor injected with Ad-CD44-N-HIF3a4 compared to tumors injected with the other adenovirus vectors or PBS.
(Original magnification: x400).
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other adenovirus vectors (Figures 7A, B). Survivin is an inhibitor of

apoptosis protein that plays a pivotal role in stemness and invasion in

breast cancer cells (57). Chemokine (C-C motif) ligand 2 (CCL2), a

pro-inflammatory chemokine, has been implicated in breast cancer

progression and the expression level of CCL2 is closely correlated with

accumulation of tumor-associated macrophages (TAM) and breast

cancer metastasis (58, 59). Also, we examined the effects of Ad-CD44-

N-HIF3a4 on HIF target genes, VEGF and Bcl-xL. VEGF is an

important growth factor for tumor angiogenesis, and it is considered

as a specific target of HIF-1a (60). Generally, cytotoxic agents induce

cancer cell apoptosis, but in some types of cancer cells, including breast

cancer cells, anti-apoptotic proteins like Bcl-xL are also induced by

cytotoxic agents (61). Chemoresistance induced by HIF could be

implemented by anti-apoptotic proteins, including Bcl-xL (62). In

our results, the expression of both VEGF and Bcl-xL genes was

significantly suppressed by Ad-CD44-N-HIF3a4 compared to the

other adenovirus vectors especially under culture condition of

hypoxia (Figures 7C, D). Interestingly, these changes in both CD44

and HIF target genes were not observed under culture conditions of

normoxia (Figures 7A–D). These results support the rationale for the

function of Ad-CD44-N-HIF3a4.
In an in vivo study, we employed a mouse xenograft model of

MDA-MB-231 tumor, of which hypoxia was previously confirmed by
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a three-dimensional multimodal molecular imaging with magnetic

resonance (MR) imaging (63). The over-expression of CD44-ECD

induced by Ad-CD44-N-HIF3a4 was clearly observed in

immunohistochemical studies (Figure 8), and the anti-tumor

activity of Ad-CD44-N-HIF3a4 was significantly greater than Ad-

SOCS3 and Ad-p53 (Figure 9). Previously, both Ad-SOCS3 and Ad-

p53 have demonstrated in vivo anti-tumor activity in many

experimental models (35, 60, 64). However, in the xenograft model

of MDA-MB-231, a highly invasive TNBC cell line, these adenovirus

vectors could not suppress tumor growth. On the other hand, Ad-

CD44-N-HIF3a4 did exert high anti-tumor activity in MDA-MB-

231 tumors by targeting CD44 and HIF, both closely related to cancer

stem cells. Also, we need to state the limitation of the xenograft model

using an immune-deficient nude mice. While the multiple injections

of Ad-vectors were performed here, the immune-responses to the

vectors and transgenes could not be evaluated in this model. It is

important to investigate in human clinical trials whether these

immune-responses to Ad-vectors could enhance or reduce the anti-

tumor activity. Also, in clinical setting of the treatment of TNBC, the

sensitization to conventional cytotoxic agents by Ad-Vectors,

especially Ad-p53 should be investigated (55, 56).

In conclusion, we developed a recombinant adenovirus vector,

Ad-CD44-N-HIF3a4, containing a synNotch receptor gene which
FIGURE 9

Anti-tumor effect of Ad-CD44-N-HIF3a4 in mice with MDA-MB-231 tumors One million MDA-MB-231 cells were subcutaneously inoculated into
nude mice and intratumoral injections of Ad-CD44-N-HIF3a4, Ad-SOCS3, Ad-p53, Ad-LacZ or PBS were performed every other day for 8 times. Ad-
CD44-N-HIF3a4 significantly inhibited the growth of MDA-MB-231 tumors compared to Ad-p53 (p< 0.05), Ad-SOCS3, Ad-LacZ and PBS (p< 0.01).
(n=5, average ± SE bars, *p< 0.05, **p< 0.01).
frontiersin.org

https://doi.org/10.3389/fonc.2023.1147668
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


A et al. 10.3389/fonc.2023.1147668
inhibited CD44 signaling and hypoxia-induced response in cancer

cells. Ad-CD44-N-HIF3a4 worked only under conditions of hypoxia
and the presence of HA in vitro, but greatly inhibited the growth of

tumors of MDA-MB-231 invasive TNBC cells in vivo. These results

indicate that Ad-CD44-N-HIF3a4 is a completely novel in vivo gene

therapy drug targeting cancer stem cells, with potentially high clinical

applicability for invasive types of cancer, especially TNBC.
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