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Introduction: Metastatic spinal cord compression (MSCC) is a disastrous

complication of advanced malignancy. A deep learning (DL) algorithm for

MSCC classification on CT could expedite timely diagnosis. In this study, we

externally test a DL algorithm for MSCC classification on CT and compare with

radiologist assessment.

Methods: Retrospective collection of CT and corresponding MRI from patients

with suspected MSCC was conducted from September 2007 to September

2020. Exclusion criteria were scans with instrumentation, no intravenous

contrast, motion artefacts and non-thoracic coverage. Internal CT dataset split

was 84% for training/validation and 16% for testing. An external test set was also

utilised. Internal training/validation sets were labelled by radiologists with spine

imaging specialization (6 and 11-years post-board certification) and were used to

further develop a DL algorithm for MSCC classification. The spine imaging

specialist (11-years expertise) labelled the test sets (reference standard). For

evaluation of DL algorithm performance, internal and external test data were

independently reviewed by four radiologists: two spine specialists (Rad1 and
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Rad2, 7 and 5-years post-board certification, respectively) and two oncological

imaging specialists (Rad3 and Rad4, 3 and 5-years post-board certification,

respectively). DL model performance was also compared against the CT report

issued by the radiologist in a real clinical setting. Inter-rater agreement (Gwet’s

kappa) and sensitivity/specificity/AUCs were calculated.

Results:Overall, 420 CT scans were evaluated (225 patients, mean age=60 ± 11.9

[SD]); 354(84%) CTs for training/validation and 66(16%) CTs for internal testing.

The DL algorithm showed high inter-rater agreement for three-class MSCC

grading with kappas of 0.872 (p<0.001) and 0.844 (p<0.001) on internal and

external testing, respectively. On internal testing DL algorithm inter-rater

agreement (k=0.872) was superior to Rad 2 (k=0.795) and Rad 3 (k=0.724)
(both p<0.001). DL algorithm kappa of 0.844 on external testing was superior

to Rad 3 (k=0.721) (p<0.001). CT report classification of high-grade MSCC

disease was poor with only slight inter-rater agreement (k=0.027) and low

sensitivity (44.0), relative to the DL algorithm with almost-perfect inter-rater

agreement (k=0.813) and high sensitivity (94.0) (p<0.001).

Conclusion: Deep learning algorithm for metastatic spinal cord compression on

CT showed superior performance to the CT report issued by experienced

radiologists and could aid earlier diagnosis.
KEYWORDS

metastatic spinal cord compression (MSCC), Epidural spinal cord compression,
metastatic epidural spinal cord compression (MESCC), spinal metastatic disease, deep
learning, artificial intelligence, CT, MRI
1 Introduction

Vertebral metastases are common and affect approximately 40%

of patients with cancer (1). Vertebral metastases can be complicated

by back pain, pathological fractures, and metastatic spinal cord

compression (MSCC) (2). MSCC occurs in around 10% of patients

with spinal metastases and is considered an oncological emergency.

Permanent disability in MSCC can be averted if there is earlier

diagnosis using cross-sectional imaging, allowing appropriate

therapy to be planned and initiated (3, 4).

The earliest symptom of MSCC is most commonly pain, which

precedes neurological dysfunction including altered sensations,

reduced ambulation, and eventual paralysis (5). Unfortunately, if a

patient with MSCC is non-ambulatory at presentation, regaining

mobility following treatment is unlikely (3, 4). Clinical diagnosis of

MSCC can be delayed as the earliest signs and symptoms may be

subtle, especially regarding back pain which may be difficult to separate

from pre-existing degeneration and/or masked by opioid analgesics.

Patients with early stage MSCC can also be asymptomatic, which

makes it challenging to detect the disease at an earlier stage when less

invasive treatment such as radiotherapy can be initiated (2, 6).

MRI is the imaging modality of choice for MSCC as it provides

detailed assessment of the vertebrae, spinal cord and surrounding

CSF (4, 6, 7). This allows for assessment of the degree of MSCC and

is vital for treatment planning including stereotactic body

radiotherapy (SBRT). MSCC is most frequently graded using the
02
Spine Oncology Study Group classification, developed by Mark

Bilsky et al. in 2010 (7). The scale consists of six groupings, which

can be further divided into two key subgroups for treatment

planning— Low-grade MSCC (0/1a/1b) is typically considered for

radiotherapy (including external beam or SBRT), or high-grade

MSCC with impending or frank spinal cord compression (1c/2/3) is

typically steered towards primary surgical decompression and

subsequent radiotherapy (8, 9).

CT myelography is another accurate modality for diagnosis of

MSCC, but it is usually reserved for patients with contraindications

to MRI (e.g., pacemakers) as the procedure is invasive requiring

injection of contrast into the thecal sac. Staging CT scans with

intravenous contrast are performed at frequent intervals in

oncology patients to assess response to treatment and detect new

metastatic lesions (10). These staging CT scans have the potential to

provide an earlier diagnosis of MSCC in patients with subtle or

absent symptoms, and further clinical andMRI assessment can then

be undertaken. Crocker et al. (2011) assessed the use of contrast-

enhanced CT for detection of MSCC, and reported high specificity

of 92%, and sensitivity of 89% when compared against MRI (11).

Deep learning (DL) assistance for classifying MSCC on staging CT

could improve the clinical workflow for patients, allowing for early

clinical assessment and high-resolution MRI for treatment planning,

especially if SBRT or surgical intervention is indicated. Artificial

intelligence applications in spine MRI and CT have shown potential

clinical utility, including semi-automated grading of spinal canal
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stenosis (12, 13), and assessment of skeletal metastatic burden on PET/

CT (14). Most recently, Hallinan et al. (2022) trained and tested

preliminary CT deep learning algorithms for classification of MSCC

(15). The DL algorithms showed good interrater variability compared

to an expert radiologist (reference standard) with kappa values between

0.873 to 0.911 (p<0.001). The study only assessed performance on an

internal test set, and did not assess the generalisability of the model at

an external institution or the accuracy of the DL algorithm relative to

the formal radiology report for each staging CT study.

The aim of this study is to further develop and assess the

performance of a deep learning algorithm for MSCC detection and

grading on CT scans. These automated DL tools could expedite timely

diagnosis of MSCC and improve selection of treatment including

stereotactic radiotherapy or surgical decompression. The reference

standard MSCC gradings on CT will be prepared using matched MR

images interpreted by radiologists with expertise in spine imaging. The

performance of the DL algorithm will be compared against the pre-

existing staging CT radiology reports (generated in a real clinical

setting) and focused assessment for MSCC by radiologists

experienced in spine or oncological body imaging. In addition, the

performance and generalizability of the DL algorithm will be assessed

on a dataset from an external institution.
2 Materials and methods

This retrospective study was conducted at both internal and

external healthcare institutions. It was approved by the local

institutional review board (National Healthcare Group (NHG),

Singapore; protocol code NHG DSRB Ref: 2020/00835 dated 17

September 2021), and all analysis was carried out in accordance with

relevant guidelines and regulations. The requirement for informed

consent was waived by the local institutional review board owing to

the retrospective nature of this study and low risk to participants.
2.1 Dataset preparation

Retrospective, manual retrieval of CT staging examinations and

corresponding MRI spines from patients with suspected MSCC was
Frontiers in Oncology 03
conducted over a thirteen-year period from September 2007

through to September 2020 at NUH, Singapore. Inclusion criteria

were adults (≥18 years-of-age) with corresponding MRI and CT

studies performed ≤ 60 days of each other. Tables 1, 2 indicate the

imaging specifications for the MRI and CT examinations, which

were performed using a wide variety of platforms. A heterogeneous

set of imaging data for training and testing is useful to create a

generalizable DL algorithm. Exclusion criteria were CT or MRI

studies with instrumentation, no intravenous CT contrast, extensive

motion artefacts/poor image quality and studies covering the upper

cervical and lumbosacral regions. For the MRI assessment,

transverse T2-weighted sequences were examined.

The internal imaging data was obtained at the Internal

Institution (NUH, Singapore) and was divided at random into

84% and 16% for the deep learning algorithm training/validation

and held-out test data sets, respectively. This division of datasets for

training, validation and testing of DL algorithms is acceptable (16).

A dataset of staging CT and corresponding MRI spine

examination from patients with suspected MSCC were also

retrieved for external testing from Ng Teng Fong General Hospital

(NTFGH), Singapore (imaging parameters documented in Tables 1,

2). Inclusion and exclusion criteria for the external dataset were the

same as for the primary institutional datasets. The imaging studies

were retrieved over a five-year period between September 2015

through to September 2020. The external dataset was for testing

the DL algorithm with no further training conducted.
2.2 Dataset labelling

Internal training image sets were labelled by radiologists with

specialization in musculoskeletal/spine imaging (SRad1; 11 years post

board certification) and neuroimaging (SRad2; 6 years post board

certification). Each labeller assessed over 180 CT and corresponding

MRI thoracic spine studies independently. Using an open-source data

labelling tool (LabelImg1.8.6: https://github.com/heartexlabs/labelImg),

boxes were outlined along the CT images of the thoracic spinal canal to

highlight the area of interest for the DL algorithm training. The

thoracic region encompassed a transverse imaging volume from C7

through to L3 (approximate location of the conus medullaris). The
TABLE 1 CT scanner details.

Parameter CT1 CT2 CT3 CT4 CT5 CT6*

Number of slices 4 64 256 384 512 128

Pitch 1.5 1.2 0.984 0.8 0.531 0.55

Slice thickness (mm) 5 5 3 3 3 3

Collimation (mm) 4 x 1 32 x 0.6 128 x 0.625 192 x 0.6 256 x 0.625 128 x 0.6

kV 120 120 100 100 100-120 100-140

Reference mAs 180 200 250 200 200 170-200

Rotation time (s) 0.5 0.5 0.5 0.5 0.5 0.28
kV, Kilovoltage; mAs, Milliampere-seconds, *CT scanner present at the external institution (NTFGH, Singapore). All the five other CT scanners were situated at the internal institution (NUH,
Singapore). All patient scans were performed in a craniocaudal direction whilst the patient was lying down. Contrast volume for all CT scanners = 70-100ml depending on patient size, at a rate of
1.2-1.5 mL/s.
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transverse CT images are extracted from the original DICOM file in

three standardized CT window widths and levels (W/L in Hounsfield

units): Bone (1500/300), Abdomen (400/50), and Spine (200/100).

These are then used to train both the object detection and classification

DL algorithms without further pre-processing. The rationale for using

multiple windows is that they are used by clinicians to provide more

accurate analysis for MSCC, including optimal assessment of the bony

margins and enhancing epidural soft tissue.

The labellers classified each axial CT image using the Bilsky

MSCC classification in conjunction with the axial T2W MRI studies.

For this study the Bilsky grading was divided into normal (0/normal/

no epidural disease), low (1a/1b) and high-grade (1c/2/3) disease,

which is useful for treatment planning. A visual guide to the Bilsky

scale using diagrams, MRI and CT images was provided to all the

radiologists (Figure 1). Marked narrowing of the spinal canal due to

degenerative disk osteophyte disease, and/or ossification of the yellow

ligament were highlighted by the specialist radiologists and excluded

from training and testing of the DL algorithms (17, 18).

Both the held-out internal and external CT test data sets were

assessed using the MSCC grading scale by the specialist radiologist

(SRad1) in conjunction with the MR images. These gradings served

as the internal and external reference standards. The performance

of the developed DL algorithm was compared against another group

of radiologists on the internal and external institution test sets using

inter-rater agreement. The radiologists labelled the test sets

independently and included two specialist musculoskeletal

radiologists (Rad1 and Rad2, 7- and 5-years post board

certification, respectively), along with two radiologists with

experience in oncological CT evaluation (Rad3 and Rad4, 3 and 5

years post board certification, respectively). All readers had access

to the visual Bilsky scale and were provided with ten CT and

corresponding MRI examples of normal, low or high-grade MSCC

classification prior to assessing the test sets. None of the readers had

access to the DL algorithm predictions, MR images or reference

standard gradings during the CT test set assessments.
2.3 Original CT radiologist reports

The DL algorithm performance was also compared to the

original CT reports of the internal test set cases generated at the
Frontiers in Oncology 04
time of scanning. Each staging CT study is issued with a formal

written report by a board-certified radiologist. These reports should

detail information concerning the primary tumour, secondary

metastatic disease, treatment response, and any complications

including MSCC. Each report was examined by the experienced

radiologists (SRad1 and SRad2) to assess for documentation on the

presence of MSCC (yes/no), site (vertebral level), and predicted

Bilsky grade (normal, low, or high-grade).
2.4 Deep learning algorithm development

We developed a consecutive region of interest (ROI) detector and

classification/grading deep learning pipeline following the study by

Hallinan and Zhu et al., 2022 (15). First, we build Faster R-CNN (19)

combined with ResNet50 (20) as its backbone network architecture,

which consists of 50 convolutional layers with ReLU (21) activation

function for non-linearity. We fine-tune the model on our newly

collected training data with the ROI annotations as the supervision

with a learning rate of 0.0003 for 200k steps.We use stochastic gradient

descent (SGD) (22) with a momentum of 0.9 for optimization and a

weight decay of 0.0005 for regularization following (19). The fine-tuned

model is used for ROI detection. Second, the combined window

learning (CWL) (15) method with average fusion is adopted for ROI

classification with multi-window information due to its robustness to

missing input window information and reduced model size.

Specifically, we build the CWL model with a convolutional

prototypical network (23) using ResNeXt50 (24) as its backbone

network architecture. The ResNeXt50 network consists of 50

convolutional layers with ReLU activation function and specially

designed aggregated transformations. We chose ResNeXt50 rather

than its deeper (e.g., ResNeXt101) or shallower counterparts (e.g.,

ResNeXt29) in our study due to its good fit to our dataset size to avoid

overfitting or underfitting. As CT scans with different window

information display different characteristics, we apply window-

specific batch normalization layers (25) to capture the window-

specific information and share the remaining weights of the model

to capture the common information.

During each training iteration, our model receives a batch of

inputs which consists of data samples with different window

information of equal size and apply the corresponding batch
TABLE 2 MRI scanner details for transverse T2-weighted sequences (reference standard).

Parameter MRI 1 and 2 MRI 3 MRI 4 MRI 5 MRI 6*

Tesla (T) 1.5 1.5 3 3 1.5

TR (msec) 3500 4000 5300 5300 2000

TE (msec) 80 90 100 100 87

Slice thickness (mm) 5 5 5 5 4

Gap (mm) 6 6 6 6 10

Field of view (mm2) 200 x 200 160 x 160 200 x 200 160 x 160 180 x 180

Matrix 512 x 512 320 x 320 512 x 512 640 x 640 384 x 384
TR, repetition time; TE, echo time; *MRI scanner present at the external institution (NTFGH, Singapore). All the five other MRI scanners were situated at the internal institution (NUH,
Singapore). All patient scans were performed whilst the patient was lying down with application of a body coil.
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normalization layers on them for backpropagation. We use SGD

with a learning rate of 0.001 for optimization and a weight decay of

0.0005 for regularization. We train our model for 200 epochs. For

inference, our model receives input with multi-window information

and outputs the average prediction probability based on the input

information from each window as the final prediction probability.

The hyper-parameters of our deep learning algorithm are optimized

using a separate, held-out validation data set. Figure 2 presents a

graphical summary of the deep learning algorithms, which form a

pipeline. An ablation study is also provided in Table 3 to evaluate

how much performance benefits arise from the framework and how

much are coming from the advanced backbone.

Our deep learning pipeline was created using the Apache SINGA

(26) platform. We also use MLCask (27), a system which facilitates

efficient management of several versions of the deep learning

algorithms/pipeline. During each training iteration, the batch size is

set to be 72 with inputs of equal size from the three different windows

on a NVIDIA GeForce GTX 1080p GPU for the training of the CWL

model. The code of the deep learning algorithms is adopted from

SpineAI@NUHS-NUS (available for review at https://github.com/

NUHS-NUS-SpineAI/SpineAI-Bilsky-Grading-CT).
Frontiers in Oncology 05
2.5 Statistical analysis

Analysis of the data was undertaken using Stata software

version 17 (Stata Statistical Software: Release 17. College Station,

TX: StataCorp LLC), with statistical significance determined at 2-

sided p<0.05. Predicting that kappas of approximately 0.9 are to be

generated with a 95% confidence interval (CI) width of 0.1, at least

138 or more CT and matched MRI studies are required. Continuous

variables were presented as means with standard deviations, while

categorical variables were shown as numbers (%). Inter-rater

agreement using three-grade (0/normal, low or high-grade) and

two-grade (0/normal or low-grade versus high-grade, and 0/normal

versus low or high-grade) MSCC classifications were assessed using

Gwet’s kappa to take into account the high percentage of grade 0/

normal images (28). AUCs, sensitivities, and specificities were

presented for all two-grade MSCC groupings and furnished with

95% CIs. For comparison with the radiology reports, the

performance of the DL algorithm and radiologists were assessed

for detection of a high-grade MSCC lesion on each CT study (i.e.,

two-grade 0/normal or low-grade versus high-grade classification)

against the reference standard.
FIGURE 1

Classification/grading of metastatic spinal cord compression (MSCC) using the Bilsky grading scale with corresponding CT, MRI, and graphic
illustrations (right to left). MSCC is highlighted by the red-shaded areas. Axial CT was performed in the portal-venous phase and matching axial MRI
images were T2-weighted, which are best for showing the cerebrospinal fluid (blue), spinal cord (yellow), and surrounding structures.
frontiersin.org

https://github.com/NUHS-NUS-SpineAI/SpineAI-Bilsky-Grading-CT
https://github.com/NUHS-NUS-SpineAI/SpineAI-Bilsky-Grading-CT
https://doi.org/10.3389/fonc.2023.1151073
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Hallinan et al. 10.3389/fonc.2023.1151073
Strength of agreement for Gwet’s kappa statistics: Almost-

perfect (1-0.81), substantial (0.8-0.61), moderate (0.6-0.41), fair

(0.4-0.21), slight (0.2-0), and poor (<0) (29).
3 Results

3.1 Patient demographics within
the datasets

Dataset analysis over the thirteen-year period identified 225 patients

with 513 CT scans and matched MRI spines for analysis. Overall, out of

the 513 CT studies, 93 were excluded from analysis as they were either

studies covering only the upper cervical and lumbosacral regions (49/93,

52.7%), no intravenous contrast was administered (32/93, 34.4%), spinal

instrumentation was in situ (6/93, 6.5%), there was a greater than two-

month (60-day) interval between the staging CT scan and spine MRI (3/

93, 3.2%), or extensive motion artefacts/poor quality images were present

(3/93, 3.2%). In total 420 CT scans from 225 patients were available for

deep learning algorithm internal training/validation and testing.

The mean age of all 225 patients was 60 ± 11.9(SD) with a range

from 18 to 93 years old. The patient group was comprised of slightly

more males (117/225, 52.0%) than females (108/225, 48.0%) with

lung and breast malignancies the most common (104/225 patients,

46.2%). There was a heterogeneous spread of MSCC sites along the

thoracic spine, with the majority of disease between T11 through to

L3 (85/225, 37.8%). Table 4 illustrates the patient demographics,

types of cancer, and thoracic MSCC locations.

The internal dataset totaling 420 CT scans was randomly

separated into 354 (84%) scans for training/validation, and 66

(16%) scans for internal testing with no patient overlap between

the groups (flow chart in Figure 3). For the external dataset, 43

staging CT studies covering the thoracic spine from 32 patients with

suspected MSCC were retrieved for testing (Table 4). Overall, mean
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age for the 32 external patients was 60 ± 13 (SD) with a range from

19 to 85 years old. As for the internal data set, the majority of the

patient group were male (20/32, 62.5%), and lung cancer

represented the most frequent primary malignancy (13/32, 40.6%).
3.2 Reference standard CT MSCC gradings

The total number of CT images and matched MSCC gradings

for the internal training, validation and test sets, along with the

external institution test set are provided in Table 5. For the internal

training, validation and test sets, any grade of MSCC accounted for

2560/12488 (20.5%), 604/3133 (19.3%), and 638/3331 (19.2%),

regions of interest respectively. In the external test set a similar

distribution was noted with 282/1558 (18.1%) regions of interest for

both low and high-grade MSCC.
3.3 Three-grade MSCC classification

For three-grade MSCC classification, the DL algorithm showed

almost perfect inter-rater agreement on the internal test data
TABLE 3 Ablation study on different backbone network architectures
and learning frameworks for three-grade MSCC classification.

Backbone
Framework

ResNet50 ResNext50 Increment

Plain 78.55 79.80 +1.24

CWL 80.52 82.50 +1.99

Increment +1.96 +2.70 –
CWL, Combined Window Learning. Numbers in the table are the average class accuracy
results evaluated on the internal test set for each combination of backbone network
architecture and learning framework to indicate their classification performance.
FIGURE 2

Graphical summary of the deep learning (DL) algorithms, which formed a pipeline. The deep learning pipeline consumes input data (images) with
information from three different CT windows, namely abdomen, bone, and spine. In the first portion, a region of interest (ROI) detector is used to
identify the ROIs for all images with different window information. In the second step, a ROI classifier with a window-specific batch normalization
layer is applied to each input image with different window information to obtain their prediction vectors. Later, the prediction vectors are element-
wisely added and averaged as the final prediction. BN, Batch Normalization.
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FIGURE 3

Flow chart of the deep learning algorithm training and testing study design. The algorithm performance was compared with a spine radiologist (reference
standard with access to corresponding MRI scans) and four radiologists (blinded to the MRI spines). *All CT scans had matched MRI spine scans.
TABLE 4 Patient Details and Clinical data for the test datasets.

Characteristics Internal training/validation set
(n=183)

Internal test set
(n=42)

External Test set
(n=32)

Age (years)* 60 ± 12.3 (18-93) 62± 10 (40-82) 60 ± 13 (19-85)

Women 89 (51.4) 19 (45.2) 12 (37.5)

Men 94 (48.6) 23 (54.8) 20 (62.5)

Cancer Subtype

Lung 45 (24.6) 10 (23.8) 13 (40.6)

Breast 36 (19.7) 13 (31.0) 3 (9.4)

Renal cell carcinoma 17 (9.3) 3 (7.1) 3 (9.4)

Colon 16 (8.7) 3 (7.1) 4 (12.5)

Prostate 13 (7.1) 1 (2.4) 1 (3.1)

Multiple Myeloma 11 (6.0) 3 (7.1) 0 (0)

Hepatocellular carcinoma 9 (4.9) 2 (4.8) 0 (0)

Nasopharyngeal carcinoma 9 (4.9) 0 (0) 1 (3.1)

Others 27 (14.8) 7 (16.7) 7 (21.9)

MSCC location

C7-T2 19 (10.4) 1 (2.4) 6 (18.8)

T3-T10 49 (26.8) 15 (35.7) 15 (46.9)

T11-L3 68 (37.2) 17 (40.5) 8 (25)

Diffuse thoracic# 31 (16.9) 8 (19.0) 3 (9.4)

No epidural disease 16 (8.7) 1 (2.4) 0 (0)

No. of staging CT thoracic studies 354/420 (84) 66/420 (16) 43
F
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 07
MSCC, Malignant spinal cord compression. *The values provided are mean in years of age ± SD (range indicated) for numerical variables, along with n (%) for categorical variables. #Two or more
sites of MSCC along the thoracic spine.
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(k =0.872, 95% CI 0.859-0.886), which was superior to Rad 2 a spine

imaging specialist (k = 0.795, 95% CI 0.778-0.811) and Rad 3 a body

imaging specialist (k = 0.724, 95% CI 0.705-0.743) (both p<0.001)

(Table 6). The DL algorithm performance showed no evidence of a

significant difference compared to an experienced spine radiologist

(Rad 1, k = 0.883, 95% CI 0.871-0.896) and a body imaging

specialist (Rad 4, k = 0.870, 95% CI 0.856-0.883) (p>0.05 for both).

On the external institution dataset, the DL algorithm displayed

similar almost perfect inter-rater agreement for three-grade MSCC

classification with a kappa of 0.844 (95% CI 0.822-0.865), which was

significantly superior to Rad 3 a body imaging specialist (k =0.721,

95% CI 0.693-0.749) (p<0.001) (Table 6).
3.4 Low or high-grade MSCC classification

The DL algorithm and radiologist performance was assessed for

detection of any grade of MSCC. For this classification on the

internal dataset, the DL algorithm displayed almost perfect inter-

rater agreement (k = 0.910, 95% CI 0.897-0.922), which was

superior to Rad 2 a spine specialist (k = 0.793, 95% CI 0.773-

0.813), Rad 3 (k = 0.678, 95% CI 0.654-0.703) and Rad 4 (k = 0.871,

95% CI 0.857-0.886) (all p<0.001) (Table 7). For the same

classification on the external dataset, the DL algorithm also

displayed almost perfect inter-rater agreement (k = 0.909, 95% CI

0.890-0.927), which was superior Rad 3 (k = 0.686, 95% CI 0.650-

0.722) (p<0.001).

For detection of any grade of MSCC on the internal dataset the

DL algorithm displayed high sensitivity (87.13, 95% CI 84.28-

89.63), specificity (95.43, 95% CI 94.58-96.19), and AUC (0.913,

95% CI 0.899-0.926). The DL algorithm showed similar

performance on the external dataset with high sensitivity (96.45,
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95% CI 93.58-98.29), specificity (93.26, 95% CI 91.74-94.57), and

AUC (0.949, 95% CI 0.936-0.961) (Table 8).
3.5 High-grade MSCC classification

The DL algorithm and radiologist performance was also

assessed for detection of high-grade MSCC. For this classification

on the internal dataset, the DL algorithm displayed almost perfect

inter-rater agreement (k = 0.942, 95% CI 0.933-0.951), which

showed no evidence of a significant difference compared to Rad 2

(a spine imaging specialist) who had the lowest kappa of 0.941 (95%

CI 0.931-0.950) (p>0.05) (Table 9). For the same classification on

the external dataset, the DL algorithm also displayed almost perfect

inter-rater agreement (k = 0.950, 95% CI 0.937-0.962), which was

superior to Rad 2 who had the lowest kappa of 0.929 (95% CI 0.914-

0.945) (p=0.042).

For detection of high-grade MSCC on the internal dataset the

DL algorithm showed high sensitivity (93.38, 95% CI 89.85-95.97),

specificity (95.47, 95% CI 94.67-96.18), and AUC (0.944, 95% CI

0.929-0.959). The DL algorithm showed similar performance on the

external dataset with high sensitivity (96.61, 95% CI 92.77-98.75),

specificity (96.02, 95% CI 94.85-96.99), and AUC (0.963, 95% CI

0.949-0.977) (Table 10).

The DL algorithm, radiologists and original radiology reports

were also compared for detection of a high-grade MSCC lesion on

each CT scan against the reference standard (Table 11). Out of the

66 CT scans analysed (approximately 50 axial images per scan), 50/

60 (83.3%) scans had at least one high-grade MSCC lesion and 16/

60 (26.7%) had no high-grade MSCC lesion. All radiologists and the

DL algorithm showed superior inter-rater agreement compared to

the original reports (p<0.001). For example, the DL algorithm
TABLE 6 Inter-rater agreement for three-grade MSCC classification.

Internal Test Set External Test Set

Reader Kappa (95% CI) P value Kappa (95% CI) P value

DL algorithm 0.872 (0.859- 0.886) <0.001 0.844 (0.822- 0.865) <0.001

Rad 1 0.883 (0.871- 0.896) <0.001 0.902 (0.885- 0.918) <0.001

Rad 2 0.795 (0.778- 0.811) <0.001 0.862 (0.842- 0.882) <0.001

Rad 3 0.724 (0.705- 0.743) <0.001 0.721 (0.693- 0.749) <0.001

Rad 4 0.870 (0.856- 0.883) <0.001 0.901 (0.884- 0.918) <0.001
DL, Deep Learning.
TABLE 5 MSCC classification reference standards for the internal and external CT data sets.

MSCC classification Internal Training Set Internal Validation Set Internal Test Set External Test Set

Normal/grade 0 9928 (79.5) 2529 (80.7) 2693 (80.8) 1276 (81.9)

Low-grade 1a/1b 1412 (11.3) 303 (9.7) 351 (10.5) 105 (6.7)

High-grade 1c/2/3 1148 (9.2) 301 (9.6) 287 (8.6) 177 (11.4)

Total 12488 3133 3331 1558
Values are n (%) and represent the number of axial CT images and corresponding MSCC grade. MSCC, Metastatic Spinal Cord Compression.
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demonstrated almost perfect inter-rater agreement with kappa of

0.813 (95% CI 0.678-0.949) and AUC of 0.814 (95% CI 0.692-

0.936), which were superior to the original radiology report kappa

of only 0.027 (95% CI -0.232-0.286) and AUC of 0.564 (95% CI

0.427-0.700) (p<0.001 and p=0.007, respectively). All radiologists

and the DL algorithm showed superior sensitivities compared to the

original radiology reports, e.g., Rads 1 and 4 had the lowest

sensitivity of 76.0 (95% CI 61.83- 86.94), p=0.001 and the DL

algorithm had sensitivity of 94.0 (95% CI 83.45-98.75), compared to

the original report sensitivity of only 44.0 (95% CI 29.99-

58.75) (p<0.001).
4 Discussion

MSCC is a serious complication of advanced cancer, and MRI is

the current gold standard imaging test to confirm the diagnosis and

plan therapy (30). However, MRI is an expensive procedure and is

reserved for confirming a clinical suspicion of MSCC typically due

to new back pain and/or neurological symptoms. Staging CT scans

are commonly performed for cancer diagnosis and treatment

follow-up and represent a window of opportunity for earlier

diagnosis of MSCC, especially when the clinical signs/symptoms

are unclear. In this study, we further trained and externally tested an

existing DL algorithm for the detection of any grade of MSCC on

staging CT studies. Upon testing, the DL algorithm showed almost-
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perfect inter-rater agreement for three-class MSCC grading with

kappas of 0.872 (p<0.001) and 0.844 (p<0.001) on the internal and

external test data sets, respectively. On the internal test set the DL

algorithm inter-rater agreement (k = 0.872) was superior to Rad 2, a

spine imaging specialist (k = 0.795) and Rad 3 a body imaging

specialist (k =0.724) (both p<0.001). The DL algorithm kappa of

0.844 on the external test set was also superior to Rad 3

(k =0.721) (p<0.001).

Analysis of the staging CT reports (issued by the radiologist at

the time of the study) revealed that the classification of high-grade

MSCC disease was poor with only slight inter-rater agreement (k =

0.027) and low sensitivity (44.0). In comparison, the DL model

showed superior performance (p<0.001) with almost-perfect inter-

rater agreement (k = 0.813) and high sensitivity (94.0). This

classification is especially important as patients with high-grade

MSCC are at risk of progression to irreversible spinal cord injury

and require urgent work-up with MRI for treatment planning.

DL tools for spine conditions on cross-sectional imaging

include MRI assessment of spinal canal stenosis (12, 31),

radiotherapy planning for vertebral tumours to exclude organs at

risk including the spinal cord (32), and for differentiating benign

versus malignant spinal tumours (33). DL algorithms for automated

Bilsky grading of MSCC have also been explored on MRI (34) and

CT (15). The preliminary DL algorithms for MSCC grading on CT

showed kappas of 0.873-0.911 (p<0.001) on an internal test set and

were used as the basis for this study (15). The DL algorithm
TABLE 8 Sensitivity, specificity and AUC for classification of normal versus any grade of MSCC.

Internal Test Set External Test Set

Reader Sensitivity
(95% CI)

Specificity
(95% CI)

AUC
(95% CI)

Sensitivity
(95% CI)

Specificity
(95% CI)

AUC
(95% CI)

DL Algorithm 87.13
(84.28-89.63)

95.43
(94.58-96.19)

0.913
(0.899-0.926)

96.45
(93.58-98.29)

93.26
(91.74-94.57)

0.949
(0.936-0.961)

Rad 1 67.82
(64.04-71.43)

99.00
(98.55-99.34)

0.834
(0.816-0.852)

75.18
(69.71-80.11)

97.88
(96.94-98.60)

0.865
(0.840-0.891)

Rad 2 81.79
(78.57-84.71)

87.60
(86.30-88.82)

0.847
(0.831-0.863)

91.13
(87.19-94.18)

92.24
(90.63-93.65)

0.917
(0.899-0.935)

Rad 3 89.64
(87.01-91.90)

78.32
(76.72-79.87)

0.840
(0.826-0.854)

97.16
(94.49-98.77)

77.43
(75.03-79.70)

0.873
(0.858-0.888)

Rad 4 51.49
(47.53-55.44)

99.52
(99.18-99.74)

0.755
(0.736-0.775)

80.85
(75.77-85.27)

97.96
(97.03-98.66)

0.894
(0.871-0.917)
TABLE 7 Inter-rater agreement for classification of normal versus any grade of MSCC.

Internal Test Set External Test Set

Reader Kappa (95% CI) P value Kappa (95% CI) P value

DL algorithm 0.910 (0.897- 0.922) <0.001 0.909 (0.890- 0.927) <0.001

Rad 1 0.904 (0.891- 0.917) <0.001 0.914 (0.896- 0.931) <0.001

Rad 2 0.793 (0.773- 0.813) <0.001 0.882 (0.861- 0.903) <0.001

Rad 3 0.678 (0.654- 0.703) <0.001 0.686 (0.650- 0.722) <0.001

Rad 4 0.871 (0.857- 0.886) <0.001 0.928 (0.912- 0.944) <0.001
Any grade of MSCC classification is defined as two-grade normal/none versus low or-high grade disease. DL, Deep Learning.
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underwent further training on an expanded internal training set

and showed sustained performance on a larger internal test set with

kappa of 0.872 (p<0.001). More importantly, in this study, the DL

algorithm for CT MSCC classification showed sustained almost-

perfect inter-rater agreement on an external dataset (k = 0.844,

p<0.001) suggesting the model could be generalizable across

institutions. This latter step can be overlooked in clinical DL

algorithms and is important to prevent site/selection bias and

overfitting to the internal training data set (35).

An automated DL algorithm for MSCC classification could

optimize the clinical workflow of patients with suspected MSCC.

Firstly, at the time of the CT scan, the DL tool could triage cases for

early reporting of MSCC by a radiologist through an automated text

alert system. This is feasible as DL tools have been successfully

deployed for stroke triage including the detection of acute

intracranial hemorrhage and large vessel occlusion on CT studies

(36). Secondly, when reporting the study, the DL MSCC tool could

also highlight key axial CT images with MSCC for the radiologist to

review and document in the report. This is referred to as DL assisted

reporting, which has recently been shown to improve the

productivity and consistency of radiologists when reporting

lumbar spinal stenosis on MRI and CT of the thorax (31, 37).

Finally, the key images selected by the DL model and radiologist

could be provided to the requesting clinician and circulated to

experts in spinal metastasis management including the radiation

oncology and spine surgery teams. Overall, improvement in the
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detection and communication of MSCC could result in earlier

diagnosis of the condition and improved patient outcomes,

including preservation of ambulation.

Our retrospective study has several limitations. First, we used

isolated axial CT images for the Bilsky grading of MSCC. The

addition of multiplanar sagittal and coronal images to train a three-

dimensional convolutional neural network could further improve

the DL algorithm performance. Second, an assessment of the time

delays between the CT and MRI could not be completed due to

incomplete clinical records at the time of the CT scans. Most

patients attending for an outpatient CT study would not be

assessed by the clinical team and screened for MSCC (e.g., back

pain and neurological signs). Third, patients with CT studies

performed within 60 days of an MRI spine were included in this

study. This time window was used to balance the risk of disease

progression between the studies with the amount of training data

available for the DL algorithm. Fourth, the use of focused radiologist

assessment of MSCC on CT is not representative of real clinical

practice, which involves assessment of all organs (lungs, liver, etc.),

osseous structures and soft tissues. However, focused MSCC

assessment on CT represented a more rigorous comparison (i.e.,

best possible radiologist performance) for the developed DL

algorithm. Finally, the potential clinical impact of the DL

algorithm was assessed against a reference standard focusing on

imaging alone. In practice, it must be emphasized that the decision

for surgery and/or radiotherapy combines both imaging and clinical
TABLE 10 Sensitivity, specificity and AUC for classification of normal/low versus high-grade MSCC.

Internal Test Set External Test Set

Reader Sensitivity
(95% CI)

Specificity
(95% CI)

AUC
(95% CI)

Sensitivity
(95% CI)

Specificity
(95% CI)

AUC
(95% CI)

DL Algorithm 93.38
(89.85-95.97)

95.47
(94.67-96.18)

0.944
(0.929-0.959)

96.61
(92.77-98.75)

96.02
(94.85-96.99)

0.963
(0.949-0.977)

Rad 1 60.28
(54.36-65.98)

99.67
(99.40-99.84)

0.800
(0.771-0.828)

71.19
(63.91-77.73)

98.33
(97.51-98.94)

0.848
(0.814-0.881)

Rad 2 81.53
(76.55-85.85)

96.35
(95.63-96.99)

0.889
(0.867-0.912)

92.66
(87.77-96.03)

94.79
(93.48-95.90)

0.937
(0.917-0.957)

Rad 3 78.75
(73.55-83.33)

99.05
(98.63-99.36)

0.889
(0.865-0.913)

94.92
(90.57-97.65)

96.81
(95.75-97.68)

0.959
(0.942-0.976)

Rad 4 63.07
(57.20-68.66)

98.72
(98.25-99.09)

0.809
(0.781-0.837)

88.70
(83.09-92.96)

95.87
(94.69-96.86)

0.923
(0.899-0.947)
TABLE 9 Inter-rater agreement for classification of normal/low versus high-grade MSCC.

Internal Test Set External Test Set

Reader Kappa (95% CI) P value Kappa (95% CI) P value

DL algorithm 0.942 (0.933- 0.951) <0.001 0.950 (0.937- 0.962) <0.001

Rad 1 0.957 (0.950- 0.965) <0.001 0.942 (0.928- 0.955) <0.001

Rad 2 0.941 (0.931- 0.950) <0.001 0.929 (0.914- 0.945) <0.001

Rad 3 0.968 (0.962- 0.975) <0.001 0.957 (0.945- 0.968) <0.001

Rad 4 0.949 (0.941- 0.958) <0.001 0.937 (0.922- 0.951) <0.001
High-grade MSCC classification is defined as two-grade normal/none or low-grade versus high-grade disease. DL, Deep Learning.
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findings, including the type of cancer (radiosensitivity), prognosis

and comorbidities, and presence of neurological compromise.

In conclusion, we further developed, internally tested, and

externally validated a deep learning (DL) algorithm for the grading

of metastatic spinal cord compression using routine staging CT scans.

The DL algorithm had almost-perfect inter-rater agreement (kappas

of 0.872 and 0.844 on internal and external testing, respectively)

similar or superior to focussed radiologist assessment for the

determination of normal, low, or high-grade MSCC. For detection

of high-grade MSCC per CT scan, the DL algorithm showed superior

inter-rater agreement with kappa of 0.813 compared to the original

radiology report kappa of only 0.027 (p<0.001). Future work would

involve deploying the CT MSCC classification model onto the

radiology reporting platform at several institutions to assess the

generalizability and prospective diagnostic performance.
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TABLE 11 Classification of high-grade MSCC per CT scan.

Reader Kappa
(95% CI)

P-value Sensitivity
(95% CI)

Specificity
(95% CI)

AUC
(95% CI)

DL Algorithm 0.813
(0.678- 0.949) <0.001

94.0
(83.45- 98.75)

68.75
(41.34- 88.98)

0.814
(0.692- 0.936)

Rad 1 0.673
(0.489- 0.857)

<0.001 76.0
(61.83- 86.94)

100.00
(79.41- 100.00)

0.880
(0.820- 0.940)

Rad 2 0.813
(0.678- 0.949)

<0.001 94.0
(83.45- 98.75)

68.75
(41.34- 88.98)

0.814
(0.692- 0.936)

Rad 3 0.849
(0.725- 0.974)

<0.001 90.0
(78.19- 96.67)

93.75
(69.77- 99.84)

0.919
(0.844- 0.993)

Rad 4 0.603
(0.401- 0.804)

<0.001 76.0
(61.83- 86.94)

81.25
(54.35- 95.95)

0.786
(0.671- 0.902)

Original Report 0.027
(-0.232-0.286)

0.836 44.00
(29.99- 58.75)

68.75
(41.34- 88.98)

0.564
(0.427- 0.700)
High-grade MSCC classification is defined as two-grade normal/none or low-grade versus high-grade disease. Original report was the formal written evaluation issued by the radiologist at the
time of the CT scan. DL, Deep Learning.
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