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New therapeutics for soft
tissue sarcomas: Overview
of current immunotherapy
and future directions of soft
tissue sarcomas
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Soft tissue sarcoma is a rare and aggressive disease with a 40 to 50% metastasis

rate. The limited efficacy of traditional approaches with surgery, radiation, and

chemotherapy has prompted research in novel immunotherapy for soft tissue

sarcoma. Immune checkpoint inhibitors such as anti-CTLA-4 and PD-1 therapies

in STS have demonstrated histologic-specific responses. Some combinations of

immunotherapy with chemotherapy, TKI, and radiation were effective. STS is

considered a ‘cold’, non-inflamed tumor. Adoptive cell therapies are actively

investigated in STS to enhance immune response. Genetically modified T-cell

receptor therapy targeting cancer testis antigens such as NY-ESO-1 and MAGE-

A4 demonstrated durable responses, especially in synovial sarcoma. Two early

HER2-CAR T-cell trials have achieved stable disease in some patients. In the

future, CAR-T cell therapies will find more specific targets in STS with a reliable

response. Early recognition of T-cell induced cytokine release syndrome is

crucial, which can be alleviated by immunosuppression such as steroids.

Further understanding of the immune subtypes and biomarkers will promote

the advancement of soft tissue sarcoma treatment.
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1 Introduction

Sarcomas are a rare and heterogeneous group of solid tumors of mesenchymal origin,

accounting for only 1% of all adult malignancies. They can be divided broadly into soft

tissue sarcomas (STS), which originate in the fat, muscle, nerve, nerve sheath, blood vessels,

and other connective tissues or the bone.
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More than 70 different histologic subtypes of STS have been

identified (1). Soft tissue sarcoma is an aggressive disease with a 40

to 50% metastasis rate, with a 5-year survival rate of 30%. STS most

commonly metastasizes to the lungs; tumors in the abdominal

cavity more commonly metastasize to the liver and peritoneum (2).

The limited durable response with traditional surgery,

radiation, and chemotherapy in advanced-stage sarcoma has

prompted research in novel immunotherapy of soft tissue sarcoma.
1.1 Immune microenvironment of sarcoma

The tumor microenvironment (TME) comprises a tumor,

stromal cells, and immune cells such as macrophages,

lymphocytes, and extracellular matrix (3). Tumor cells take

advantage of TME over time, and genetic/epigenetic changes of

the tumor and rearrangement of TME are pivotal in

tumorigenesis (4).

Tumor associated macrophages (TAMs) are distinguished

components in TME. Tumors secrete high levels of colony-

stimulating factor 1 (CSF-1), which converts M1 macrophage

(classically activated, tumoricidal) to M2 macrophage/TAMs

(alternatively activated, tumor-promoting) and stimulates tumor

growth and metastasis along with CCL2 (5).

Sarcoma is traditionally considered an immunologically quiet

tumor with low tumor mutational burden (1.06 mutations/Mb) and

immunosuppressive TME (high levels of hypoxia-inducible factor 1

a (HIF1a), macrophages, neutrophils, and decreased T-cell levels)

(6). A subset of sarcomas are sensitive to ICIs. They are ‘hot’/

immune-sensitive tumors with high TMB, interferon, CD8

lymphocytes, and PD-L1 expression (7, 8).

A very recent paper highlights the significant prognostic value

of systemic inflammatory indexes as a prognostic marker in terms

of PFS and OS in STS patients who progressed on anthracycline. A

low lymphocyte-to-monocyte ratio (LMR) was associated with

worse OS (p = 0.006). Interestingly, low lymphocyte-to-monocyte

ratio (LMR) was an indicator of trabectedin efficacy, which could be

applied in clinical practice (9). In a previous study in 2021, 3D-

cultured cells from leiomyosarcoma and undifferentiated

pleomorphic sarcoma (UPS) surgical specimens were treated with

trabectedin and demonstrated the involvement of ECM-associated

genes such as mmps and their inhibitor timp1, emphasizing the

potential role of ECM in the activity of trabectedin (10).

It was proposed that tumors with high PD-1 expression and

tumor-infiltrating lymphocytes (TILs) respond well to ICIs (11).

Sarcomas have relatively low PD-1 and TILs. Various studies have

revealed conflicting results regarding how PD1 expression impacts

prognosis. A recent review of Phase II trials demonstrated that 30%

of patients with PD-L1 expression (≥1%) achieved a response.

However, 7% of PD-L1 negative patients also achieved a response,

underscoring the limitation of PD-L1 as a prognostic marker (12).

A subsequent analysis of SARC028 revealed that higher TILs at

baseline were associated with a better PFS.

In this article, we will review current immunotherapy of soft

tissue sarcoma, highlighting prominent trials with immune

checkpoint inhibitors and adoptive cellular therapies, including
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engineered T-cell receptor targeting cancer testis antigens (CTA),

chimeric antigen receptor (CAR) T-cell therapies and tumor-

infiltrating lymphocytes (TILs).
2 Immune checkpoint inhibitors

Immune checkpoint inhibitors (ICI) regulate critical inhibitory

signals of T-cells such as PD-1/PD-L1 and CTLA-4 axes as

monotherapy or in combination with chemotherapy. ICIs are

FDA-approved to treat more than 50 cancer types, including

advanced solid tumors, MMR-deficient tumors, and tumors with

a high tumor mutation burden (13).

SARC028 was a significant Phase II trial published in 2017,

which first demonstrated the efficacy of pembrolizumab (PD-1

inhibitor) in some STS, notably in undifferentiated pleomorphic

sarcoma (UPS) (4 of 10) and dedifferentiated liposarcoma (dLPS) (2

of 10) (14). The final results of SARC028 expansion cohorts

confirmed effectiveness in UPS, with an objective response rate

(ORR) of 23%, but not in dedifferentiated/pleomorphic liposarcoma

(LPS) with an ORR of 10% (15).

In the Phase II Alliance A091401 trial, patients with metastatic

sarcoma were treated with nivolumab (PD-1 inhibitor) with or

without ipilimumab (CTLA-4 inhibitor). Dual immune checkpoint

blockade demonstrated an overall response (ORR) of 16%.

Responses were confirmed in leiomyosarcoma (uterine (n=1),

non-uterine (n=1)), myxofibrosarcoma (n=1), UPS (n=2), and

angiosarcoma (n=1) (16). In a phase II study for advanced

uterine leiomyosarcoma, none of the 12 patients responded to

nivolumab alone (17). In a subsequent Phase II expansion cohort

study, combination therapy of nivolumab and ipilimumab resulted

in an ORR of 28.6% in UPS and 14.3% in dedifferentiated

liposarcoma (18). In a DART trial by SWOG, a phase II trial of

ipilimumab and nivolumab in angiosarcoma demonstrated an ORR

of 25% (19). On December 2022, atezolizumab was granted FDA

approval for unresectable or metastatic alveolar soft part sarcoma

(ASPS) (ORR = 24%, NCT03141684).

Myxofibrosarcoma (MFS) expresses high levels of immune

microenvironment markers, and some case reports support PD-1

inhibition in myxofibrosarcoma, which is further explored in a

Phase II trial (ENVASARC, NCT04480502) (20–23).

ICI response in soft tissue sarcoma has been modest and

histologic-specific, especially in UPS, dLPS, ASPS, and angiosarcoma.
2.1 ICI and local/systemic therapy

Combinational strategies with ICI and local/systemic therapies

can overcome soft tissue sarcoma resistance mechanisms. Local

therapies to complement ICI consist of isolated limb infusion

and radiation.

Isolated limb infusion (ILI) is a minimally invasive

administration of high-dose chemotherapy to treat STS in the

extremities (24). Two patients with recurrent myxofibrosarcoma

responded to melphalan via ILI and pembrolizumab (1=partial

response, 1=complete response) (25). This promising case
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prompted a subsequent Phase II trial with pembrolizumab plus the

infusion of melphalan and dactinomycin (NCT04332874).

Radiation therapy is another local therapy to activate anti-

tumor immunogenicity in the tumor microenvironment through

the cGAS-STING pathway and subsequent CD8+ T cell activation

(26, 27). There are approximately ten ongoing trials to investigate

the effect of radiation in addition to ICI.

Chemotherapy enhances immunosurveillance by releasing type

I interferon (IFN), and increasing M2 macrophages, CD8+ T cells,

and NK cells in a tumor microenvironment (28, 29).

Two Phase II trials of doxorubicin and pembrolizumab from

Pollack et al. and Livingston et al. demonstrated promising ORR of

19% in advanced sarcoma and 36.7% in advanced STS, respectively

(30, 31). In a Pollack et al. study, grade 3+ treatment-related adverse

effects (TRAEs) such as neutropenia (6/37), leukopenia (1/37), and

febrile neutropenia (1/37), heart failure due to doxorubicin (2/37),

and adrenal insufficiency (1/37) and hypothyroidism (7/37) due to

pembrolizumab were observed. In a Livingston et al. study, grade 3+

TRAEs include neutropenia and leukopenia (11/30 each), and

anemia (8/30). Arthralgia (3/30), fatigue (2/30), autoimmune

disorder (2/30), and increased lipase (2/30) were grade 3+ TRAEs

attributed to pembrolizumab. Additionally, pembrolizumab-related

synovitis/myositis (n=1), autoimmune hepatitis (n=1), and

autoimmune nephritis (n=1) were observed, and all patients

responded to steroids. Grade 5 adverse events were not reported

in both studies.

Trabectedin, in addition to ipilimumab and nivolumab,

revealed an ORR of 19.5% in metastatic STS (32). Grade 4

adverse events include anemia, neutropenia, thrombocytopenia,

and increased AST/ALT and CPK. Grade 5 rhabdomyolysis was

observed in one patient.

Another strategy to augment immune response in STS is to

combine small molecule inhibitors such as tyrosine kinase

inhibitors (TKI). In the Phase II Immunosarc trial, TKI sunitinib

with nivolumab in metastatic or locally advanced STS led to an ORR

of 21%, with 48% of 6-month PFS (33). Wilky et al. demonstrated

the efficacy of Axitinib (VEGF receptor TKI) and pembrolizumab in

advanced sarcoma. None achieved a complete response. 8 out of 32

patients achieved a partial response (ORR 25.0%), with most

responses occurring in ASPS (6/11, ORR 54.5%) (34).

Pembrolizumab is FDA-approved in many cancers such as

advanced melanoma, Merkel Cell Carcinoma, Cutaneous

Squamous Cell Carcinoma, and non-small cell lung cancer, either

alone or with other therapies (35–38).

Phase II trials combining systemic therapy with pembrolizumab

in sarcoma are in progress: Pembrolizumab + eribulin

(NCT03899805), pembrolizumab + gemcitabine (NCT03123276),

pembrolizumab + lenvatinib (NCT04784247), pembrolizumab +

doxorubicin (NCT03056001), pembroliumab + cabozantinib

(PEMBROCABOSARC, NCT05182164), pembrolizumab +

epacadostat (IDO1 Inhibitor)(NCT03414229).

Other PD-1 inhibitors in sarcoma are investigated in Phase II

trials. Nivolumab + Gemcitabine/Doxorubicin/Docetaxel

(GALLANT, NCT04535713), Retifanlimab (PD-1 inhibitor) +

Gemcitabine/Docetaxel (NCT04577014), Sintilimab (PD-1

inhibitor) + Doxorubicin/Ifosfamide (NCT04356872) and
Frontiers in Oncology 03
Camrelizumab (PD-1 inhibitor) + Doxorubicin/Ifosfamide

(NCT04606108) are in progress.

Future research should aim to identify biomarkers in STS to

augment responses of ICI with and without local/systemic therapies

in each patient.
3 Adoptive cellular therapies

Successful T-cell treatments for hematological malignancies

have sparked interest in researching T-cell therapies for solid

tumors such as sarcomas.

One of sarcoma’s primary immune evasion strategies is

inadequate neoantigens/antigen recognition, which fails to create

enough tumor-specific T cells and immune responses. Adoptive

cellular therapies hope to avoid this phase by supplying a significant

amount of autologous T cells specifically designed for a particular

antigen. Autologous T cells are obtained from peripheral blood or

the original tumor and then amplified. Potential approaches include

engineered T-cell receptor (TCR) and chimeric antigen receptor

(CAR) T-cell therapy and tumor-infiltrating lymphocyte (TIL)

therapy with sarcoma.
3.1 Engineered T-cell receptor therapy

Cancer testis antigens (CTA) are tumor-associated antigens

(TAA) that are typically present in fetal development (placenta

and embryo) or at immune-privileged sites without MHC class I

(testes) (39). Sarcomas express higher than normal CTAs, especially

in SS and myxoid/round cell liposarcoma (40, 41). Sarcomas

express a variety of CTAs such as the NY-ESO-1, MAGE, and

GAGE family and fetal acetylcholine receptors (42).

NY-ESO-1 and MAGE family are intracellular antigens that

must be processed and presented with MHC. TCR T cells require

patients with matching HLA allele subtypes, often HLA-A2, which

compose approximately 30% of the population. Modified TCR T

cells recognize processed peptides viaHLA-A2-specific manner and

mount immune responses (43).

In 2011, Robbins et al. successfully investigated the antitumor

response of NY-ESO-1-specific TCRs with high dose interleukin-2

in refractory synovial sarcoma (SS). Objective clinical responses

were observed in 4 of 6 SS patients. A partial response lasted for 18

months in a patient with synovial sarcoma (44). Long-term follow-

up study which enrolled 12 additional SS patients, revealed that 11

of 18 patients with SS who received anti-NY-ESO-1 TCRs

responded to therapy (61%), and one had a complete response (45).

In a Phase I trial in 2018, T cells expressing NY-ESO-1c259

(Letetresgene autoleucel), a modified TCR recognizing NY-ESO-1/

LAGE1a peptide, demonstrated an ORR of 50% (6/12) in metastatic

SS following a lymphodepleting regimen of fludarabine and

cyclophosphamide. Remarkably, self-generating pools of NY-

ESO-1c259T cells persisted in vivo for at least 6 months in all

patients who responded. No fatal adverse events were reported.

Grade 3-4 adverse events include lymphopenia, leukopenia,

neutropenia, anemia, thrombocytopenia, and hypophosphatemia.
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Cytokine release syndrome was reported in five patients, with

median onset within 4 days and a median duration of 10 days (46).

High dose fludarabine-containing regimen is necessary for the

efficacy of NY-ESO-1c259 TCR, likely correlated with elevated IL-7

and IL-15, and TAM modulation (47).

Afamitresgene autoleucel (ADP-A2M4 SPEAR TCRs directed

against the MAGE-A4) revealed comparable efficacy. Phase I study

with MAGE-A4c1032 TCR by Hong et al. observed an ORR of 25%

in advanced solid tumors, and all partial responses were in patients

with synovial sarcoma. Two patients had trial-related deaths due to

aplastic anemia and CVA (48). A subsequent phase II study with

afamitresgene autoleucel revealed an ORR of 40% in 25 patients

with a tolerable safety profile in advanced/metastatic SS and

Myxoid/Round Cell Liposarcoma (MRCLS) (49).

Although engineered TCR in advanced soft tissue sarcoma

presents promising efficacy, there are some limitations to

overcome, particularly the HLA-A2 requirement, manufacturing

timelines/cost, and associated toxicities such as cytokine release

syndrome. Furthermore, there are heterogenous CTA expressions

in different types of sarcomas, and broad applicability may be

limited (43).
3.2 Chimeric antigen receptor T-cell
therapies

CARs are chimeric antigen receptors artificially engineered to

recognize naturally occurring tumor surface antigens and activate

T-cells in an MHC-independent manner (50).

C19-targeted CAR T-cell therapies for hematologic

malignancies such as CD19-positive B-cell acute lymphoblastic

leukemia and B-cell lymphomas have been successful. In 2022,

Ciltacabtagene autoleucel, B-cell maturation antigen-directed CAR

T-cell, was FDA-approved for patients with refractory or relapsed

multiple myeloma who received at least four lines of therapy

(CARTITUDE-1, NCT03548207). Further efforts to expand CAR

T-cell therapies in solid tumors are ongoing but have not shown

major significance yet.

In Phase I/II trial in HER2-positive sarcomas, including 16

osteosarcomas, one Ewing sarcoma, one primitive neuroectodermal

tumor, and one desmoplastic small round cell tumor, HER2-CAR T

cell therapy induced stable disease in four patients without

significant toxicity (51).

In another Phase I trial, ten HER2+ refractory/metastatic

patients (osteosarcoma (5), rhabdomyosarcoma (3), Ewing

sarcoma (1), and synovial sarcoma (1)) were enrolled and treated

with HER2-CAR T cells and lymphodepletion with either

fludarabine or in combination with cyclophosphamide. At the

initial follow-up at 6 weeks, 4 patients had progression, and 4

patients achieved stable disease. Overall survival at 1 year was

60% for patients treated with HER2-CAR T cells and

lymphodepletion (52).
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EGFR, GD2, insulin-like growth factor 1 receptor (IGF-1R),

tyrosine kinase orphan-like receptor 1 (ROR1), CD44v6, and NK

cell activating receptor group 2-member D (NKG2D) are potential

targets in sarcoma, and early phase trials are underway to

investigate the efficacy of CAR therapies for these targets.

CAR T-cell therapies will have to overcome a few obstacles in

the future. CAR T-cell therapies have limited cancer-specific

antigens, whereas TCRs recognize peptides presented via MHC

class 1, which essentially include whole proteasome (53, 54). Until

now, CAR-T therapies seek more specific targets in solid tumors,

which are conserved and do not convey toxicity to healthy tissue, to

improve long-term efficacy (55).

Cytokine release syndrome (CRS) is one of the adverse effects of

both TCR and CAR T-cell therapy following T-cell administration.

CRS is an acute, systemic response from immune stimulation in an

“on-target and on-tumor” manner. T-cell therapies can also induce

unexpected “on-target, off-tumor” autoimmunity, which damages

healthy cells by recognizing shared antigens (56–58). It is crucial to

promptly recognize and treat immune-mediated adverse effects,

which can be alleviated by immunosuppression such as

Tocilizumab and steroids if needed.
3.3 Tumor-infiltrating lymphocytes
therapies

Tumor-infiltrating lymphocytes (TIL) are extracted from

tumors and administered to the patients after ex vivo expansion

(59, 60). TIL had reproducible effects in melanoma. In a phase 3

trial by Rohaan et al. in 2022, TIL therapy demonstrated an ORR of

49% (41/84) in advanced melanoma (61). There has not yet

demonstrated satisfactory efficacy in other solid tumors.

In 2021, Mullinax et al. investigated a rapid expansion protocol

that TIL cultures from soft tissue sarcoma resection can expand

enough for clinical adoptive cell therapy, which led to an ongoing

Phase I trial (NCT04052334) (62).

Current challenges for TIL therapies include high cost due to

the personalized nature of TIL therapies, and toxicities from high-

dose IL-2, which is given post-TIL administration (63, 64).
4 Cancer vaccines

Talimogene laherparepvec (T-VEC) is an oncolytic viral

immunotherapy via intratumor injection. It enhances

immunogenicity via antigen presentation and tumor-specific T

cells. T-VEC is the first viral immunotherapy approved for

metastatic melanoma (65).

In a Phase II trial, 20 patients with advanced/metastatic

sarcoma were treated with an oncolytic virus, T-VEC, with

pembrolizumab, which demonstrated an ORR of 35% and a

median duration of response of 56.1 weeks (66).
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Vaccine therapies have been explored for decades

without satisfactory results, likely due to suppressive tumor

microenvironment. Current efforts are utilizing novel vectors to

promote specificity and strength of immune response.

A novel study by Somaiah et al. demonstrated the efficacy of

LV305, a lentivirus vector designed to induce NY-ESO-1 in

dendritic cells in vivo, improving immune response against tumor

cells (67). ORR was 4.2% in sarcoma (1/24 in SS).

CMB305 (a heterologous vaccine for NY-ESO-1 and TLR 4

agonist) is a good vehicle for synovial sarcoma and myxoid/round

cell liposarcoma patients, and it was subsequently assessed in a

Phase Ib study (68, 69). The study demonstrated a disease control

rate of 61.9% and OS of 26.2 months in 64 sarcoma patients. Phase

II study with CMB305 and atezolizumab (PD-L1 antibody)

compared to atezolizumab alone in STS did not reveal significant

improvement in PFS or OS compared to atezolizumab alone (70).
5 Future directions

Although adoptive cellular therapies offer potential

individual treatments, they are still in their infancy for soft

tissue sarcoma. Targeting fusion-derived cancer testis antigens

such as NYESO-1 and MAGEA-4 has shown benefits in limited

sarcomas such as synovial sarcoma and Myxoid/Round Cell

Liposarcoma (71–73).

Colony-stimulating factor-1 (CSF1) promotes “macrophage

polarization”, increasing M2/M1 macrophage ratio. CSF1R inhibitor

can be a potent immunomodulator by prohibiting the recruitment of

TAMs into TME (74). CSF1R-targeting agents have shown a relatively

tolerable safety profile but only modest clinical activity.

TTI-621 is a recombinant fusion antibody for SIRPa, a binding
domain for CD47, which interrupts inhibition of macrophage

phagocytosis mediated by CD47 and stimulates phagocytosis.

Combination of doxorubicin with TTI-621 (anti-CD47 antibody)

has shown anti-tumor effect in animal models, especially in tumors

which express high number of CD47 and macrophages, such as

leiomyosarcoma (75). Phase I/II study with TTI-621 alone and in

combination with doxorubicin for patients with advanced

leiomyosarcoma is underway (NCT04996004).

DR5 Agonist Antibody targeting the TRAIL-TNF axis, which

promotes tumor-specific apoptosis, is evaluated in a Phase II study of

chondrosarcomas (NCT04950075). NK cell therapies have limited

data in solid tumors, and trials for sarcoma (NCT01875601,

NCT02890758, NCT03420963) are currently in Phase I.

Envafolimab is a single-domain PD-L1 antibody and

administered subcutaneously. There is an ongoing phase II trial

evaluating envafolimab alone and with ipilimumab in

undifferentiated pleomorphic sarcoma or myxofibrosarcoma

(ENVASARC, NCT04480502). A multicenter phase II trial of

paclitaxel alone and with nivolumab in taxane-naïve angiosarcoma

patients is ongoing. (Alliance A091902, NCT04339738).

In recent years, nanotechnology has shown potential in

sarcoma treatment thanks to the development of smart
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include effective docetaxel-loaded mPEG-PLA nanoparticles in

sarcoma-bearing mice and albumin-paclitaxel (nab-paclitaxel/

Abraxane™) in osteosarcoma mice (76–78). (79) Only four

nano-drug delivery systems have been FDA-approved for

sarcoma - Doxil (Caelyx)® for AIDS-related Kaposi’s sarcoma,

DaunoXome® and Lipo-Dox® for Kaposi’s sarcoma and

Liposomal mifamurtide (MEPACT) for Osteosarcoma. For

locally advanced STS, there was a randomized, controlled Phase

II-III trial by Bonvalot et al. in 2019 which investigated the role of

NBTXR3, a radiation-enhancing nano-particle with radiotherapy

compared to radiotherapy alone, demonstrated the efficacy of

NBTXR3 with radiation (CR 16% vs. 8%, p = 0.044). There

already exists pre-clinical evidence in 2014 which demonstrated

that the chitosan nanoparticle-Methylglyoxal complex has

effective antitumor properties and elicits macrophage-mediated

immunity in Sarcoma-180 tumor-bearing mice (80). A Phase I

trial with BO-112 (a synthetic RNA conjugated with nano-sized

polyethyleneimine, which activates the immune system) with

nivolumab before surgery for resectable STS, is active since

2020. (NCT04420975)

The immunosuppressive microenvironment in STS should be

easier to overcome with safer and more effective next-generation

immunotherapy. It is currently understood that MMR deficiency is

rare and tumor mutation burden is low (3.3/Mb) in STS (7, 81–84).

In addition to a traditional concept of “immunologically hot”

sarcoma with complex karyotypes which expresses high immune-

infiltrate TME and responds well to immunotherapy, there is

emerging evidence of epigenetic modulation of transcription in

sarcoma, which boosts immunogenicity (85, 86). In a retrospective

study of 35 patients, DNA methylation degree correlated with

response to anti-PD-1 therapy in sarcoma (87).

There remains a question of whether the mutational burden or

neoantigen in STS is clinically correlated to treatment response in

immunotherapy. Tumor-infiltrating lymphocytes and PD-L1

expression in STS have shown conflicting prognostic significance

thus far. Advancements in bioinformatics and molecular

technology will guide the finding of potential biomarkers, which

will help fine-tune more effective combinations for each patient in

future trials.
6 Summary

Advanced soft tissue sarcoma is still a devastating diagnosis,

and there are limited treatments that have long-term success rates.

This article reviewed current immunotherapy in STS, mainly

immune checkpoint inhibitors alone or with additional local/

systemic therapy and adoptive cell therapy, which modifies the

immunogenicity of tumors and TME.

There is a dire need to identify genetic and clinical indicators of

response, resistance, and toxicity in immunotherapy in STS. To

better characterize histologic/molecular subtypes of STS, tissue and

liquid biopsies should be more frequently utilized.
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Advancement in the laboratory and clinical immunotherapy of

STS for the last five years has been encouraging. By learning from

each patient in clinical trials, we hope that patients with soft tissue

sarcoma can benefit in the new era of immunotherapy.
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