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Introduction: High-grade serous ovarian cancer (HGSOC) is the most common

histological subtype of ovarian cancer, and is associated with highmortality rates.

Methods: In this study, we analyzed specific cell subpopulations and compared

different gene functions between healthy ovarian and ovarian cancer cells using

single-cell RNA sequencing (ScRNA-seq). We delved deeper into the differences

between healthy ovarian and ovarian cancer cells at different levels, and

performed specific analysis on endothelial cells.

Results: We obtained scRNA-seq data of 6867 and 17056 cells from healthy

ovarian samples and ovarian cancer samples, respectively. The transcriptional

profiles of the groups differed at various stages of ovarian cell development. A

detailed comparison of the cell cycle, and cell communication of different

groups, revealed significant differences between healthy ovarian and ovarian

cancer cells. We also found that apoptosis-related genes, URI1, PAK2, PARP1,

CLU and TIMP3, were highly expressed, while immune-related genes, UBB,

RPL11, CAV1, NUPR1 and Hsp90ab1, were lowly expressed in ovarian cancer

cells. The results of the ScRNA-seq were verified using qPCR.

Discussion: Our findings revealed differences in function, gene expression and

cell interaction patterns between ovarian cancer and healthy ovarian cell

populations. These findings provide key insights on further research into the

treatment of ovarian cancer.

KEYWORDS

single-cell RNA-seq, ovarian cancer, human cancer, transcriptomics, differential
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Introduction

Ovarian cancer is one of the most common gynecologic

malignancies in the world, with dismal prognosis (1). High-grade

serous ovarian cancer (HGSOC) is the most aggressive type of ovarian

cancer (2). High-grade ovarian serous cancer is associated with poor

survival rates compared with early-stage and high-grade cancers, with

the 5-year survival rate being only 27% (3). Advanced high-grade

serous ovarian cancers tend to invade adjacent organs, metastasizing to

the peritoneum and lymph nodes (4). So far, studies of high-grade

serous ovarian cancer and the discovery of long-term effective

treatment strategies for this disease are limited. Therefore, there is

need for in depth research into the regulation mechanisms of genes

associated with progression of high-grade ovarian cancer. Data from

high throughput sequencing technologies indicate that many human

genes are transcribed into RNAs, but only a small part of RNAs is

finally translated into proteins (5, 6). Genome information flows

through various molecular layers, including epigenome,

transcriptome, proteome, and metabolome, to produce characteristic

traits (7). As a result, we have gained a deeper understanding of the

molecular complexity of ovarian cancer, especially the complexity of

the genome. RNA-seq is a technique used to analyze RNA expression

in whole tissues. However, this approach does not highlight

contributions from different cell types (8). Single-cell RNA

sequencing (scRNA-Seq) technologies provide essential opportunities

to study cellular heterogeneity on the gene level (9).

Single-cell sequencing technology involves separation of groups of

cells within tissues and body fluid into single cells, and analyzing their

genetic materials using high-throughput sequencing techniques to

reveal cellular heterogeneity among different tissues and cell types

(10, 11). Each single cell found within high‐grade serous ovarian cancer

has unique microenvironment, transcriptomic and epigenomic

characteristics (12). Although cells contain the same genes,

differences in mechanisms of transcriptional modulation drives

stochastic gene expression. RNA sequencing (RNA-seq) is a bulk

sequencing technique that analyzes the molecular complexity of

tumor environment based on the average expression level of different

cells, and cannot reveal the internal differences between different cell

subsets (13). Single-cell sequencing differs from conventional tissue

sequencing because it involves genome or transcriptome sequencing of

nucleic acid (DNA or RNA) in a single cell, which is useful for

identifying new markers, rare subpopulations and evolutionary

patterns (14). ScRNA-seq can be used to determine the effect of gene

expression on genetic structure diversity (15), individual cell level and

interaction with host immune system in tumors (16). The analysis of

single cell transcriptome RNA in a single tumor sample is especially

important for understanding the cells in the cancer microenvironment.

ScRNA-seq has become an indispensable part of the scientific research

process. It can dissect tumor tissues into various cell types or cell

shapes, and characterize tumor tissues (17). Clinically, it provides new

insights into pharmacological mechanisms and provides new targets

for tumor treatment.

In this study, we aimed to identify the potential key genes and

pathways associated with HGSOC progression using single-cell

transcriptome-specific analysis. We first determined the specific
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proportions of cell populations and special subpopulation of

endothelial cells utilizing the data in the GEO public database. Next,

we systematically analyzed signaling pathways involved in cellular

function in HGSOC. Meanwhile, we characterized different cell

interaction patterns in HGSOC and normal ovarian tissues through

Cellchat analysis. We further identified differentially expressed genes

via Gene ontology (GO) analyses, then we verified the reliability of the

ten most differential expression of mRNAs by quantitative real-time

PCR (qPCR) in clinical samples of HGSOC and in normal tissues. This

research could help to understand tumor heterogeneity at the

transcriptome level and the mechanisms of ovarian cancer metastasis

and refractory to treatment may have major implications for

therapeutic development and patient survival.
Materials and methods

Data sources and collection of
human samples

We collected tumor and normal samples from ovarian cancer

patients at Zhejiang University Sir Run Run Shaw Hospital, all

detailed information of patients are listed in Supplementary Table 1.

We downloaded two datasets, GSE147082 (18), and GSE118127

(19), which consisted of scRNA-seq data from Gene Expression

Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo/) database.
Data integration and analysis

The basic analysis steps of single-cell transcriptome were based on

the R package Seurat (https://satijalab.org/seurat/, v.3.2.0) (20, 21). We

read in the relevant single cell transcriptome matrix through the

Read10X function, and set the following quality control standards:

1000<nFeature_RNA<6000, percent.mt<10. We normalized the data

by LogNormalize method to eliminate the influence of library size

(scale.factor = 10000), and identified 2000 hypervariable genes in each

sample by “vst”method. We removed batch effects and integrated data

using the standard procedures of Seurat v3 (22). We identified the

anchors of the data through FindIntegrationAnchors, and integrated

the datasets through the IntegrateData function. Then we scaled the

data through ScaleData and performd principal component

dimensionality reduction on the data through RunPCA (npcs=30).

After that, We constructed k-NN graph through FindNeighbors

(k.param = 20, reduction = “pca”, dims = 1:30) and performed t-

Distributed Stochastic Neighbor Embedding (t-SNE) visualization

dimensionality reduction on the data (dims = 1:30). Choosing the

resolution as 0.25, we clustered cells by the FindClusters function.

Through the FindAllMarkers function, we identified specifically

expressed genes in each cell population to assist us in cell type

definition (logfc.threshold = 0.1, test.use = “wilcox”), and displayed

the top5 highly expressed genes through DoHeatmap. We annotated

the cells through the annotation information in literature and known

markers. GO enrichment analysis of the differentially expressed genes

was implemented using the clusterProfiler (3.12.0) package in R, and
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analyzed through the enrichGO function (p valueCutoff =0.05,

pAdjustMethod = “BH”,qvalueCutoff = 0.2) (23). Cellchat analysis

was mainly based on the R package CellChat (version 1.1.3) (24). We

used the normal and tumor samples as input sets to construct objects

through the CreateCellChat function, and imported the Secreted

Signaling database of human ligand receptors in CellChat for

analysis. Then, we identified significantly expressed genes by

identifyOverExpressedGenes (thresh.fc = 0, thresh. p= 0.05) and

identifyOverExpressedInteractions to identify significant interactions.
Real-time quantitative PCR (qRT-PCR)

Total RNA from tumor samples and normal samples were

extracted using RNA Quick Purification Kit (ES Science,

Shanghai, China). Complementary DNA (cDNA) synthesis was

then carried out using 1 mg of total RNA using the cDNA Reverse

Transcription kit (Vazyme, Nanjing, China). QRT-PCR was

performed using TB Green™ Premix Ex Taq™ II (RR420A;

Takara, China) on a Bio-Rad CFX-96 Real-time PCR system

(Bio-Rad, USA), QRT-PCR was run at the following condition:

95°C, 3min; (95°C, 15s; 60°C, 30s;72°C, 30s)×40 cycles, according to

the manufacturer’s instructions. All PCR primers for genes are

listed in Supplementary Table 2 and were synthesized by Tsingke

Biological Technology (Tsingke, Beijing, China). Relative

abundance of mRNA expression was calculated using the 2−DDCt

method, and normalized to GAPDH mRNA expression levels.
Results

Single-cell transcriptional profiling
of ovarian samples and cell-type
identification

After integrating the data from healthy ovarian and ovarian

cancer samples, the cells clustered into 11 groups, including 6867

tumor cells and 17056 healthy cells (Figure 1A, Supplementary

Figure 1). Dot plots were used to display the marker genes of

different clusters, and the characteristics of these genes were used

to annotate the cell types (Figure 1B). Then, we used the CopyKAT

(v1.0.8) to identify the benign and malignant cells in the tumor

dataset, in which there were 1492 aneuploid cells (tumor cells) and

4983 cells were defined as diploid cells (normal cells) (Figure 1C,

Supplementary Figure 2). In addition, by calculating the proportions

of various cell types, in the ovarian cancer samples, we found a

significant decrease in the ratio of Stroma cell−1 and a significant

increase in the ratio of Granulosa−1 and fibroblasts (Figures 1D, E).
Differential gene and cell cycle analysis
revealed significant functional changes

We carried out differential gene expression analysis between

ovarian cancer and healthy ovarian tissues for each cell population,

and found that C1orf60, TRABD2A, CAND2 and other genes were
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significantly up-regulated genes in multiple clusters (Figure 2A).

Enrichment analysis of up-regulated and down-regulated genes in

ovarian cancer, revealed that up-regulated genes were closely

related to apoptosis signaling, inflammatory response, and

methylation, while down-regulated genes were closely related to

immune system and cell homeostasis (Figures 2B, C). Finally, we

calculated the proportion of cells in different stages of the cell cycle

for each population of ovarian cancer and healthy ovarian cells, and

found significant differences among different cell populations. For

example, a high proportion of cells in the G2M phase were

Granulosa−2 cells (Figure 2D).
Cellchat analysis of ovarian cancer and
healthy ovarian tissues revealed different
cell interaction patterns

We found significant differences in the communication patterns of

different cell groups between healthy ovarian and ovarian cancer tissues

using CellChat (Figure 3A). Several ovarian cancer cell types generated

more signals than healthy ovarian cells, with the cancer cells generating

significant levels of PARs and VEGF signals. We found that PARs

signaling in ovarian cancer was predominantly generated by Immune-

2 and received by various other cell populations (Figure 3B). Moreover,

VEGF signals were mainly produced by EC-1 and Granulosa cells in

ovarian cancer tissues, and EC-2 received the signal, suggesting that the

production of EC-2 was closely related to the secretion of VEGF by

these two groups of cells (Figure 3C).
Ovarian cancers induced important
changes in endothelial cells

To further explore the difference in endothelial cells between

healthy ovarian and ovarian cancer tissues, we performed differential

analysis based on two populations of cells, EC-1 and EC-2. A

comparison of endothelial cells between healthy ovarian and ovarian

cancer tissues revealed that genes such as RACK1, S100A6, and

C1orf186 were significantly upregulated, while GMB2L1, TM4SF1,

and EIF1 were significantly downregulated in the ovarian cancer

samples (Figure 4A). GO enrichment analysis on differentially

expressed genes showed that the genes were enriched in important

pathways related to endothelial cell differentiation, migration, and

differentiation (Figure 4B). The expression of these genes differed

significantly in healthy ovarian and ovarian cancer EC-1 cells, and

ovarian cancer-specific EC-2 cells. For example, genes such as VEGFA

and EZR were significantly expressed in EC-1-Cancer cells, but genes

such as PDE4D and AFDN were not expressed (Figure 4C).
The expression of apoptosis- and immune-
related genes was altered in ovarian cancer
tissues

Based on the results of GO analysis, we further explored the genes

related to apoptosis and immunity. We found that apoptosis-related
frontiersin.org
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genes URI1, PAK2, PARP1, CLU, and TIMP3 were significantly

upregulated in multiple cell populations of cancer cells (Figure 5A).

However, the immune-related genes UBB, RPL11, CAV1, NUPR1,

and Hsp90ab1 were downregulated in multiple cell populations
Frontiers in Oncology 04
(Figure 5B). RT-qPCR analysis revealed that URI1, PAK2, PARP1,

CLU, and TIMP3 were significantly upregulated, while UBB, RPL11,

CAV1, NUPR1, and Hsp90ab1 were significantly downregulated in

the ovarian cancer samples (Figure 5C).
A

B

D E

C

FIGURE 1

(A) Clustering results after integration of the datasets of normal ovary and ovarian cancer samples. t-SNE visualization of the integrated results.
(B) Dotplot depicting selected marker genes in each cell population. (C) Statistics on the number of cells in each group of normal samples and
cancer samples. (D) Histogram showed the changes in the ratio of cancer samples compared to normal samples. (E) tSNE visualization of benign
and malignant cells in the tumor dataset.
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Discussion

The application of ScRNA-seq technology in ovarian cancer

research is expected to significantly expand our understanding of the

disease. ScRNA-seq in ovarian cancer has led to the identification of

different cell types, characterization of tumor heterogeneity,

identification of more promising immunotherapeutic targets, and

enhancement of our understanding of therapy-induced resistance

(25–27). The technology can also be used to identify ovarian cancer
Frontiers in Oncology 05
stem cells that are important in studying changes in immune

pathway-related genes during immunotherapy, to study

differences in expression between immunotherapy and immune

response, and to provide new insights for the study of tumor

exosomes (28, 29). High-grade serous ovarian carcinoma

(HGSOC) is the most common histological subtype of ovarian

cancer, yet ScRNA-seq has not been extensively used to

understand the genetic complexity in high-grade ovarian cancers.

ScRNA-seq was used to examine gene expression patterns from
A

B

D

C

FIGURE 2

(A) Differential analysis between ovarian cancer samples and normal samples. Analysis of the differential genes of each group in ovarian cancer
samples compared with normal samples and display of the most significantly up-regulated and down-regulated genes through volcano plots (adjust
p value <0.05 and |logFC| ≥1 were set as the cut-off criteria). Go enrichment analysis of (B) up-regulated genes and (C) down- regulated genes in
cancer ovary. (D) Histogram showing the proportion of cell cycles for each cell population in normal ovary and ovarian cancer.
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single cells of high-grade serous ovarian cancer obtained from a

patient. From that study, epithelial and stromal cells were identified

as the major subsets based on the RNA expression patterns of 66

evaluable single tumor cells. Findings from the study provided a first

glimpse at the application of single-cell gene expression analysis in

ovarian cancer to solve the etiology of the disease (30). In another

study, single-cell RNA technology revealed the presence of

heterogeneity in primary tumor cells among different patients, and

differences in the expression profiles between metastatic lesions and

primary lesions in different patients (31). Analysis of ascites samples

from patients with high-grade ovarian cancer using single cell

sequencing identified the JAK/STAT pathway as a therapeutic

target in women (32).

Through bioinformatic analysis, we identified several genes

associated with ovarian cancer and the signaling pathways associated

with the genes. The DNA methylation status has been proven to be a

prognostic biomarker for High-grade serous ovarian cancer (33). Our

study also demonstrated that up-regulated genes in High-grade serous
Frontiers in Oncology 06
ovarian cancer were closely associated withmethylation levels andwere

implicated in the inflammatory response. VEGFA is a member of the

VEGF family of cytokines that mediates ovarian cancer progression.

VEGF is a significant therapeutic target for ovarian cancer since it is

highly expressed in the tumor tissues. VEGF inhibitors could have

significant therapeutic value in treating ovarian cancer (34). In our

research, VEGF signals were significantly enriched in ovarian cancer

and VEGFA was significantly expressed in EC-1-Cancer cells. VEGF

stimulates endothelial cell proliferation through VEGF receptor 2,

which is found on endothelial cells (35).We also found that Ovarian

cancers induced important changes in endothelial cells.

QPCR analysis verified the high expression of some genes in

human high-grade serous ovarian carcinoma. URI1 may be a ‘non-

oncogene’ that supports the oncogenic phenotype of cancer cells

that depend on a molecular chaperone system to survive (36).

Ovarian cancer cells overexpress or amplify certain R2TP/PFDL

subunits, such as URI1, which have been linked to tumour

progression (37). Ovarian cancer progression is also mediated by
A

B C

FIGURE 3

(A) Analysis of cellular communication in each cell population in normal ovary and ovarian cancer, dotplot showed the outgoing communication
patterns in normal ovary and ovarian cancer. (B) Visualization result of PARs signaling in ovarian cancer. (C) Visualization result of VEGF signaling in
ovarian cancer.
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PAK2. The knockdown of PAK2 in ovarian cancer cell lines reduced

migration and invasion but had no effect on proliferation or

apoptosis, suggesting a possible role for PAK2 in ovarian cancer

development (38). The PARP1 inhibitor, rucaparib, has recently

been approved by the FDA for the treatment of ovarian cancer (39).

Based on findings from this study, PARP1 expression may also

contribute to carcinogenesis, in addition to its enzymatic activity
Frontiers in Oncology 07
(40). Additionally, our findings show the distribution of this gene in

ovarian cancer cells, which could be useful for the treatment of

ovarian cancer. It is interesting to note that CLU serum levels are

elevated in ovarian cancer (41), and that CLU is expressed in

malignant tissues of all ovarian cancer patients (42). In our study,

we found that CLU was differentially expressed among different cell

populations in normal and cancer samples. There is evidence that
A B

C

FIGURE 4

(A) Differential analysis of endothelial cells from normal ovary and ovarian cancer. Volcano plot revealed upregulated and downregulated genes in
endothelial cells from ovarian cancer versus normal ovary. (B) GO enrichment analysis of differential genes between normal endothelial cells and
ovarian cancer endothelial cells. (C) Violin plots showed the expression of genes related to endothelial cell function in normal endothelial cells and
ovarian cancer endothelial cells. ****p > 0.0001; ***p > 0.001; **p > 0.01; *p > 0.05; ns, not significant (P<0.05).
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TIMP3 participates in tumor invasion as well as preferential

methylation in ovarian cancer (43), while a similar study showed

that TIMP3 mRNA expression was higher in ovarian cancer

patients than healthy individuals (44). Findings from the two

studies are consistent with our experimental results.

In our study, we found that some genes were down-regulated in

cancer tissues compared with normal tissue, suggesting that these

genes may play a role in suppressing ovarian cancer development.
Frontiers in Oncology 08
The expression of UBB is significantly suppressed in certain

cancers, including endometrial carcinoma and ovarian cancer

(45). This was consistent with our data. UBB is likely to play

different roles in different cancer cell types, however, no studies

have analyzed the role of UBB. Although RPL11 has not been

reported as a cancer suppressor gene in ovarian cancer studies, it is

involved in the development of gastric cancer, colorectal cancer,

fibroblasts, lymphoma, and esophageal squamous carcinoma.
A

B

C

FIGURE 5

Analysis of apoptosis and immune related pathway genes normal ovary and ovarian cancer, violin plots showed (A) apoptosis-related genes and (B)
immune-related genes in each cluster of the datasets. (C) The mRNA expression of ten genes in normal ovary and ovarian cancer was measured by
qRT-PCR (****p < 0.0001; ***p < 0.001; **p < 0.01; *p < 0.05, Error bars are ± SEM). ns, not significant (P<0.05).
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Furthermore, deletion of RPL11 inhibited colon cancer cell death by

preventing p53 activation (46, 47). CAV1 plays an oncogenic role in

solid tumors, and its expression correlates negatively with tumor

invasion. Additionally, CAV1 can be found in the nucleus of

ovarian cancer cells (48), suggesting that CAV1 may also inhibit

in ovarian cancer. NUPR1 gene plays a variety of roles in benign

and malignant tumors. NUPR1 may affect ovarian cancer

proliferation and invasion by signaling through the AKT pathway

(49). The purpose of our study was to explore the expression of

NUPR1 in each cell population in ovarian cancer.

In summary, our ScRNA-Seq data revealed the main cell types

and growth processes in the human healthy ovarian tissues. In

addition, we showed differences in function, gene expression and

cell interaction patterns between ovarian cancer and healthy

ovarian tissues for each cell population. These single-cell

transcriptome datasets could shed light on major drivers of tumor

development and progression. Increased understanding of ovarian

cancer at the single-cell level will lead to the development of novel

therapies. However, further studies on the functions of the

differentially expressed genes in ovarian cancer are required.
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