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Background: Tumor heterogeneity is widely recognized as a crucial factor

impacting the prognosis of breast cancer (BC) patients. However, there

remains an insufficient understanding of the underlying impact of anoikis on

the prognosis of BC patients.

Methods: The researchers utilized the TCGA-BRCA dataset to screen and analyze

the differentially expressed genes of anoikis-related genes (ARGs) in BC and normal

breast tissue. Prognostic gene signatures were established through univariate,

LASSO, and multivariate Cox regression analyses. These signatures were evaluated

using Kaplan-Meier curve and receiver operating characteristic (ROC) analyses,

resulting in the development of an anoikis-related index (ACI). The training dataset

was TCGA-BRCA, whileMETABRIC andGSE96058were used for external validation.

Additionally, nomograms were developed by combining risk scores and clinical

parameters, enabling gene set enrichment analysis (GSEA) and tumor immunoassay.

Furthermore, an exploration of small molecule compounds was conducted to

identify potential therapeutic benefits.

Results: A six-gene anoikis-related signature was constructed, which divided BC

patients into high- and low-ACI groups based on median ACI scores. The ACI

accurately predicted prognosis and acted as an independent prognostic factor

for BC patients. Patients in the high-ACI group exhibited poorer overall survival

(OS) across all cohorts and showed more severe clinical manifestations

compared to the low-ACI group. The study also explored the potential

impacts of anoikis on immune cells infiltrating tumors, immune checkpoints,

growth factors, and cytokine levels. Additionally, the potential implications of

anoikis in BC immunotherapy were discussed, along with highlighting small

molecule compounds that could offer therapeutic benefits.

Conclusions: Anoikis was found to hold significant prognostic value in breast

cancer, providing a novel approach for managing patients with different

prognoses and implementing more precise immunotherapy strategies.
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1 Introduction

Breast cancer is a prevalent form of cancer globally and ranks as

the second most common cause of cancer-related deaths in women

(1). Despite progress in early detection and treatment, evidenced by

a 38% reduction in breast cancer mortality, the overall prognosis for

breast cancer patients remains unfavorable (2). The heterogeneity of

breast cancer greatly increases the difficulty of treatment. Therefore,

identifying novel prognostic biomarkers for breast cancer holds

immense significance in improving treatment outcomes and

predicting patient prognosis. The extracellular matrix (ECM)

serves as a three-dimensional scaffold that supplies essential

biochemical cues for tissue formation and regulates cell

proliferation, migration, differentiation and survival (3). Anoikis

is a form of programmed cell death characterized by the detachment

of cells from their natural extracellular matrix and subsequent

apoptosis upon losing contact with adjacent cells or ECM (4).

Consistent with other apoptotic modes, anoikis also occurs by

interfering with mitochondria or activating cell death receptors

(5). The exfoliated cells can be efficaciously removed by anoikis,

preventing them from reattaching to a newly created substrate and

proliferating (6). Therefore, anoikis is considered physiological

processes related to development and tissue steady-state (7). In

theory, anoikis can inhibit the metastasis of cancer cells. However,

cancer cells are of insensitivity to anoikis and do not need to adhere

to the ECM to subsist and reproduce (8). Increasing studies have

confirmed that anoikis-related genes (ARGs) play a crucial role in

the occurrence and development of tumours over the years. At

present, anoikis resistance has become a marker of cancer cell

invasion, metastasis, drug resistance and recurrence.

It is well known that the tumour microenvironment (TME) can

identify and eliminate cancer cells, however, cancer cells can recruit

immunosuppressive cell populations and downregulate tumour

immunogenicity to regulate the host immune system and escape

immune surveillance (9, 10). The secretion of growth factors in the

tumour microenvironment, such as vascular endothelial growth

factor (VEGF) and transforming growth factor-b (TGF-b), can
impede the immune response, thereby inhibiting the effect of

immunotherapy (11, 12). Cytokines can limit the growth of

tumour cells either by immediate antiproliferative or proapoptotic

activity or mediately by provoking the cytotoxic activity of immune

cells against tumour cells (13). Previous studies have shown that

ARGs are more likely to promote cancer immunosuppression (14–

16). However, the role of anoikis in tumour immunity is less

studied, and whether it can regulate cytokines and growth factors

remains to be further elucidated.

Although there are now many independent studies linking

ARGs to BC, prognostic targets based on ARG are rarely

analyzed (16–18). In this work, we explored the prognostic

implications of ARGs and established a signature based on ARG

signaling, and discussed its clinical significance in BC patients.

Furthermore, we explored potential correlations between the
Frontiers in Oncology 02
signature and TME landforms. Our analysis offers novel insights

that may inform future research into anoikis and immunotherapy

approaches for BC treatment.
2 Materials and methods

2.1 Data acquisition

We acquired RNA expression data, CNV files, somatic

mutation data and corresponding clinical pathological

information for breast cancer from The Cancer Genome Atlas

(TCGA, https://portal.gdc.cancer.gov/), the Molecular Taxonomy

of Breast Cancer International Consortium (METABRIC, https://

www.bccrc.ca/dept/mo/), and GSE96058 in the GEO repository.

Obtaining clinical parameters and normalized gene expression data

through the utilization of these data sources.
2.2 Obtention of anoikis-related genes

We obtained 434 anoikis-related genes (ARGs) from the

GeneCard database (https://www.genecards.org/) (15). The 434

ARGs mentioned above were hybridized with the entire set of

genes in TCGA-BRCA, METABRIC, and GSE96058 datasets, from

which 338 overlapping ARGs were identified and selected for

subsequent analysis.
2.3 Identification of DEGs and functional
enrichment analysis

Differentially expressed genes (DEGs) between tumor tissues

and contiguous normal areas in TCGA-BRCA cohort were analysed

by using the “limma” package with criteria of |log2-fold change

(FC)| ≥ 1 and p-value< 0.05. Subsequently, we employed the

“clusterProfiler” package to perform a GO analysis based on these

identified DEGs (19).
2.4 Construction ARGs-based prognostic
signature in breast cancer

Univariate Cox risk regression analysis in TCGA-BRCA and

METABRIC databases was used to generate ARG related to OS

(p<0.05). To establish the statistical prognostic characteristics, we

conducted a Lasso Cox regression analysis in the TCGA-BRCA set

for the overlapping ARGs that were associated with OS. According

to the predictive model, the Anoikis-correlation index (ACI) could

be exported using the following formula:

ACI =oExpression of  Each ARG ∗Corresponding Regression Coefficient
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We categorized all breast cancer patients into two groups - high

ACI and low ACI, based on the median value of the Anoikis-

correlation index (ACI). Furthermore, we compared the

clinicopathological features of patients belonging to different ACI

groups in the three datasets.
2.5 Creation and assessment of anoikis-
correlated clinical nomogram

The “survival” package was used to combine clinical data of

TCGA-BRCA patients and ACI for independent prognostic

analysis. Moreover, according to the results above, an anoikis-

related clinical nomogram that incorporated clinicopathological

characteristics to predict the clinical outcome of cases was

constructed through the “rms” and “regplot” R packages (20). To

estimate the acceptable prognosticative discrimination of the

nomogram, the calibration curve (21), time-dependent ROC

curves and the decision curve analysis (DCA) plot were depicted

for breast cancer patients.
2.6 Gene set enrichment analysis within
two ACI groups

GSEA was used to detect the biological pathways and

immunological activity related to ARGs based on the Hallmark

and C7gene set v7.4 (22). Enriched genesets were chosen as the

reference molecular signature databases, and |NES| > 1.5 and FDR

q-value< 0.05 were considered as statistical significance.
2.7 Correlation of tumor-immune
microenvironment and ACI

We used the “estimate” Rpackage to numerate the immune

score and matrix score for each specimen in the TCGA-BRCA

cohort (23). Assess the proportion of 22 kinds of immune cells in

TME of each sample through CIBERSORT algorithm in R software

(24). The Wilcoxon test was applied to compare the expression

difference of several immune checkpoints, cytokines, and growth

factors between high- and low-ACI subgroups to predict the

potential impact of anoikis on immunotherapy (25, 26).
2.8 Cell lines

MCF-10A, MCF-7, HCC1599, MDA-MB-231 and SK-BR-3

were obtained from ATCC (American Type Culture Collection)

and SUM159PT was supplied by Aster-and Bioscience. The cells

were cultured in Dulbecco’s Modified Eagle Medium (DMEM)

supplemented with 10% fetal bovine serum (FBS) and maintained

in a CO2 incubator at 37°C. The MycoSEQ™ Mycoplasma

Detection Kit (#4460623, Thermo Fisher Scientific) was utilized

to detect mycoplasma contamination in the cell culture. Before we
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began our experiments, a short tandem repeat (STR) profile test was

used to formally qualify the cell lines.
2.9 RNA isolation and quantitative real-
time PCR analysis

Thermo Fisher Scientific’s TRIzol kit was used to extract the

RNA. Two microgram RNA was mixed with RNase-free DNase,

and then reversely transcribed into cDNA. After combining two

micrograms of RNA with RNase-free DNase, cDNA was produced

using reverse transcription. On the CFX96 Real-Time PCR

Detection System (Bio-Rad), qPCR using SYBR premix Ex Taq

(Takara) and one microliter of cDNA was performed. To determine

the relative expression level, the Ct value of target genes

was contrasted with that of glyceraldehyde-3-phosphate

dehydrogenase (GAPDH).
2.10 Cancer cell line encyclopedia analysis

In order to further verify the ARGs mRNA expression, we

passed the CCLE database (https://portals.broadinstitute.org/ccle)

to further explore their expression levels in breast cancer cell lines.

CCLE is a project aimed at characterizing the gene expression and

genomic alterations in a large panel of human cancer cell lines (27).

An RNA sequencing technique was chosen to search for expressions

of ACI members in different breast cancer cell lines (28, 29).
2.11 DNA methylation of the
anoikis-related genes

MethSurv (https://biit.cs.ut.ee/methsurv/) is a web-based tool

for multivariate survival analysis using DNA methylation data,

includes 7358 methylomes from 25 different human cancers (30).

We employed MethSurv to investigate the expression and

prognostic implications of individual CpG methylation in

signature-contained ACIs in BC. In this analysis, we utilized

MethSurv to conduct survival analysis with the “best” cut-off

point option and obtained the cut-off point with the highest HR

as output (31, 32).
2.12 Identification of potential compounds
targeting the high-ACI group BC

The Connectivity Map (CMap) database is a publicly available

database that enables the identification of relationships between

gene profiles, drug sensitivity, and disease states (33, 34). The CMap

data can be accessed and downloaded for free at https://clue.io. We

utilized the R package “limma” to discover the DEGs between high-

and low-ACI group breast cancer. Upon eliminating the DEG

repetitions, we obtained a unique up- and down-regulated gene

profile, which was subjected to further analysis by inputting the top

200 genes (100 upregulated and 100 downregulated) into the CMap
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database. Following this, we selected compounds in BC cell lines as

potential drugs targeting BC in the high-ACI group (35).
2.13 Statistical analysis

In our research, all statistical analyses were performed with

R4.2.0. For nonparametric data, the Wilcoxon test was applied to

comparisons between two independent samples, and the Kruskal-

Wallis test was applied to comparisons among multiple samples.

The Kaplan-Meier survival curve and log-rank test were applied to

analyze overall survival (OS) among different groups of BC patients.

P-value< 0.05 was regard as statistical significance (*p-value< 0.05;

**p-value< 0.01; ***p-value< 0.001).
3 Results

3.1 Identification of ARGs associated with
prognosis in BC patients

First, we evaluated the somatic mutation incidence in 338 ARGs

in the TCGA-BRCA cohort, and the waterfall plot shows the top 20

genes with the highest somatic mutation rates. As shown in

Figure 1A, the highest mutation frequency distributed in TP53

(38%) and PIK3CA (37%). In addition, we compared the ARGs’

mRNA expression levels of breast cancer samples and adjacent

normal tissues in TCGA-BRCA cohort with |log2FC| > 1 and FDR<

0.05 as thresholds. A total of 110 DEGs were found, of which 56

were upregulated and 54 were downregulated in tumours, and the

results were shown by a volcano plot (Figure 1B) and a heatmap

(Figure 1C). Furthermore, the biological functions of these DEGs

were revealed by GO enrichment analysis (Figure 1D). As expected,

these DEGs are clustered in the signal pathway related to epithelial

cell proliferation and regulation protein serine/threonine/tyrosine

kinase activity, indicating that ARGs were closely connected with

carcinogenesis and development of BC. In addition, to determine

the prognostic ARGs of breast cancer, we conducted univariate Cox

regression analysis of DEGs in the TCGA-BRCA and METRIC

cohorts (Figure 1E). After analysis, 14 and 60 available OS-related

genes were obtained respectively, and the above results were crossed

to include 8 overlapping genes (MAD2L1, BUB1, PLK1, LAMB3,

KRT14, TP63, CEACAM5, and PYCARD) (Figure 1F).

Subsequently, we revealed the correlated features among 8 eligible

ARGs with correlation network graphs (Figure 1G).
3.2 Development and construction of
anoikis-related prognostic signature

We carried out the LASSO cox regression analysis of 8 eligible

ARGs of BC patients in the TCGA-BRCA dataset, and tapped 6 central

genes for establishing prognostic signature, namely Anoikis-

Correlation Index (ACI) (Figures 2A, B), including MAD2L1, PLK1,

LAMB3, TP63, CEACAM5 and PYCARD. In order to study the

expression level and independent predictive ability of each feature
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gene, the mRNA expression level in tumour tissues and adjacent tissues

was shown by boxplots (Figure 2C) and the correlation between ARGs

expression and OS was shown by K-M survival curves (Figure 2D).

Our results indicated that the mRNA expressions of CEACAM5,

MAD2L1, PLK1, and PYCARD are significantly elevated in BC

tissues, whereas LAMB3 and TP63 expressions are noticeably

reduced. In terms of OS analysis, high expression levels of

CEACAM5, MAD2L1, and PLK1 and downregulated expression of

LAMB3, PYCARD, and TP63 were strongly linked to poor prognosis

in BC patients, further supporting the selection of ARGs. Additionally,

we assessed the mRNA expression levels of ACI members in prevalent

human BC cell lines, such as MDA-MB-231, MCF-7, SK-BR-3,

SUM159PT, and HCC1599 (Figure 3A). Our findings demonstrated

that the expression levels of CEACAM5, LAMB3, MAD2L1, PLK1,

PYCARD, and TP63 in most human BC cell lines matched tissue

expression levels in the database, as compared to the mammary

epithelial cell line MCF-10A. Moreover, the analysis of the CCLE

dataset indicated varying mRNA expressions of ACIs members

containing signatures in breast cell lines (Figure 3B). DNA

methylation, as a form of epigenetic modification, plays a significant

role in the pathogenesis of various cancers (36). Therefore, in our study,

we utilized MethSurv to investigate the clustering heatmap and

prognostic value of the DNA methylation expression levels of ACI

members in BC (Supplement Figure 1). DNA methylation expression

levels concluded that cg07168232 from LAMB3 and cg01965475 from

PLK1 had the significant prognostic value (p-value< 0.05) in BC.

Ultimately, the anoikis-correlation index (ACI) was established: ACI =

Expression of CEACAM5*0.05275451 +Expression of LAMB3*-

0.02805108 + Expression of MAD2L1*0.03686359 + Expression of

PLK1*0.10316860 + Expression of PYCARD*-0.18480265+ Expression

of TP63*-0.05094233
3.3 Validation of ARGs signature

Based on the median ACI in each dataset, BC patients were

independently categorized into high-ACI and low-ACI subgroups,

and the ACI was standardized to ensure the data and plots

intuitionistic (Figure 4A). As predicted, in all datasets, as ACI

values increased, more BC patients died (Figure 4B).

Simultaneously, we show the distribution law of the high- and

low-ACI group in two-dimensional graphs by principal component

analysis (PCA) (Figure 4C). Just as the K-M curve shows, the ACI-

high BC patients have a poor prognosis among all queues

(Figure 4D). Further, the AUC values of ACI in predicting the

breast cancer patients’ OS were 0.521 at 1 year, 0.643 at 3 years and

0.695 at 5 years (Figure 4E). We performed the same analysis on the

two validation sets to further validate the prognostic value of ACI.
3.4 Correlation between ACI and
clinicopathological features

In order to explore whether ACI can predict common clinical

indicators, the correlation between ACI and clinical characteristics has

been further studied. In the TCGA-BRCA queue, there are significant
frontiersin.org
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differences in T stages, N stages, survival status, PAM50 subtypes and

AJCC stages between two groups (p value<0.05) (Figure 5A). Likewise,

in the METABRIC cohort, significant variations were confirmed

between patients with high ACI levels and various clinical

parameters, such as poorer survival status, larger tumor size, and
Frontiers in Oncology 05
increased metastatic lymph nodes (Figure 5B) and in the GSE96058

cohort (Figure 5C). We used heatmaps to show the correlation analysis

between genes contained in ACI and clinical characteristics in the

TCGA-BRCA dataset (Figure 5D), METABRIC dataset (Supplement

Figure 2A) and GSE96058 dataset (Supplement Figure 2B).
B

C

D

E F

G

A

FIGURE 1

Identification of Prognostic ARGs in BC Patients. (A) A somatic mutation waterfall plot demonstrating the prevalence of driver mutations in ARGs
across TCGA-BRCA cohort. (B, C) A volcano and a heatmap plot were used sequentially to display the differentially expressed ARGs between normal
and tumor tissues in TCGA-BRCA. (D) GO enrichment analyses of differentially expressed ARGs. (E) Univariate Cox analysis was used to screen
prognostic ARGs separately in TCGA-BRCA and METABRIC. (F) 8 prognostic ARGs were investigated using the Veen diagram. (G) A correlation matrix
plot was used to reveal the correlation characteristics among the 8 prognostic ARGs in TCGA-BRCA.
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3.5 Nomogram formulation based on
ACI signature

According to the univariate and multivariate Cox regression

analyses performed on the TCGA-BRCA cohort, our ACI signature

can serve as an independent predictor of prognosis for patients with BC

(Figures 6A, B). According to the results, we incorporated the patients’

age, N stage, PAM50 subtype and ACI value to construct a
Frontiers in Oncology 06
clinicopathological nomogram for predicting individual OS at 1-, 3-

and 5 years (Figure 6C). Furthermore, to verify the consistency of the

nomogram predictions, the calibration plot was portrayed (Figure 6D).

DCA curve in the training cohort indicated that the model could guide

clinical application and be helpful for both OS and PFS of BC patients

(Figure 6E). The time-dependent ROC curves were drawn to verify the

sensitivity and specificity of the nomogram for predicting the survival

time of patients with BC. The 1-, 3- and 5 year AUC value of the
B

C

D

A

FIGURE 2

Construction of Anoikis-Related Prognostic Signature. (A, B) LASSO Cox regression analysis to filtrate 6 optimal prognostic ARGs for the signature.
(C) Boxplots illustrating the mRNA expression levels of 6 signature-contained ARGs in the training cohort. (D) K-M survival curves of OS according to
expression levels of 6 ARGs in the training cohort. ****p< 0.0001.
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training set were 0.788, 0.793 and 0.809, respectively, and those of the

METABRIC set and GSE96058 set were displayed in Figure 6F.

3.6 Gene set enrichment analysis and
immune activity between two ACI groups

We use “GSVA” enrichment analysis in the TCGA-BRCA

dataset to investigate the features of tumour immune activity
Frontiers in Oncology 07
and signal pathways between different ACI groups. The results

of the C7 immune gene set indicated that multiple immune

functions were enriched in the high ACI group (Figures 7A).

The results of GSEA analysis using the KEGG database revealed

significant enrichment of pathways such as “Allograft

rejection,” “E2F targets,” “Epithelial-Mesenchymal transition,”

“G2M checkpoint,” and TNFA signaling pathway in the group

of patients with high ACI levels (Figure 7B).
B

A

FIGURE 3

The levels of mRNA expression for ARGs. (A) qRT-PCR analyses of ARGs expression in human breast cancer cell lines and a normal mammary
epithelial cell line. (B) Expressions of ARGs in different breast cancer cell lines from the CCLE database. *p< 0.05**; p< 0.01; ***p< 0.001;
****p< 0.0001.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1149193
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Lu et al. 10.3389/fonc.2023.1149193
Recent studies have shown that immune microenvironment plays

a vital role in tumour progress and immunotherapy, therefore we

focused on the TME landscape and characteristics of breast cancer

patients in different ACI groups. The TME was evaluated and

quantified through computing the interstitial score and immune

score by ESTIMATE algorithm, and the results unrevealed that the

interstitial score and immune score were lower in the high-ACI group
Frontiers in Oncology 08
(Figure 7C). Subsequently, we used the CIBERSORT Rpackage to

quantify the relative proportions of infiltrating immune cells in

different groups. From the results, we observed that macrophages

M0 and M2 were gathered in the high-ACI group while CD8+ T cells,

resting memory CD4+ T cells, monocytes, activated NK cells, resting

mast cells and resting dendritic cells were significantly aggregated in the

low-ACI group (Figure 7D).
B

C

D

E

A

FIGURE 4

Validation of ARGs Signature. (A) The layout of ACI scores in the TCGA-BRCA, METABRIC and GSE96058 datasets. (B) Variations in BC patient
mortality are being paralleled by an increase in ACI. (C) Analysis of PCA between high- and low-ACI groups. (D) K-M curves for the OS of BC
patients in high- as well as low-ACI groups. (E) The ACI-only model’s ROC curves for estimating BC patients’ 1-, 3-, and 5-year OS.
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3.7 Correlation between ACI and tumour-
immune microenvironment

Considering the current immunotherapy drugs are mainly

targeted at immunity checkpoints, we further discussed whether

there is a difference in expression in the high -ACI and low ACI

groups. It can be seen from the results that the PD1, PD-L1, and
Frontiers in Oncology 09
TIGIT of the low ACI group are higher, and the PVR expression in

the high ACI group is more obvious (Figure 8A). Cytokines, as the

core of the complex interaction between cancer cells and immune

cells, can not only regulate tumour progress, but also affect the

efficacy of immunotherapy. Some studies have shown that growth

factors also affect the tumour immune microenvironment and the

efficacy of immunotherapy. Consequently, we compared growth
B

C

D

A

FIGURE 5

Systematic dissection of ACI and clinical parameters in BC patients. (A-C) The violin plots to demonstrate the relevance between ACI and diverse
clinical-pathological traits of BC patients in TCGA-BRCA (A), METABRIC (B) and GSE96058 (C), respectively. (D) Relevance heatmaps of signature-
included ARGs and clinical-pathological traits in datasets of TCGA-BRCA. *p< 0.05; **p< 0.01; ***p< 0.001; ****p< 0.0001.
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factors and cytokines expression levels between the two groups in

TCGA-BRCA dataset. (Figures 8B, C). Recently, the CMap database

has been applied for drug discovery in cancer research to locate

potential treatment options for certain illnesses or conditions. By

using the CMap database, we identified 30 compounds that exhibit

the potential to serve as clinical agents for breast cancer in the high-

ACI group (Figure 8D).
Frontiers in Oncology 10
4 Discussion

Due to the heterogeneity of tumours, breast cancer patients

remain at substantial risk of recurrence and death even after

comprehensive treatment including surgery and adjuvant

chemotherapy (37). Thus, the development of reliable prognostic

molecular biomarkers could predict the likelihood of disease
B

C

D

E

F

A

FIGURE 6

Nomogram Formulation Based on ACI Signature. (A, B) Univariate and Multivariate Cox regression analysis of the ACI signature and common clinical
parameters in TCGA-BRCA. (C) Construction of a nomogram to predict OS of BC patients from TCGA-BRCA. (D) Nomograph-based correction
plots were used to assess the agreement between predicted OS and actual OS. (E) The DCA curve was used to evaluate the clinical decision efficacy
of the nomogram relative to other clinical indicators. (F) The ROC curves of nomogram in the TCGA-BRCA, METABRIC and GSE96058 datasets.
separately. OS, overall survival; AUC, Area under the curve.
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recurrence or progression in breast cancer patients and could even

aid clinical decision making and improve clinical outcomes. As

considerable anoikis, a type of programmed cell death in which

cells separate from the appropriate extracellular matrix, was reported

to regulate the biological behaviour of various tumours (38, 39).

Recently, some studies have shown that anoikis related genes have a

strong prediction ability for patients with different types of cancer

(14, 15, 40). For breast cancer, anoikis resistance has been considered

a biomarker with poor prognosis, which helps the formation or
Frontiers in Oncology 11
maintenance of breast cancer stem cell population (41, 42). However,

few studies have been reported on the role of ARGs in breast cancer

development and their impact on the immune microenvironment of

BC. In our research, we constructed a prognostic signature based on

ARGs, and explored its clinical guidance value, and further evaluated

the TME of BC patients based on this prognostic signature to provide

a reference for the field of anoikis in cancer research.

The prognostic signature constructed and trained in the TCGA-

BRCA cohort consisted of 6 ARGs (CEACAM5, LAMB3, MAD2L1,
B
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FIGURE 7

GSEA and Immune Activity Between Two ACI Groups. (A, B) Presentation of the top 8 differential pathways from C7 immune gene set (A) and
Hallmark (B) of GSEA in TCGA-BRCA cohort. (C) Differences of ESTIMATE score, immune score, stromal score. (D) Boxplots were used to delineate
the differences infiltration degree in 22 immune cells between two ACI groups patients. *p-value< 0.05; ***p-value< 0.001.
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PLK1, TP63 and PYCARD). Certain links between these genes and

the pathogenesis as well as the development of tumours have been

reported in previous researches. For example, Powell et al. indicated

that CEACAM5 is considered a metastatic driver and its

overproduction facilitates tumour outgrowth at metastatic sites by

promoting mesenchymal-to-epithelial transition (43). Similarly,

Laminin subunit beta-3 (LAMB3) encoding the b3 subunit of

laminin-332, participating in the invasion and metastasis of colon
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cancer, pancreatic cancer, and prostate cancer (44, 45). We also

found that low methylation levels at cg07168232 of LAMB3 were

associated with poor prognosis in BC patients. Besides,

overexpression of MAD2L1 leads to chromosomal instability in

lung tumour cells, and is highly correlated with high levels of BRCA

pathway activity and BRCA1/2 pathogenic mutations in breast

cancer patients (46). Polo-like kinase 1 (PLK1) is frequently

found overexpressed in a variety of tumours, participates in DNA
B
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FIGURE 8

Correlation between ACI and TME. (A-C) Expression levels of immune checkpoints (A), growth factor (B), cytokines (C) between two ACI groups patients.
(D) Potential clinical drugs identified targeted the high-ACI group BC by CMap. *p-value< 0.05; **p-value< 0.01; ***p-value< 0.001; ****p < 0.0001.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1149193
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Lu et al. 10.3389/fonc.2023.1149193
damage response, autophagy, apoptosis and cytokine signal, and is

associated with poor prognosis (47–49). Recently, a study suggested

that TP63 is the maintenance of stem cell pluripotency and plays a

unique inhibitory role in tumour progression by regulating cell

cycle regulation, extracellular matrix remodel, epithelial-

mesenchymal transition, and enrichment of pluripotent stem cells

(50). However, the role of TP63 as a tumour promoter or tumour

suppressor has been controversial (51). Furthermore, it has been

demonstrated that the expression of PYCARD is correlated with

both the response to tumor immunotherapy and prognosis. Our

data indicated that elevated levels of PYCARD in BC are linked to

improved overall survival (OS), although the precise mechanism is

not yet clear and requires further investigation in future

studies (52).

Recently, research modalities for establishing tumour prognostic

signatures based on gene sets associated with specific biological

features have often been reported. Borrowing from this approach,

we constructed a breast cancer prognostic signature based on the

expression of ARGs. ACI’s median value was used to classify BC

patients into high and low groups. The analysis revealed a

considerable difference in the OS of BC patients with high and low

ACI levels across all datasets, indicating that the 6-gene signature is a

reliable predictor of BC prognosis. Additionally, we developed a

clinical prognostic nomogram incorporating ACI values, age, PAM50

subtype, and N stage of BC patients to predict their outcome. The

DCA curve also showed that the nomogram was superior to a single

independent clinical feature, which was helpful for clinical decision-

making and benefited patients.

During the recent years, cancer immunotherapy has demonstrated

robust anti-tumour effects in treating diverse types of cancers, including

breast cancer. This type of therapy involves monoclonal antibody

immune checkpoint inhibitors, therapeutic antibodies, cancer vaccines,

cell therapy, and small molecule inhibitors (2). There is a close

relationship between the heterogeneity of TME and the different

response rates of tumour patients to immunotherapy (53). The

classification of tumour immune microenvironment can better guide

clinical treatment and achieve precision medicine. Thus, we explored

the relationship between TME prospect estimation and ACI. As can be

seen from the ESTIMATE results, the TME-related scores of the low-

ACI group were higher than those of the high-ACI group, suggesting

that ACI signature can be used as one of the indicators to identify

patients with different TME, and the breast cancer in the high ACI

group may have higher tumor purity. Besides, we also analysed the

degree of immune cell infiltration, expression levels of immune

checkpoints, growth factors and cytokines to further understand the

differences of TME between the two groups. The clustering of

macrophage M0 and M2 was noticeable in the high-ACI group,

indicating an elevated likelihood of immune evasion by tumor cells

in this group. Surprisingly, the proportion of anti-tumour immune

cells, growth factors and cytokines in BC patients in the low-ACI group

was higher, while high-ACI patients had a higher expression of

VEGFA. VEGFA monoclonal antibodies and VEGFA receptor

targeting drugs mediate immune stimulatory effects independent of

ADCC and ADCP, largely reflecting VEGFA’s key role in establishing

cancer-related immunosuppression (54). All these results suggest that

BC patients in low-ACI group may have a more pronounced response
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and greater benefit to immunotherapy. Finally, we identified several

potential therapeutic drugs for breast cancer patients in high-ACI

group through CMap, including Palbociclib targeting CDK4/6 and

Lapatinib targeting EGFR.

However, whether anoikis can positively affect the immune

microenvironment of breast cancer remains unclear and requires

further exploration.
5 Conclusion

In summary, our study identified a credible risk signature for

BC patients based on anoikis-related transcriptomic profiling and

performed systematic research of ARGs. This signature has been

confirmed to independently predict the prognosis of breast cancer

patients. The relationship between the ACI and TME implies

anoikis-related genes could impact immunotherapy in specific

populations. However, the underlying mechanisms, especially the

function of anoikis on tumour immune infiltrating cells, remain

unknown and need to be further explored.
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SUPPLEMENTARY FIGURE 1

Heatmap and Kaplan-Meier plots of signature-included ARGs’ DNA

methylation in BC generated using MethSurv. The red and blue lines

indicate higher (b > cut-off) and lower (b < cut-off) methylation patient
groups, respectively, dichotomized according to best cut-off point in

MethSurv. HR, Hazard ratio; KIRC, Kidney renal clear cell carcinoma; KM,
Kaplan–Meier; LR, Log-likelihood ratio.

SUPPLEMENTARY FIGURE 2

Correlation heatmaps of signature-included ARGs and clinicopathological
features in datasets of METABRIC (A) and GSE96058 (B).
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